Embedded Quantitative MRI T1ρ Mapping Using Non-Linear Primal-Dual Proximal Splitting
Abstract
:1. Introduction
2. Reconstruction Methods
2.1. Embedded T Model
Solving the Embedded T Reconstruction Problem
Algorithm 1 Non-linear primal-dual proximal splitting presented in [17] (Algorithm 2.1) |
|
2.2. Compressed Sensing Reference Methods
3. Materials and Methods
3.1. Simulated Golden Angle Radial Data
3.2. Cartesian Data from Ex Vivo Mouse Kidney
3.3. Reconstruction Specifics
4. Results
4.1. Simulated Golden Angle Radial Data
4.2. Cartesian Data from Ex Vivo Mouse Kidney
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Algorithm Details
Algorithm A1 Embedded T with NL-PDPS, adapted from [17] [Algorithm 2.1] |
|
References
- Gilani, I.A.; Sepponen, R. Quantitative rotating frame relaxometry methods in MRI. NMR Biomed. 2016, 29, 841–861. [Google Scholar] [CrossRef] [PubMed]
- Borthakur, A.; Mellon, E.; Niyogi, S.; Witschey, W.; Kneeland, J.B.; Reddy, R. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed. 2006, 19, 781–821. [Google Scholar] [CrossRef] [PubMed]
- Kettunen, M.I.; Grohn, O.H.; Lukkarinen, J.A.; Vainio, P.; Silvennoinen, M.J.; Kauppinen, R.A. Interrelations of T(1) and diffusion of water in acute cerebral ischemia of the rat. Magn. Reson. Med. 2000, 44, 833–839. [Google Scholar] [CrossRef]
- Grohn, O.H.J.; Kettunen, M.I.; Makela, H.I.; Penttonen, M.; Pitkanen, A.; Lukkarinen, J.A.; Kauppinen, R.A. Early detection of irreversible cerebral ischemia in the rat using dispersion of the magnetic resonance imaging relaxation time, T1rho. J. Cereb. Blood Flow Metab. 2000, 20, 1457–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Zheng, J.; Sun, J.; Wang, Y.; Xia, R.; Yin, Q.; Chen, W.; Xu, Z.; Liao, J.; Zhang, B.; et al. Endogenous contrast T1rho cardiac magnetic resonance for myocardial fibrosis in hypertrophic cardiomyopathy patients. J. Cardiol. 2015, 66, 520–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.X.; Yuan, J.; Chu, E.S.; Go, M.Y.; Huang, H.; Ahuja, A.T.; Sung, J.J.; Yu, J. T1rho MR imaging is sensitive to evaluate liver fibrosis: An experimental study in a rat biliary duct ligation model. Radiology 2011, 259, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Regatte, R.R. T(1)rho MRI of human musculoskeletal system. J. Magn. Reson. Imaging 2015, 41, 586–600. [Google Scholar] [CrossRef] [Green Version]
- Kajabi, A.W.; Casula, V.; Sarin, J.K.; Ketola, J.H.; Nykanen, O.; Te Moller, N.C.R.; Mancini, I.A.D.; Visser, J.; Brommer, H.; Rene van Weeren, P.; et al. Evaluation of articular cartilage with quantitative MRI in an equine model of post-traumatic osteoarthritis. J. Orthop. Res. 2021, 39, 63–73. [Google Scholar] [CrossRef]
- Jackson, J.I.; Meyer, C.H.; Nishimura, D.G.; Macovski, A. Selection of a convolution function for Fourier inversion using gridding (computerised tomography application). IEEE Trans. Med. Imag. 1991, 10, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Candes, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Jaspan, O.N.; Fleysher, R.; Lipton, M.L. Compressed sensing MRI: A review of the clinical literature. Brit. J. Radiol. 2015, 88, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, Q.; Liu, Q.; Wang, Y.X.J.; Liu, X.; Zheng, H.; Liang, D.; Yuan, J. PANDA-T1ρ: Integrating principal component analysis and dictionary learning for fast T1ρ mapping. Magn. Reson. Med. 2015, 73, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Pandit, P.; Rivoire, J.; King, K.; Li, X. Accelerated T1ρ acquisition for knee cartilage quantification using compressed sensing and data-driven parallel imaging: A feasibility study. Magn. Reson. Med. 2016, 75, 1256–1261. [Google Scholar] [CrossRef] [Green Version]
- Zibetti, M.V.W.; Sharafi, A.; Otazo, R.; Regatte, R.R. Accelerating 3D-T1ρ mapping of cartilage using compressed sensing with different sparse and low rank models. Magn. Reson. Med. 2018, 80, 1475–1491. [Google Scholar] [CrossRef]
- Zibetti, M.V.W.; Sharafi, A.; Otazo, R.; Regatte, R.R. Accelerated mono- and biexponential 3D-T1ρ relaxation mapping of knee cartilage using golden angle radial acquisitions and compressed sensing. Magn. Reson. Med. 2020, 83, 1291–1309. [Google Scholar] [CrossRef] [PubMed]
- Valkonen, T. A primal–dual hybrid gradient method for nonlinear operators with applications to MRI. Inverse Probl. 2014, 30, 055012. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; El-Rewaidy, H.; Assana, S.; Cai, X.; Amyar, A.; Chow, K.; Bi, X.; Yankama, T.; Cirillo, J.; Pierce, P.; et al. Accelerated cardiac T1 mapping in four heartbeats with inline MyoMapNet: A deep learning-based T1 estimation approach. J. Cardiovasc. Magn. Reson. 2022, 24. [Google Scholar] [CrossRef]
- Liu, F.; Kijowski, R.; El Fakhri, G.; Feng, L. Magnetic resonance parameter mapping using model-guided self-supervised deep learning. Magn. Reson. Med. 2021, 85, 3211–3226. [Google Scholar] [CrossRef]
- Feng, L.; Ma, D.; Liu, F. Rapid MR relaxometry using deep learning: An overview of current techniques and emerging trends. NMR Biomed. 2022, 35, e4416. [Google Scholar] [CrossRef]
- Fessler, J.A.; Sutton, B.P. Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans. Signal Process. 2003, 51, 560–574. [Google Scholar] [CrossRef] [Green Version]
- Mazurenko, S.; Jauhiainen, J.; Valkonen, T. Primal-dual block-proximal splitting for a class of non-convex problems. Electron. Trans. Numer. Anal. 2020, 52, 509–552. [Google Scholar] [CrossRef]
- Chambolle, A.; Pock, T. A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 2011, 40, 120–145. [Google Scholar] [CrossRef] [Green Version]
- Winkelmann, S.; Schaeffter, T.; Koehler, T.; Eggers, H.; Doessel, O. An optimal radial profile order based on the golden ratio for time-resolved MRI. IEEE Trans. Med. Imaging 2007, 26, 68–76. [Google Scholar] [CrossRef]
- Bernstein, M.A.; King, K.F.; Zhou, X.J. Handbook of MRI Pulse Sequences; Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Witschey, W.R.; Borthakur, A.; Elliott, M.A.; Mellon, E.; Niyogi, S.; Wang, C.; Reddy, R. Compensation for spin-lock artifacts using an off-resonance rotary echo in T1rho off-weighted imaging. Magn. Reson. Med. 2007, 57, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Michigan Image Reconstruction Toolbox (MIRT). Available online: https://github.com/JeffFessler/mirt (accessed on 3 May 2022).
- Lustig, M.; Donoho, D.; Pauly, J.M. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 2007, 58, 1182–1195. [Google Scholar] [CrossRef]
- Block, K.T.; Uecker, M.; Frahm, J. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn. Reson. Med. 2007, 57, 1086–1098. [Google Scholar] [CrossRef]
- Bredies, K.; Kunisch, K.; Pock, T. Total generalized variation. SIAM J. Imaging Sci. 2010, 3, 492–526. [Google Scholar] [CrossRef]
- Sutour, C.; Deledalle, C.A.; Aujol, J.F. Adaptive Regularization of the NL-Means: Application to Image and Video Denoising. IEEE Trans. Image Process 2014, 23, 3506–3521. [Google Scholar] [CrossRef] [Green Version]
- Ravishankar, S.; Bresler, Y. MR Image Reconstruction From Highly Undersampled k-Space Data by Dictionary Learning. IEEE Trans. Med. Imaging 2011, 30, 1028–1041. [Google Scholar] [CrossRef]
- Akella, S.V.; Regatte, R.R.; Wheaton, A.J.; Borthakur, A.; Reddy, R. Reduction of residual dipolar interaction in cartilage by spin-lock technique. Magn. Reson. Med. 2004, 52, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Keenan, K.E.; Besier, T.F.; Pauly, J.M.; Smith, R.L.; Delp, S.L.; Beaupre, G.S.; Gold, G.E. T1rho Dispersion in Articular Cartilage: Relationship to Material Properties and Macromolecular Content. Cartilage 2015, 6, 113–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanhela, M.; Paajanen, A.; Nissi, M.J.; Kolehmainen, V. Embedded Quantitative MRI T1ρ Mapping Using Non-Linear Primal-Dual Proximal Splitting. J. Imaging 2022, 8, 157. https://doi.org/10.3390/jimaging8060157
Hanhela M, Paajanen A, Nissi MJ, Kolehmainen V. Embedded Quantitative MRI T1ρ Mapping Using Non-Linear Primal-Dual Proximal Splitting. Journal of Imaging. 2022; 8(6):157. https://doi.org/10.3390/jimaging8060157
Chicago/Turabian StyleHanhela, Matti, Antti Paajanen, Mikko J. Nissi, and Ville Kolehmainen. 2022. "Embedded Quantitative MRI T1ρ Mapping Using Non-Linear Primal-Dual Proximal Splitting" Journal of Imaging 8, no. 6: 157. https://doi.org/10.3390/jimaging8060157
APA StyleHanhela, M., Paajanen, A., Nissi, M. J., & Kolehmainen, V. (2022). Embedded Quantitative MRI T1ρ Mapping Using Non-Linear Primal-Dual Proximal Splitting. Journal of Imaging, 8(6), 157. https://doi.org/10.3390/jimaging8060157