Deep Learning Network for Speckle De-Noising in Severe Conditions
Abstract
:1. Introduction
2. Related Works
3. DB128: A Generalized Database for Digital Holography
3.1. HOLODEEP Database
3.2. DB128: An Extended Database
3.2.1. Definitions
3.2.2. Diversity of Conditions
4. Residual Learning Architectures
4.1. Architectures
4.2. Implementation
- add45: add to phase;
- transpose: transpose phase;
- flip: flip up down cosine/sine images;
- rot90: rotation of cosine/sine images;
- rot180: rotation of cosine/sine images;
- rot270: rotation of cosine/sine images.
5. Algorithms and Metrics
5.1. Challenger Algorithms
5.2. Metrics
6. Results
6.1. Protocol
6.2. Global Evaluation
6.3. Evaluation on Target Images
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Picart, P.; Li, J. Digital Holography; John Wiley & Sons, Ltd.: London, UK, 2012. [Google Scholar]
- Picart, P. New Techniques in Digital Holography; John Wiley & Sons, Ltd.: London, UK, 2015. [Google Scholar]
- Montrésor, S.; Picart, P. Quantitative appraisal for noise reduction in digital holographic phase imaging. Opt. Express 2016, 24, 14322–14343. [Google Scholar] [CrossRef] [PubMed]
- Bianco, V.; Memmolo, P.; Leo, M.; Montresor, S.; Distante, C.; Paturzo, M.; Picart, P.; Javidi, B.; Ferraro, P. Strategies for reducing speckle noise in digital holography. Light. Sci. Appl. 2018, 7, 48. [Google Scholar]
- Montresor, S.; Tahon, M.; Picart, P. Deep learning speckle de-noising algorithms for coherent metrology: A review and a phase-shifted iterative scheme [Invited]. Opt. Soc. Am. 2022, 39, A62–A78. [Google Scholar] [CrossRef]
- Piniard, M.; Sorrente, B.; Hug, G.; Picart, P. Theoretical analysis of surface-shape-induced decorrelation noise in multi-wavelength digital holography. Opt. Express 2021, 29, 14720–14735. [Google Scholar] [CrossRef] [PubMed]
- Meteyer, E.; Foucart, F.; Pezerat, C.; Picart, P. Modeling of speckle decorrelation in digital Fresnel holographic interferometry. Opt. Express 2021, 29, 36180–36200. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.; Ryu, D.; Jo, Y.; Kim, Y.S.; Park, W.; Min, H.S.; Park, Y. Cycle-consistent deep learning approach to coherent noise reduction in optical diffraction tomography. Opt. Express 2019, 27, 4927–4943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Q.; Zhang, Q.; Li, J.; Shen, H.; Zhang, L. Hyperspectral image denoising employing a spatial spectral deep residual convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1205–1218. [Google Scholar] [CrossRef] [Green Version]
- Jeon, W.; Jeong, W.; Son, K.; Yang, H. Speckle noise reduction for digital holographic images using multi-scale convolutional neural networks. Opt. Lett. 2018, 43, 4240–4243. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, X.; Zhu, W.; Cheng, X.; Xiang, D.; Shi, F. Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN. Biomed. Opt. Express 2018, 9, 5129–5146. [Google Scholar] [CrossRef] [PubMed]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; pp. 1–14. [Google Scholar]
- Perez, L.; Wang, J. The effectiveness of data augmentation in image classification using deep learning. arXiv 2017, arXiv:1712.04621. [Google Scholar]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian denoiser: Residual learning of Deep CNN for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karthik, R.; Hariharan, M.; Anand, S.; Mathikshara, P.; Johnson, A.; Menaka, R. Attention embedded residual CNN for disease detection in tomato leaves. Appl. Soft Comput. 2020, 86, 105933. [Google Scholar]
- Park, D.-Y.; Park, J.-H. Hologram conversion for speckle free reconstruction using light field extraction and deep learning. Opt. Express 2020, 28, 5393–5409. [Google Scholar]
- Montrésor, S.; Picart, P.; Sakharuk, O.; Muravsky, L. Error analysis for noise reduction in 3D deformation measurement with digital color holography. J. Opt. Soc. Am. B 2017, 34, B9–B15. [Google Scholar] [CrossRef]
- Montresor, S.; Tahon, M.; Laurent, A.; Picart, P. Computational de-noising based on deep learning for phase data in digital holographic interferometry. APL Photonics 2020, 5, 030802. [Google Scholar] [CrossRef] [Green Version]
- Tahon, M.; Montrésor, S.; Picart, P. Towards Reduced CNNs for De-Noising Phase Images Corrupted with Speckle Noise. Photonics 2021, 8, 255. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising with block-matching and 3D filtering. In Proceedings of the SPIE, Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning, San Jose, CA, USA, 15–19 January 2006; Volume 6064, p. 606414. [Google Scholar]
- Kemao, Q.; Wang, H.; Gao, W. Windowed Fourier transform for fringe pattern analysis: Theoretical analyses. Appl. Opt. 2008, 47, 5408–5419. [Google Scholar] [CrossRef] [PubMed]
- Selesnick, I.W.; Baraniuk, R.G.; Kingsbury, N.C. The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 2005, 22, 123–151. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Bovik, A.C.; Lu, L. Why is image quality assessment so difficult? Proc. IEEE ICASSP. 2002, 4, 3313–3316. [Google Scholar]
- Montresor, S.; Picart, P. Reference-free metric for quantitative noise appraisal in holographic phase measurements. J. Opt. Soc. Am. A 2018, 35, A53–A60. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Montresor, S.; Guo, R.; Li, J.; Yan, F.; Cheng, H.; Picart, P. Phase calibration unwrapping algorithm for phase data corrupted by strong decorrelation speckle noise. Opt. Express 2016, 24, 28713–28730. [Google Scholar] [CrossRef] [PubMed]
Parameters | Total | Train | Dev | Test |
---|---|---|---|---|
57 | 42 | 5 | 7 | |
33 | 28 | 3 | 5 | |
38 | 24 | 2 | 4 | |
58 | 42 | 4 | 7 | |
70 | 39 | 4 | 7 | |
Total | 128 | 94 | 10 | 24 |
Training Data (Nb of Images) | Depth D | Test Data DB128-Full | ||
---|---|---|---|---|
HOLODEEP | DB128-Test | |||
HOLODEEP (25) | 4 | 0.0583 | 0.2816 | 0.2858 |
HOLODEEP (25) | 16 | 0.0391 | 0.2505 | 0.2623 |
DB128-full (128) | 4 | 0.0650 | 0.2341 | 0.2291 |
DB128-full (128) | 16 | 0.0477 | 0.1331 | 0.1320 |
DB128-train (94) | 4 | 0.0657 | 0.2394 | 0.2467 |
DB128-train (94) | 16 | 0.0437 | 0.1240 | 0.1290 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahon, M.; Montrésor, S.; Picart, P. Deep Learning Network for Speckle De-Noising in Severe Conditions. J. Imaging 2022, 8, 165. https://doi.org/10.3390/jimaging8060165
Tahon M, Montrésor S, Picart P. Deep Learning Network for Speckle De-Noising in Severe Conditions. Journal of Imaging. 2022; 8(6):165. https://doi.org/10.3390/jimaging8060165
Chicago/Turabian StyleTahon, Marie, Silvio Montrésor, and Pascal Picart. 2022. "Deep Learning Network for Speckle De-Noising in Severe Conditions" Journal of Imaging 8, no. 6: 165. https://doi.org/10.3390/jimaging8060165
APA StyleTahon, M., Montrésor, S., & Picart, P. (2022). Deep Learning Network for Speckle De-Noising in Severe Conditions. Journal of Imaging, 8(6), 165. https://doi.org/10.3390/jimaging8060165