Clinically Inspired Skin Lesion Classification through the Detection of Dermoscopic Criteria for Basal Cell Carcinoma
Abstract
:1. Introduction
1.1. Related Work in the Literature
- There are works in the literature that detect one or several BCC patterns, but none of them detect all the BCC patterns that dermatologists employ to diagnose;
- There are works in the literature that employ deep neural networks (DNN) to classify BCC versus other dermatological lesions, but attempts to ensure the clinical explainability of the classification are limited;
- Color analysis is crucial to analyze pigmented lesions;
- Existing CAD tools for skin cancer detection lack a prospective study that validates their results.
1.2. Our Contributions
- (1)
- Detection of all BCC dermoscopic features.
- (2)
- Clinically inspired classification of lesions into BCC/non BCC.
- (3)
- For BCC dermoscopic feature classification, we propose to combine color and texture analysis.
- (4)
- An annotated database of the main BCC dermoscopic features has been developed. A software application, so that dermatologists can annotate the images, has been designed.
2. Methods
2.1. Design Considerations
2.2. Database
2.3. Color Processing
2.3.1. Uniform Color Spaces and Perceptual Color Differences
2.3.2. Perceptual Clustering and Relevant Color Identification
- (1)
- In an initial step, a color clustering is performed for all the training images for each BCC dermoscopic pattern. The cluster centers are initialized randomly. After this step, 18 color centroids for each pattern are obtained—that is, a total of 126 color centroids are determined.
- (2)
- Many color centroids from different patterns are very similar. For this reason, in a second step, two centroids are merged if their distance is below a threshold. This threshold is automatically adjusted so that 20 color centroids are retained at the end.
2.4. Texture Analysis
- (1)
- GLCM applied to the L* channel in the uniform color space L*a*b* along with color information, introduced to the network via the image quantized into the main colors. The L* channel represents the perceived relative brightness, and, thus, spatial distribution information can be captured with GLCM in L*.
- (2)
- A new color cooccurrence matrix (CCM) applied to the color-quantized images according to color appearance information. The cooccurrence of the main colors present in the image is analyzed. As 20 main colors are detected, a matrix of 20 × 20 is obtained. For each element in the matrix, the probability of cooccurrence of color index and color index , in a particular pair of relative spatial positions, is estimated. In this case, when the different parameters extracted from the cooccurrence matrix are calculated, color information and color distances are taken into account. Instead of calculating differences such as , where and are the color indexes of the quantized image, color differences, , between a color with index , and a color with index , , are calculated ( is defined in Equations (1) and (6) for L*a*b* and CAM16-UCS color spaces, respectively). Thus, the main parameters extracted from this cooccurrence matrix are calculated as follows:
Homogeneity | |
Mean | |
Variance | |
Correlation | |
Entropy |
- (1)
- The inputs to the module are the GLCM parameters calculated from the L* channel;
- (2)
- The inputs to the module are the new CCM parameters.
2.5. Classification
2.5.1. Architecture 1: Classification with Original RGB Images
2.5.2. Architecture 2: Classification with Original RGB Images along with Color-Quantized Images in Different Color Spaces (Dual Classification)
2.5.3. Architecture 3: Classification with Original RGB Images, Color-Quantized Images in Different Color Spaces and Texture Features (Triple Classification)
2.5.4. Classification of BCC and Non-BCC
2.6. Description of the Hardware and Software Used
3. Results
4. Discussion
4.1. Future Plans
4.2. Strength and Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skin Cancer Foundation, Skin Cancer Facts and Statistics. 2021. Available online: https://www.skincancer.org/skin-cancer-information/skin-cancer-facts/#:~:text=Skin%20cancer%20is%20the%20most,doubles%20your%20risk%20for%20melanoma (accessed on 30 March 2021).
- Peris, K.; Fargnoli, M.C.; Garbe, C.; Kaufmann, R.; Bastholt, L.; Seguin, N.B.; Bataille, V.; Marmol, V.D.; Dummer, R.; Harwood, C.A.; et al. Diagnosis and treatment of basal cell carcinoma: European consensus based interdisciplinary guidelines. Eur. J. Cancer 2019, 118, 10–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breitbart, E.W.; Waldmann, A.; Nolte, S.; Capellaro, M.; Greinert, R.; Volkmer, B.; Katalinic, A. Systematic skin cancer screening in northern Germany. J. Am. Acad. Dermatol. 2012, 66, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Ferrante di Ruffano, L.; Takwoingi, Y.; Dinnes, J.; Chuchu, N.; Bayliss, S.E.; Davenport, C.; Matin, R.N.; Godfrey, K.; O'Sullivan, C.; Gulati, A.; et al. Cochrane Skin Cancer Diagnostic Test Accuracy Group. Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults. Cochrane Database Syst. Rev. 2018, 12, 13186. [Google Scholar] [CrossRef]
- Marka, A.; Carter, J.B.; Toto, E.; Hassanpour, S. Automated detection of nonmelanoma skin cancer using digital images: A systematic review. BMC Med. Imaging 2019, 19, 21. [Google Scholar] [CrossRef] [PubMed]
- Kaymak, S.; Esmaili, P.; Serener, A. Deep Learning for Two-Step Classification of Malignant Pigmented Skin Lesions. In Proceedings of the 14th Symposium on Neural Networks and Applications (NEUREL), Belgrade, Serbia, 20–21 November 2018. [Google Scholar] [CrossRef]
- Tschandl, P.; Sinz, C.; Kittler, H. Domain-specific classification pretrained fully convolutional network encoders for skin lesion segmentation. Comput. Biol. Med. 2019, 104, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Pérez, E.; Reyes, O.; Ventura, S. Convolutional neural networks for the automatic diagnosis of melanoma: An extensive experimental study. Med. Image Anal. 2021, 67, 101858. [Google Scholar] [CrossRef]
- Curiel-Lewandrowski, C.; Novoa, R.A.; Berry, E.; Celebi, M.E.; Codella, N.; Giuste, F.; Gutman, D.; Halpern, A.; Leachman, S.; Liu, Y.; et al. Artificial Intelligence Approach in Melanoma; Fisher, D., Bastian, B., Eds.; Melanoma Springer: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Al-masni, M.A.; Kim, D.H.; Kim, T.S. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Comput. Methods Progr. Biomed. 2020, 190, 105351. [Google Scholar] [CrossRef]
- Codella, N.C.F.; Nguyen, Q.-B.; Pankanti, S.; Gutman, D.A.; Helba, B.; Halpern, A.C.; Smith, J.R. Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J. Res. Dev. 2017, 6, 5:1–5:15. [Google Scholar] [CrossRef] [Green Version]
- Han, S.S.; Kim, M.S.; Lim, W.; Park, G.H.; Park, I.; Chang, S.E. Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm. J. Investig. Dermatol. 2018, 138, 1529–1538. [Google Scholar] [CrossRef] [Green Version]
- Carcagnì, P. Classification of Skin Lesions by Combining Multilevel Learnings in a DenseNet Architecture. In Lecture Notes in Computer Science 11751; Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N., Eds.; Springer: Cham, Germany, 2019. [Google Scholar] [CrossRef]
- Zhou, H.; Xie, F.; Jiang, Z.; Liu, J.; Wang, S.; Zhu, C. Multi-Classification of Skin Diseases for Dermoscopy Images Using Deep Learning. In Proceedings of the IEEE International Conference on Imaging Systems and Techniques (IST), Rockville, MD, USA, 18–20 October 2017. [Google Scholar] [CrossRef]
- Albahar, M.A. Skin Lesion Classification Using Convolutional Neural Network with Novel Regularizer. IEEE Access 2019, 7, 38306–38313. [Google Scholar] [CrossRef]
- Barata, C.; Celebi, E.; Marques, J.S. Explainable skin lesion diagnosis using taxonomies. Pattern Recognit. 2021, 110, 1071413. [Google Scholar] [CrossRef]
- González-Díaz, I. DermaKNet: Incorporating the Knowledge of Dermatologists to Convolutional Neural Networks for Skin Lesion Diagnosis. IEEE J. Biomed. Health Inform. 2019, 23, 547–559. [Google Scholar] [CrossRef]
- Codella, N.C.F.; Lin, C.C.; Halpern, A.; Hind, M.; Feris, R.; Smith, J.R. Collaborative Human-AI (CHAI): Evidence-Based Interpretable Melanoma Classification in Dermoscopic Images. In Lecture Notes in Computer Science11038; Stoyanov, D., Ed.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef] [Green Version]
- Barata, C.; Celebi, M.E.; Marques, J.S. A Survey of Feature Extraction in Dermoscopy Image Analysis of Skin Cancer. IEEE J. Biomed. Health Inform. 2019, 23, 1096–1109. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.; Tan, A.; Bajaj, S.; Liebman, T.N.; Polsky, D.; Stein, J.A. Technological advances for the detection of melanoma. Advances in diagnostic techniques. J. Am. Acad. Dermatol. 2020, 83, 983–992. [Google Scholar] [CrossRef] [PubMed]
- Birkenfeld, J.S.; Tucker-Schwartz, J.M.; Soenksen, L.R.; Aviles-Izquierdo, J.A.; Marti-Fuster, B. Computer-aided classification of suspicious pigmented lesions using wide-field images. Comput. Methods Progr. Biomed. 2020, 195, 105631. [Google Scholar] [CrossRef] [PubMed]
- Oranges, T.; Janowska, A.; Vitali, S.; Loggini, B.; Izzetti, R.; Romanelli, M.; Dini, V. Dermatoscopic and ultra-high frequency ultrasound evaluation in cutaneous postradiation angiosarcoma. J. Eur. Acad. Derm. Venereol 2020, 34, e741–e743. [Google Scholar] [CrossRef]
- Izzetti, R.; Oranges, T.; Janowska, A.; Gabriele, M.; Graziani, F.; Romanelli, M. The Application of Ultra-High-Frequency Ultrasound in Dermatology and Wound Management. Int. J. Low Extrem. Wounds 2020, 19, 334–340. [Google Scholar] [CrossRef]
- Celebi, M.E.; Codella, N.; Halpern, A. Dermoscopy Image Analysis: Overview and Future Directions. IEEE J. Biomed. Health Inform. 2019, 23, 474–478. [Google Scholar] [CrossRef]
- Menzies, S.W.; Westerhoff, K.; Rabinovitz, H.; Kopf, A.W.; McCarthy, W.H.; Katz, B. Surface microscopy of pigmented basal cell carcinoma. Arch. Dermatol. 2000, 136, 1012–1016. [Google Scholar] [CrossRef] [Green Version]
- Kittler, H.; Marghoob, A.A.; Argenziano, G.; Carrera, C.; Curiel-Lewandrowski, C.; Hofmann-Wellenhof, R.; Malvehy, J.; Menzies, S.; Puig, S.; Rabinovitz, H.; et al. Standardization of terminology in dermoscopy/dermatoscopy: Results of the third consensus conference of the International Society of Dermoscopy. J. Am. Acad. Dermatol. 2016, 74, 1093–1106. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Stanley, R.J.; Stoecker, W.V.; Hinton, K. Automatic telangiectasia analysis in dermoscopy images using adaptive critic design. Skin Res. Technol. 2012, 18, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Kharazmi, P.; Aljasser, M.I.; Lui, H.; Wang, Z.J.; Lee, T.K. Automated Detection and Segmentation of Vascular Structures of Skin Lesions Seen in Dermoscopy, with an Application to Basal Cell Carcinoma Classification. IEEE J. Biomed. Health Inform. 2017, 21, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Kharazmi, P.; Kalia, S.; Lui, H.; Wang, Z.J.; Lee, T.K. A feature fusion system for basal cell carcinoma detection through data-driven feature learning and patient profile. Skin Res. Technol. 2018, 24, 256–264. [Google Scholar] [CrossRef]
- Guvenc, P.; LeAnder, R.W.; Kefel, S.; Stoecker, W.V.; Rader, R.K.; Hinton, K.A.; Stricklin, S.M.; Rabinovitz, H.S.; Oliviero, M.; Moss, R.H. Sector expansion and elliptical modeling of blue-gray ovoids for basal cell carcinoma discrimination in dermoscopy images. Skin Res. Technol. 2013, 19, 532–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, B.; Stanley, R.J.; Stoecker, W.V.; Stricklin, S.M.; Hinton, K.A.; Nguyen, T.K.; Rader, R.K.; Rabinovitz, H.S.; Oliviero, M.; Moss, R.H. Analysis of clinical and dermoscopic features for basal cell carcinoma neural network classificaction. Skin Res. Technol. 2013, 19, e217–e222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kefel, S.; Kefel, S.P.; LeAnder, R.W.; Kaur, R.; Kasmi, R.; Mishra, N.K.; Rader, R.K.; Cole, J.G.; Woolsey, Z.T.; Stoecker, W.V. Adaptable texture-based segmentation by variance and intensity for automatic detection of semitranslucent and pink blush areas in basal cell carcinoma. Skin Res. Technol. 2016, 22, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Celebi, M.E.; Kingravi, H.A.; Uddin, B.; Iyatomi, H.; Aslandogan, Y.A.; Stoecker, W.V.; Moss, R.H. A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 2007, 31, 362–373. [Google Scholar] [CrossRef] [Green Version]
- Serrano, C.; Acha, B. Pattern analysis of dermoscopic images based on Markov random fields. Pattern Recognit. 2009, 42, 1052–1057. [Google Scholar] [CrossRef]
- Sáez, A.; Acha, B.; Serrano, A.; Serrano, C. Statistical detection of colors in dermoscopic images with a texton-based estimation of probabilities. IEEE J. Biomed. Health Inform. 2019, 23, 560–568. [Google Scholar] [CrossRef]
- Madooei, A.; Drew, M.S. Incorporating Colour Information for Computer-Aided Diagnosis of Melanoma from Dermoscopy Images: A Retrospective Survey and Critical Analysis. Int. J. Biomed. Imaging 2016, 2016, 4868305. [Google Scholar] [CrossRef]
- Celebi, M.E.; Zornberg, A. Automated Quantification of Clinically Significant Colors in Dermoscopy Images and Its Application to Skin Lesion Classification. IEEE Syst. J. 2014, 8, 980–984. [Google Scholar] [CrossRef]
- Acha, B.; Serrano, C.; Fondón, I.; Gómez-Cía, T. Burn depth analysis using multidimensional scaling applied to psychophysical experiment data. IEEE Trans. Med. Imaging 2013, 32, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Sáez, A.; Serrano, C.; Acha, B. Model-Based Classification Methods of Global Patterns in Dermoscopic Images. IEEE Trans. Med. Imaging 2014, 33, 1137–1147. [Google Scholar] [CrossRef] [PubMed]
- Serrano, C.; Acha, B.; Gómez-Cía, T.; Acha, J.I.; Roa, L. A computer assisted diagnosis tool for the classification of burns by depth of injury. Burns 2005, 31, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Acha, B.; Serrano, C.; Acha, J.I.; Roa, L. Segmentation and classification of burn images by color and texture information. J. Biomed. Opt. 2005, 10, 034014-1–034014-11. [Google Scholar] [CrossRef] [Green Version]
- Serrano, C.; Boloix-Tortosa, R.; Gómez-Cía, T.; Acha, B. Features identification for automatic burn classification. Burns 2015, 41, 1883–1890. [Google Scholar] [CrossRef]
- Abbas, Q.; Celebi, M.E.; Serrano, C.; Garcia, I.F. Pattern classification of dermoscopy images: A perceptually uniform model. Pattern Recognit. 2013, 46, 86–97. [Google Scholar]
- Vélez, P.A.; Serrano, C.; Acha, B.; Pérez Carrasco, J.A. Dermoscopic Image Segmentation: A Comparison of Methodologies. In Proceedings of the 15th Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON2019), Coimbra, Portugal, 26–28 September 2019. [Google Scholar]
- Vélez, P.; Miranda, M.; Serrano, C.; Acha, B. Does a Previous Segmentation Improve the Automatic Detection of Basal Cell Carcinoma Using Deep Neural Networks? Appl. Sci. 2022, 12, 2092. [Google Scholar] [CrossRef]
- Codella, N.C.F.; Gutman, D.; Celebi, M.E.; Helba, B.; Marchetti, M.A.; Dusza, S.W.; Kalloo, A.; Liopyris, K.; Mishra, N.; Kittler, H.; et al. Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC). In Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI), Washington, DC, USA, 4–7 April 2018; pp. 168–172. [Google Scholar]
- Codella, N.; Rotemberg, V.; Tschandl, P.; Celebi, M.E.; Dusza, S.; Gutman, D.; Helba, B.; Kalloo, A.; Liopyris, K.; Marchetti, M.; et al. Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC). arXiv 2019, arXiv:1902.03368. [Google Scholar]
- Combalia, M.; Codella, N.C.F.; Rotemberg, V.; Helba, B.; Vilaplana, V.; Reiter, O.; Halpern, A.C.; Puig, S.; Malvehy, J. BCN20000: Dermoscopic Lesions in the Wild. arXiv 2019, arXiv:1908.02288. [Google Scholar]
- Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 2018, 5, 180161. [Google Scholar] [CrossRef]
- Mahbod, A.; Schaefer, G.; Ellinger, I.; Ecker, R.; Pitiot, A.; Wang, C. Fusing fine-tuned deep features for skin lesion classification. Comput. Med. Imaging Graph. 2019, 71, 19–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangayyan, R.M.; Acha, B.; Serrano, C. Color. Image Processing with Biomedical Applications; SPIE Press: Bellingham, WA, USA, 2011. [Google Scholar]
- Fairchild, M.D. Color Appearance Models, 2nd ed.; Wiley: West Sussex, UK, 2005. [Google Scholar]
- Li, C.; Li, Z.; Wang, Z.; Xu, Y.; Luo, M.R.; Cui, G.; Melgosa, M.; Brill, M.H.; Pointer, M. Comprehensive color solutions: CAM16, CAT16 and CAM16-UCS. Color. Res. Appl. 2017, 42, 703–718. [Google Scholar] [CrossRef]
- Lloyd, S.P. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 29–137. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Cernadas, E.; Fernández-Delgado, M.; González-Rufino, E.; Carrión, P. Influence of normalization and color space to color texture classification. Pattern Recognit. 2017, 61, 120–138. [Google Scholar] [CrossRef]
- Arvis, V.; Debain, C.; Berducat, M.; Benassi, A. Generalization of the cooccurrence matrix of the for colour images: Application to colour texture classification. Image Anal. Stereol. 2004, 23, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 July 2009. [Google Scholar]
- Peris, K.; Altobelli, E.; Ferrari, A.; Fargnoli, M.C.; Piccolo, D.; Esposito, M.; Chimenti, S. Interobserver agreement on dermoscopic features of pigmented basal cell carcinoma. Derm. Surg. 2002, 28, 643–645. [Google Scholar] [CrossRef]
- Huang, H.; Kharazmi, P.; McLean, D.I.; Lui, H.; Wang, Z.J.; Lee, T.K. Automatic detection of translucency using a deep learning method from patches of clinical basal cell carcinoma images. In Proceedings of the APSIPA Annual Summit and Conference, Honolulu, HI, USA, 12–15 November 2018; pp. 685–688. [Google Scholar]
- Wahba, M.A.; Ashour, A.S.; Guo, Y.; Napoleon, S.A. A novel cumulative level difference mean based GLDM and modified ABCD features ranked using eigenvector centrality approach for four skin lesion types classification. Comput. Methods Progr. Biomed. 2018, 165, 163–174. [Google Scholar] [CrossRef]
- Chatterjee, S.; Dey, D.; Munshi, S. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification. Comput. Methods Progr. Biomed. 2019, 178, 201–218. [Google Scholar] [CrossRef]
- Qui, Z.; Liu, Z.; Zhu, P.; Xue, Y. A GAN-based image synthesis method for skin lesion classification. Comput. Methods Progr. Biomed. 2020, 195, 105568. [Google Scholar]
- Sies, K.; Winkler, J.K.; Fink, C.; Bardehle, F.; Toberer, F.; Buhl, T.; Enk, A.; Blum, A.; Rosenberger, A.; Haenssle, H.A. Past and present of computer-assisted dermoscopic diagnosis: Performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions. Eur. J. Cancer 2020, 135, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.; Lijmer, J.G.; Moher, D.; Rennie, D.; De Vet, H.C.W.; et al. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies. BMJ 2015, 351, h5527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Number of Occurrences | |
---|---|
Pigment Network | 614 |
Ulceration | 352 |
Blue-Gray Ovoid Nests | 338 |
Multiple B/G Globules | 150 |
Maple Leaf | 177 |
Spoke-Wheel | 64 |
Arborizing Telangiectasia | 526 |
SPEC | SENS | AUC | ||
---|---|---|---|---|
Original RGB | Pigment network | 0.89 | 0.91 | 0.95 |
Ulceration | 0.74 | 0.87 | 0.87 | |
Ovoid nest | 0.61 | 0.83 | 0.77 | |
Multiple globules | 0.69 | 0.66 | 0.74 | |
Maple leaf | 0.69 | 0.76 | 0.79 | |
Spoke-wheel | 0.90 | 0.48 | 0.83 | |
A. telangiectasia | 0.71 | 0.88 | 0.88 | |
Average | 0.75 | 0.77 | 0.83 | |
Dual original + RGB quantization | Pigment network | 0.95 | 0.97 | 0.99 |
Ulceration | 0.82 | 0.70 | 0.85 | |
Ovoid nest | 0.70 | 0.68 | 0.77 | |
Multiple globules | 0.74 | 0.63 | 0.75 | |
Maple leaf | 0.86 | 0.72 | 0.86 | |
Spoke-wheel | 0.95 | 0.36 | 0.88 | |
A. telangiectasia | 0.77 | 0.79 | 0.85 | |
Average | 0.83 | 0.69 | 0.85 | |
Dual original + CIELAB quantization | Pigment network | 0.94 | 0.95 | 0.98 |
Ulceration | 0.81 | 0.86 | 0.91 | |
Ovoid nest | 0.65 | 0.73 | 0.76 | |
Multiple globules | 0.60 | 0.68 | 0.71 | |
Maple leaf | 0.78 | 0.72 | 0.82 | |
Spoke-wheel | 0.84 | 0.73 | 0.85 | |
A. telangiectasia | 0.73 | 0.88 | 0.87 | |
Average | 0.77 | 0.79 | 0.84 | |
Dual original + CIECAM16 quantization | Pigment network | 0.95 | 0.96 | 0.98 |
Ulceration | 0.86 | 0.79 | 0.92 | |
Ovoid nest | 0.71 | 0.76 | 0.80 | |
Multiple globules | 0.65 | 0.72 | 0.77 | |
Maple leaf | 0.69 | 0.78 | 0.83 | |
Spoke-wheel | 0.80 | 0.61 | 0.78 | |
A. telangiectasia | 0.75 | 0.87 | 0.88 | |
Average | 0.78 | 0.78 | 0.85 |
SPEC | SENS | AUC | ||
---|---|---|---|---|
Triple original + CIELAB Quantization + GLCM L* | Pigment netw. | 0.92 | 0.99 | 0.99 |
Ulceration | 0.80 | 0.82 | 0.90 | |
Ovoid nest | 0.71 | 0.68 | 0.80 | |
Multiple globules | 0.78 | 0.77 | 0.86 | |
Maple leaf | 0.77 | 0.69 | 0.81 | |
Spoke-wheel | 0.72 | 0.86 | 0.89 | |
A. telangiectasia | 0.72 | 0.85 | 0.87 | |
Average | 0.77 | 0.81 | 0.87 | |
Triple original + CIECAM16 quantization + GLCM L* | Pigment netw. | 0.97 | 0.97 | 0.98 |
Ulceration | 0.76 | 0.81 | 0.87 | |
Ovoid nest | 0.60 | 0.88 | 0.79 | |
Multiple globules | 0.78 | 0.79 | 0.86 | |
Maple leaf | 0.80 | 0.77 | 0.85 | |
Spoke-wheel | 0.79 | 0.71 | 0.89 | |
A. telangiectasia | 0.73 | 0.79 | 0.89 | |
Average | 0.78 | 0.82 | 0.88 | |
Triple original + CIELAB quantization+ CIELAB CCM | Pigment netw. | 0.98 | 0.97 | 0.99 |
Ulceration | 0.82 | 0.75 | 0.89 | |
Ovoid nest | 0.74 | 0.84 | 0.86 | |
Multiple globules | 0.78 | 0.68 | 0.80 | |
Maple leaf | 0.78 | 0.68 | 0.85 | |
Spoke-wheel | 0.89 | 0.97 | 0.96 | |
A. telangiectasia | 0.76 | 0.87 | 0.91 | |
Average | 0.82 | 0.82 | 0.89 | |
Triple Original + CIECAM16 quantization+ CIECAM 16 CCM | Pigment netw. | 0.98 | 0.97 | 0.99 |
Ulceration | 0.86 | 0.92 | 0.94 | |
Ovoid nest | 0.85 | 0.83 | 0.91 | |
Multiple globules | 0.79 | 0.87 | 0.89 | |
Maple leaf | 0.72 | 0.82 | 0.82 | |
Spoke-wheel | 0.87 | 0.93 | 0.96 | |
A. telangiectasia | 0.68 | 0.99 | 0.91 | |
Average | 0.82 | 0.90 | 0.92 |
ACC | PPV | SPEC | SENS | |
---|---|---|---|---|
CIELAB | 0.9685 | 0.9789 | 0.9703 | 0.9673 |
CIECAM16 | 0.9699 | 0.9527 | 0.9423 | 0.9934 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, C.; Lazo, M.; Serrano, A.; Toledo-Pastrana, T.; Barros-Tornay, R.; Acha, B. Clinically Inspired Skin Lesion Classification through the Detection of Dermoscopic Criteria for Basal Cell Carcinoma. J. Imaging 2022, 8, 197. https://doi.org/10.3390/jimaging8070197
Serrano C, Lazo M, Serrano A, Toledo-Pastrana T, Barros-Tornay R, Acha B. Clinically Inspired Skin Lesion Classification through the Detection of Dermoscopic Criteria for Basal Cell Carcinoma. Journal of Imaging. 2022; 8(7):197. https://doi.org/10.3390/jimaging8070197
Chicago/Turabian StyleSerrano, Carmen, Manuel Lazo, Amalia Serrano, Tomás Toledo-Pastrana, Rubén Barros-Tornay, and Begoña Acha. 2022. "Clinically Inspired Skin Lesion Classification through the Detection of Dermoscopic Criteria for Basal Cell Carcinoma" Journal of Imaging 8, no. 7: 197. https://doi.org/10.3390/jimaging8070197
APA StyleSerrano, C., Lazo, M., Serrano, A., Toledo-Pastrana, T., Barros-Tornay, R., & Acha, B. (2022). Clinically Inspired Skin Lesion Classification through the Detection of Dermoscopic Criteria for Basal Cell Carcinoma. Journal of Imaging, 8(7), 197. https://doi.org/10.3390/jimaging8070197