X-ray Dark-Field Imaging for Improved Contrast in Historical Handwritten Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Imaging Setup and Sample Preparation
2.2. Image Acquisition
2.3. Data Analysis
3. Results
3.1. Thorn Ink Sample
3.2. Combined Iron Gall and Ink-Free Sample
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ullmann, I.; Root, K.; Schuer, J.; Scheuble, L.; Vossiek, M. Contactless Inspection of Handwritten Documents with Terahertz Imaging. In Proceedings of the 2021 18th European Radar Conference (EuRAD), London, UK, 5–7 April 2022; pp. 349–352. [Google Scholar] [CrossRef]
- Cosentino, A. Terahertz and Cultural Heritage Science: Examination of Art and Archaeology. Technologies 2016, 4, 6. [Google Scholar] [CrossRef]
- Mocella, V.; Brun, E.; Ferrero, C.; Delattre, D. Revealing letters in rolled Herculaneum papyri by X-ray phase-contrast imaging. Nat. Commun. 2015, 6, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Michelin, A.; Pottier, F.; Andraud, C. 2D macro-XRF to reveal redacted sections of French queen Marie-Antoinette secret correspondence with Swedish count Axel von Fersen. Sci. Adv. 2021, 7, eabg4266. [Google Scholar] [CrossRef] [PubMed]
- Albertin, F.; Astolfo, A.; Stampanoni, M.; Peccenini, E.; Hwu, Y.; Kaplan, F.; Margaritondo, G. X-ray spectrometry and imaging for ancient administrative handwritten documents. X-ray Spectrom. 2015, 44, 93–98. [Google Scholar] [CrossRef]
- Stromer, D.; Anton, G.; Christlein, V.; Maier, A.; Kugler, P. 3-D reconstruction of historical documents using an X-ray C-Arm CT system. In Proceedings of the 2016 International Conference on Image and Vision Computing New Zealand (IVCNZ), Palmerston North, New Zealand, 21–22 November 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Stromer, D.; Christlein, V.; Maier, A.; Schoen, T.; Holub, W. Fast, robust and efficient extraction of book pages from a 3-D X-ray CT volume. In Proceedings of the 14th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Xi’an, China, 18–23 June 2017; pp. 401–404. [Google Scholar] [CrossRef]
- Stromer, D.; Christlein, V.; Martindale, C.; Zippert, P.; Haltenberger, E.; Hausotte, T.; Maier, A. Browsing through sealed historical manuscripts by using 3-D computed tomography with low-brilliance X-ray sources. Sci. Rep. 2018, 8, 15335. [Google Scholar] [CrossRef]
- Stromer, D.; Christlein, V.; Huang, X.; Zippert, P.; Hausotte, T.; Maier, A. Virtual cleaning and unwrapping of non-invasively digitized soiled bamboo scrolls. Sci. Rep. 2019, 9, 2311. [Google Scholar] [CrossRef]
- Rosin, P.L.; Lai, Y.K.; Liu, C.; Davis, G.R.; Mills, D.; Tuson, G.; Russell, Y. Virtual recovery of content from X-ray micro-tomography scans of damaged historic scrolls. Sci. Rep. 2018, 8, 11901. [Google Scholar] [CrossRef] [Green Version]
- Albertin, F.; Patera, A.; Jerjen, I.; Hartmann, S.; Peccenini, E.; Kaplan, F.; Stampanoni, M.; Kaufmann, R.; Margaritondo, G. Virtual reading of a large ancient handwritten science book. Microchem. J. 2016, 125, 185–189. [Google Scholar] [CrossRef]
- Seales, W.B.; Parker, C.S.; Segal, M.; Tov, E.; Shor, P.; Porath, Y. From damage to discovery via virtual unwrapping: Reading the scroll from En-Gedi. Sci. Adv. 2016, 2, e1601247. [Google Scholar] [CrossRef]
- Bonse, U.; Hart, M. An X-ray interferometer. Appl. Phys. Lett. 1965, 6, 155–156. [Google Scholar] [CrossRef]
- Momose, A. Demonstration of phase-contrast X-ray computed tomography using an X-ray interferometer. Nucl. Instr. Meth. Phys. Res. A 1995, 352, 622–628. [Google Scholar] [CrossRef]
- Olivo, A.; Arfelli, F.; Cantatore, G.; Longo, R.; Menk, R.H.; Pani, S.; Prest, M.; Poropat, P.; Rigon, L.; Tromba, G.; et al. An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field. Med Phys. 2001, 28, 1610–1619. [Google Scholar] [CrossRef]
- Olivo, A.; Speller, R. A coded-aperture technique allowing X-ray phase contrast imaging with conventional sources. Appl. Phys. Lett. 2007, 91, 074106. [Google Scholar] [CrossRef]
- Wang, H.; Kashyap, Y.; Sawhney, K. From synchrotron radiation to lab source: Advanced speckle-based X-ray imaging using abrasive paper. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Wang, H.; Kashyap, Y.; Cai, B.; Sawhney, K. High energy X-ray phase and dark-field imaging using a random absorption mask. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef]
- Snigirev, A.; Snigireva, I.; Kohn, V.; Kuznetsov, S.; Schelokov, I. On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev. Sci. Instruments 1995, 66, 5486–5492. [Google Scholar] [CrossRef]
- Davis, T.J.; Gao, D.; Gureyev, T.E.; Stevenson, A.W.; Wilkins, S.W. Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 1995, 373, 595–598. [Google Scholar] [CrossRef]
- Cloetens, P.; Barrett, R.; Baruchel, J.; Guigay, J.P.; Schlenker, M. Phase objects in synchrotron radiation hard X-ray imaging. J. Phys. Appl. Phys. 1996, 29, 133. [Google Scholar] [CrossRef]
- Chapman, D.; Thomlinson, W.; Johnston, R.E.; Washburn, D.; Pisano, E.; Gmuer, N.; Zhong, Z.; Menk, R.; Arfelli, F.; Sayers, D. Diffraction enhanced X-ray imaging. Phys. Med. Biol. 1997, 42, 2015. [Google Scholar] [CrossRef]
- Seifert, M.; Weule, M.; Cipiccia, S.; Flenner, S.; Hagemann, J.; Ludwig, V.; Michel, T.; Neumayer, P.; Schuster, M.; Wolf, A.; et al. Evaluation of the Weighted Mean X-ray Energy for an Imaging System Via Propagation Based Phase Contrast Imaging. J. Imaging 2020, 6, 63. [Google Scholar] [CrossRef]
- Koddenberg, T.; Greving, I.; Hagemann, J.; Flenner, S.; Krause, A.; Laipple, D.; Klein, K.C.; Schmitt, U.; Schuster, M.; Wolf, A.; et al. Three-dimensional imaging of xylem at cell wall level through near field nano holotomography. Sci. Rep. 2021, 11, 4574. [Google Scholar] [CrossRef]
- David, C.; Noehammer, B.; Solak, H.H.; Ziegler, E. Differential X-ray phase contrast imaging using a shearing interferometer. Appl. Phys. Lett. 2002, 81, 3287–3289. [Google Scholar] [CrossRef]
- Momose, A.; Kawamoto, S.; Koyama, I.; Hamaishi, Y.; Takai, K.; Suzuki, Y. Demonstration of X-ray Talbot Interferometry. Jpn. J. Appl. Phys. 2003, 42, L866. [Google Scholar] [CrossRef]
- Weitkamp, T.; Diaz, A.; David, C.; Pfeiffer, F.; Stampanoni, M.; Cloetens, P.; Ziegler, E. X-ray phase imaging with a grating interferometer. Opt. Express 2005, 13, 6296–6304. [Google Scholar] [CrossRef]
- Wolf, A.; Akstaller, B.; Cipiccia, S.; Flenner, S.; Hagemann, J.; Ludwig, V.; Meyer, P.; Schropp, A.; Schuster, M.; Seifert, M.; et al. Single-exposure X-ray phase imaging microscopy with a grating interferometer. J. Synchrotron Radiat. 2022, 29, 794–806. [Google Scholar] [CrossRef]
- Weitkamp, T.; Diaz, A.; Nohammer, B.; Pfeiffer, F.; Rohbeck, T.; Cloetens, P.; Stampanoni, M.; David, C. Hard X-ray phase imaging and tomography with a grating interferometer. In Proceedings of the Developments in X-ray Tomography IV. International Society for Optics and Photonics, Denver, CO, USA, 26 October 2004; Volume 5535, pp. 137–142. [Google Scholar] [CrossRef]
- Engelhardt, M.; Baumann, J.; Schuster, M.; Kottler, C.; Pfeiffer, F.; Bunk, O.; David, C. High-resolution differential phase contrast imaging using a magnifying projection geometry with a microfocus X-ray source. Appl. Phys. Lett. 2007, 90, 224101. [Google Scholar] [CrossRef]
- Zhou, T.; Lundström, U.; Thüring, T.; Rutishauser, S.; Larsson, D.H.; Stampanoni, M.; David, C.; Hertz, H.M.; Burvall, A. Comparison of two X-ray phase-contrast imaging methods with a microfocus source. Opt. Express 2013, 21, 30183–30195. [Google Scholar] [CrossRef]
- Miao, H.; Panna, A.; Gomella, A.A.; Bennett, E.E.; Znati, S.; Chen, L.; Wen, H. A universal moiré effect and application in X-ray phase-contrast imaging. Nat. Phys. 2016, 12, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, F.; Weitkamp, T.; Bunk, O.; David, C. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat. Phys. 2006, 2, 258–261. [Google Scholar] [CrossRef]
- Michel, T.; Rieger, J.; Anton, G.; Bayer, F.; Beckmann, M.W.; Durst, J.; Fasching, P.A.; Haas, W.; Hartmann, A.; Pelzer, G.; et al. On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography. Phys. Med. Biol. 2013, 58, 2713–2732. [Google Scholar] [CrossRef] [PubMed]
- Horn, F.; Leghissa, M.; Kaeppler, S.; Pelzer, G.; Rieger, J.; Seifert, M.; Wandner, J.; Weber, T.; Michel, T.; Riess, C.; et al. Implementation of a Talbot-Lau interferometer in a clinical-like c-arm setup: A feasibility study. Sci. Rep. 2018, 8, 2325. [Google Scholar] [CrossRef]
- Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; et al. Quantitative breast tissue characterization using grating-based X-ray phase-contrast imaging. Phys. Med. Biol. 2014, 59, 1557–1571. [Google Scholar] [CrossRef]
- Stampanoni, M.; Wang, Z.; Thüring, T.; David, C.; Roessl, E.; Trippel, M.; Kubik-Huch, R.A.; Singer, G.; Hohl, M.K.; Hauser, N. The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography. Investig. Radiol. 2011, 46, 801–806. [Google Scholar] [CrossRef]
- Yaroshenko, A.; Hellbach, K.; Bech, M.; Grandl, S.; Reiser, M.F.; Pfeiffer, F.; Meinel, F.G. Grating-based X-ray dark-field imaging: A new paradigm in radiography. Curr. Radiol. Rep. 2014, 2, 1–9. [Google Scholar] [CrossRef]
- Hellbach, K.; Yaroshenko, A.; Willer, K.; Pritzke, T.; Baumann, A.; Hesse, N.; Auweter, S.; Reiser, M.F.; Eickelberg, O.; Pfeiffer, F.; et al. Facilitated diagnosis of pneumothoraces in newborn mice using X-ray dark-field radiography. Investig. Radiol. 2016, 51, 597–601. [Google Scholar] [CrossRef]
- Horn, F.; Gelse, K.; Jabari, S.; Hauke, C.; Kaeppler, S.; Ludwig, V.; Meyer, P.; Michel, T.; Mohr, J.; Pelzer, G.; et al. High-energy X-ray Talbot–Lau radiography of a human knee. Phys. Med. Biol. 2017, 62, 6729–6745. [Google Scholar] [CrossRef]
- Ludwig, V.; Seifert, M.; Hauke, C.; Hellbach, K.; Horn, F.; Pelzer, G.; Radicke, M.; Rieger, J.; Sutter, S.M.; Michel, T.; et al. Exploration of different X-ray Talbot–Lau setups for dark-field lung imaging examined in a porcine lung. Phys. Med. Biol. 2019, 64, 065013. [Google Scholar] [CrossRef]
- Kastner, J.; Plank, B.; Requena, G. Non-destructive characterisation of polymers and Al-alloys by polychromatic cone-beam phase contrast tomography. Mater. Charact. 2012, 64, 79–87. [Google Scholar] [CrossRef]
- Revol, V.; Plank, B.; Kaufmann, R.; Kastner, J.; Kottler, C.; Neels, A. Laminate fibre structure characterisation of carbon fibre-reinforced polymers by X-ray scatter dark field imaging with a grating interferometer. NDT E Int. 2013, 58, 64–71. [Google Scholar] [CrossRef]
- Nielsen, M.S.; Lauridsen, T.; Christensen, L.B.; Feidenhans’l, R. X-ray dark-field imaging for detection of foreign bodies in food. Food Control 2013, 30, 531–535. [Google Scholar] [CrossRef]
- Reza, S.; Pelzer, G.; Weber, T.; Froejdh, C.; Bayer, F.; Anton, G.; Rieger, J.; Thim, J.; Michel, T.; Norlin, B. Investigation on the directional dark-field signals from paperboards using a grating interferometer. J. Instrum. 2014, 9, C04032. [Google Scholar] [CrossRef]
- Ludwig, V.; Seifert, M.; Niepold, T.; Pelzer, G.; Rieger, J.; Ziegler, J.; Michel, T.; Anton, G. Non-Destructive Testing of Archaeological Findings by Grating-Based X-ray Phase-Contrast and Dark-Field Imaging. J. Imaging 2018, 4, 58. [Google Scholar] [CrossRef]
- Akstaller, B.; Schreiner, S.; Hofmann, F.; Meyer, P.; Neumayer, P.; Schuster, M.; Wolf, A.; Zielbauer, B.; Ludwig, V.; Michel, T.; et al. Single-shot grating-based phase-contrast imaging of a micrometer sample at a laser-driven X-ray backlighter source. J. Instrum. 2021, 16, P06021. [Google Scholar] [CrossRef]
- Schreiner, S.; Akstaller, B.; Dietrich, L.; Meyer, P.; Neumayer, P.; Schuster, M.; Wolf, A.; Zielbauer, B.; Ludwig, V.; Michel, T.; et al. Noise Reduction for Single-Shot Grating-Based Phase-Contrast Imaging at an X-ray Backlighter. J. Imaging 2021, 7, 178. [Google Scholar] [CrossRef]
- Balles, A.; Fella, C.; Dittmann, J.; Wiest, W.; Zabler, S.; Hanke, R. X-ray grating interferometry for 9.25 keV design energy at a liquid-metal-jet source. AIP Conf. Proc. 2016, 1696, 020043. [Google Scholar] [CrossRef]
- Schuster, M.; Ludwig, V.; Akstaller, B.; Seifert, M.; Wolf, A.; Michel, T.; Neumayer, P.; Funk, S.; Anton, G. A fast alignment method for grating-based X-ray phase-contrast imaging systems. J. Instrum. 2019, 14, P08003. [Google Scholar] [CrossRef]
- Ludwig, V.; Akstaller, B.; Schuster, M.; Seifert, M.; Wolf, A.; Michel, T.; Anton, G. A phase-sampling method for an X-ray Talbot-Lau scanner with continuous grating movement. J. Instrum. 2020, 15, P01010. [Google Scholar] [CrossRef]
- Roosen-Runge, H. Die Tinte des Theophilus. In Festschrift Luitpold Dussler: 28 Studien zur Archäologie und Kunstgeschichte; Deutscher Kunstverlag: Munich, Germany, 1972. [Google Scholar]
- Lehner, S. Die Tinten-Fabrikation und die Herstellung der Hektographen und Hektographirtinten: Die Fabrikation der Tusche, der Tintenstifte, der Stempeldruckfarben, sowie des Waschblaues; A. Hartleben: Vienna, Austria, 1885; Volume 17. [Google Scholar]
- Rabin, I. Material Studies of Historic Inks: Transition from Carbon to Iron-Gall Inks. In Traces of Ink; Brill: Leiden, The Netherlands, 2021; pp. 70–78. [Google Scholar]
- Pfeiffer, F.; Bech, M.; Bunk, O.; Kraft, P.; Eikenberry, E.F.; Brönnimann, C.; Grünzweig, C.; David, C. Hard-X-ray dark-field imaging using a grating interferometer. Nat. Mater. 2008, 7, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Chabior, M.; Donath, T.; David, C.; Schuster, M.; Schroer, C.; Pfeiffer, F. Signal-to-noise ratio in x ray dark-field imaging using a grating interferometer. J. Appl. Phys. 2011, 110, 053105. [Google Scholar] [CrossRef]
- Zippert, P.; Seuret, M.; Maier, A.; Hausotte, T. Influence of X-ray Radiation on Historical Paper. In Proceedings of the Conference on Industrial Computed Tomography, Wels, Austria, 8–11 February 2022; Available online: https://www.ndt.net/article/ctc2022/papers/ICT2022_paper_id264.pdf (accessed on 10 August 2022).
- Strobl, M. General solution for quantitative dark-field contrast imaging with grating interferometers. Sci. Rep. 2014, 4, 7243. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akstaller, B.; Schreiner, S.; Dietrich, L.; Rauch, C.; Schuster, M.; Ludwig, V.; Hofmann-Randall, C.; Michel, T.; Anton, G.; Funk, S. X-ray Dark-Field Imaging for Improved Contrast in Historical Handwritten Literature. J. Imaging 2022, 8, 226. https://doi.org/10.3390/jimaging8090226
Akstaller B, Schreiner S, Dietrich L, Rauch C, Schuster M, Ludwig V, Hofmann-Randall C, Michel T, Anton G, Funk S. X-ray Dark-Field Imaging for Improved Contrast in Historical Handwritten Literature. Journal of Imaging. 2022; 8(9):226. https://doi.org/10.3390/jimaging8090226
Chicago/Turabian StyleAkstaller, Bernhard, Stephan Schreiner, Lisa Dietrich, Constantin Rauch, Max Schuster, Veronika Ludwig, Christina Hofmann-Randall, Thilo Michel, Gisela Anton, and Stefan Funk. 2022. "X-ray Dark-Field Imaging for Improved Contrast in Historical Handwritten Literature" Journal of Imaging 8, no. 9: 226. https://doi.org/10.3390/jimaging8090226
APA StyleAkstaller, B., Schreiner, S., Dietrich, L., Rauch, C., Schuster, M., Ludwig, V., Hofmann-Randall, C., Michel, T., Anton, G., & Funk, S. (2022). X-ray Dark-Field Imaging for Improved Contrast in Historical Handwritten Literature. Journal of Imaging, 8(9), 226. https://doi.org/10.3390/jimaging8090226