A Simplified Convex Optimization Model for Image Restoration with Multiplicative Noise
Abstract
:1. Introduction
2. Review of the ZWN Model
3. The Proposed Model and Main Algorithm
Main Algorithm
4. Numerical Experiments
4.1. Image Denoising
4.2. Image Deblurring and Denoising
4.3. Real Image Denoising
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oliver, C.; Quegan, S. Understanding Synthetic Aperture Radar Images; SciTech Publishing: Raleigh, NC, USA, 2004. [Google Scholar]
- Wagner, R.F.; Smith, S.W.; Sandrik, J.M.; Lopez, H. Statistics of speckle in ultrasound b-scans. IEEE Trans. Sonics Ultrason. 1983, 30, 156–163. [Google Scholar] [CrossRef]
- Schmitt, J.; Xiang, S.H.; Yung, J. Speckle in optical coherence tomography. J. Biomed. Opt. 1999, 4, 95–105. [Google Scholar] [CrossRef]
- Teuber, T.; Lang, A. Nonlocal filters for removing multiplicative noise. In Scale Space and Variational Methods in Computer Vision; Springer: Berlin/Heidelberg, Germany, 2011; pp. 50–61. [Google Scholar]
- Li, G.T.; Wang, C.L.; Huang, P.P.; Yu, W.D. Sar image despeckling using a space-domain filter with alterable window. IEEE Geosci. Remote Sens. Lett. 2013, 10, 263–267. [Google Scholar]
- Argenti, F.; Bianchi, T.; Lapini, A.; Alparone, L. Fast map despeckling based on laplacian-gaussian modeling of wavelet coefficients. IEEE Geosci. Remote Sens. Lett. 2012, 9, 13–17. [Google Scholar] [CrossRef]
- Bianchi, T.; Argenti, F.; Alparone, L. Segmentation-based map despeckling of sar images in the undecimated wavelet domain. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2728–2742. [Google Scholar] [CrossRef]
- Durand, S.; Fadili, J.; Nikolova, M. Multiplicative noise removal using l1 fidelity on frame coefficients. J. Math. Imaging Vis. 2009, 36, 201–226. [Google Scholar] [CrossRef]
- Rudin, L.; Lions, P.L.; Osher, S. Multiplicative denoising and deblurring: Theory and algorithms. Geom. Level Set Methods Imaging Vis. Graph. 2003, 4, 103–120. [Google Scholar]
- Aubert, G.; Aujol, J.F. A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 2008, 68, 925–946. [Google Scholar] [CrossRef]
- Li, Z.; Lou, Y.F.; Zeng, T.Y. Variational multiplicative noise removal by dc programming. J. Sci. Comput. 2016, 68, 1200–1216. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Figueiredo, M.A.T. Total variation restoration of speckled images using a split-bregman algorithm. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 3717–3720. [Google Scholar]
- Bioucas-Dias, J.M.; Figueiredo, M.A.T. Multiplicative noise removal using variable splitting and constrained optimization. IEEE Trans. Image Process. 2010, 19, 1720–1730. [Google Scholar] [CrossRef]
- Woo, H. Proximal linearized alternating direction method for multiplicative denoising. SIAM J. Sci. Comput. 2013, 35, B336–B358. [Google Scholar] [CrossRef]
- Li, F.; Ng, M.K.; Shen, C.M. Multiplicative noise removal with spatially varying regularization parameters. SIAM J. Imaging Sci. 2010, 3, 1–20. [Google Scholar] [CrossRef]
- Huang, Y.M.; Yan, H.Y.; Zeng, T.Y. Multiplicative noise removal based on unbiased box-cox transformation. Commun. Comput. Phys. 2017, 22, 803–828. [Google Scholar] [CrossRef]
- Fan, W.; Ng, M.K. A fast minimization method for blur and multiplicative noise removal. Int. J. Comput. Math. 2012, 90, 48–61. [Google Scholar]
- Shi, J.; Osher, S. A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM J. Imaging Sci. 2008, 1, 294–321. [Google Scholar] [CrossRef]
- Huang, Y.M.; Ng, M.K.; Wen, Y.W. A new total variation method for multiplicative noise removal. SIAM J. Imaging Sci. 2009, 2, 20–40. [Google Scholar] [CrossRef]
- Lu, J.; Shen, L.X.; Xu, C.; Xu, Y.S. Multiplicative noise removal in imaging: An exp-model and its fixed-point proximity algorithm. Appl. Comput. Harmon. Anal. 2015, 41, 518–539. [Google Scholar] [CrossRef]
- Na, H.; Kang, M.; Jung, M.; Kang, M. An exp model with spatially adaptive regularization parameters for multiplicative noise removal. J. Sci. Comput. 2018, 75, 478–509. [Google Scholar] [CrossRef]
- Sangwoon, Y.; Hyenkyun, W. A new multiplicative denoising variational model based on th root transformation. IEEE Trans. Image Process. 2012, 21, 2523–2533. [Google Scholar] [CrossRef]
- Kang, M.; Yun, S.; Woo, H. Two-level convex relaxed variational model for multiplicative denoising. SIAM J. Imaging Sci. 2013, 6, 875–903. [Google Scholar] [CrossRef]
- Zhao, C.P.; Feng, X.C.; Jia, X.X.; He, R.Q.; Chen, X. Root-transformation based multiplicative denoising model and its statistical analysis. Neurocomputing 2017, 275, 2666–2680. [Google Scholar] [CrossRef]
- Dong, Y.Q.; Zeng, T.Y. A convex variational model for restoring blurred images with multiplicative noise. SIAM J. Imaging Sci. 2013, 6, 1598–1625. [Google Scholar] [CrossRef]
- Steidl, G.; Teuber, T. Removing multiplicative noise by douglas-rachford splitting methods. J. Math. Imaging Vis. 2010, 36, 168–184. [Google Scholar] [CrossRef]
- Zhao, X.L.; Wang, F.; Ng, M.K. A new convex optimization model for multiplicative noise and blur removal. SIAM J. Imaging Sci. 2014, 7, 456–475. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, X.L.; Ng, M.K. Multiplicative noise and blur removal by framelet decomposition and l(1)-based l-curve method. IEEE Trans. Image Process. 2016, 25, 4222–4232. [Google Scholar] [CrossRef]
- Yang, Q.; Jung, C.; Fu, Q.T.; Song, H. Low light image denoising based on poisson noise model and weighted tv regularization. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 3199–3203. [Google Scholar]
- Chen, M.J.; Zhang, H.; Han, Q.; Huang, C. A convex nonlocal total variation regularization algorithm for multiplicative noise removal. EURASIP J. Image Video Process. 2019, 2019, 28. [Google Scholar] [CrossRef]
- Bredies, K.; Holler, M. A tgv-based framework for variational image decompression, zooming, and reconstruction. part I: Analytics. SIAM J. Imaging Sci. 2015, 8, 2814–2850. [Google Scholar] [CrossRef]
- Chowdhury, M.; Qin, J.; Lou, Y.F. Non-blind and blind deconvolution under poisson noise using fractional-order total variation. J. Math. Imaging Vis. 2020, 62, 1238–1255. [Google Scholar] [CrossRef]
Image | Model | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR | Time | Iter | PSNR | Time | Iter | PSNR | Time | Iter | ||
Cameraman | AA | 24.55 | 0.83 | 500 | 24.15 | 0.78 | 500 | 22.83 | 0.80 | 500 |
RLO | 24.40 | 0.82 | 500 | 24.02 | 0.83 | 500 | 22.75 | 0.81 | 500 | |
ZWN | 26.43 | 1.42 | 162 | 24.58 | 1.30 | 148 | 23.61 | 1.08 | 119 | |
Ours | 26.50 | 1.49 | 251 | 24.60 | 1.80 | 304 | 23.44 | 2.17 | 366 | |
Parrot | AA | 24.46 | 0.80 | 500 | 23.79 | 0.81 | 500 | 22.31 | 0.84 | 500 |
RLO | 24.40 | 0.81 | 500 | 23.78 | 0.81 | 500 | 22.28 | 0.92 | 500 | |
ZWN | 26.80 | 1.26 | 145 | 24.90 | 1.34 | 149 | 23.53 | 1.12 | 126 | |
Ours | 26.84 | 1.33 | 219 | 24.89 | 1.82 | 309 | 23.37 | 2.26 | 381 | |
House | AA | 27.32 | 0.93 | 500 | 26.15 | 0.83 | 500 | 23.04 | 0.80 | 500 |
RLO | 27.28 | 0.84 | 500 | 26.13 | 0.83 | 500 | 23.05 | 0.82 | 500 | |
ZWN | 27.91 | 0.66 | 64 | 25.44 | 0.28 | 27 | 23.74 | 0.31 | 29 | |
Ours | 28.24 | 1.21 | 189 | 26.40 | 1.50 | 255 | 24.82 | 2.03 | 345 | |
Square | AA | 34.36 | 0.97 | 500 | 29.32 | 0.83 | 500 | 23.18 | 0.87 | 500 |
RLO | 34.33 | 0.87 | 500 | 29.35 | 0.82 | 500 | 23.22 | 0.85 | 500 | |
ZWN | 33.02 | 0.29 | 26 | 30.57 | 0.29 | 42 | 27.84 | 0.39 | 26 | |
Ours | 34.21 | 0.95 | 136 | 31.61 | 1.06 | 180 | 29.94 | 1.34 | 136 |
Image | Model | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR | Time | Iter | PSNR | Time | Iter | PSNR | Time | Iter | ||
Cameraman | AA | 21.33 | 0.99 | 500 | 21.23 | 1.10 | 500 | 20.62 | 1.03 | 500 |
RLO | 21.27 | 0.97 | 500 | 21.17 | 1.01 | 500 | 20.58 | 0.92 | 500 | |
ZWN | 22.93 | 0.36 | 38 | 22.43 | 0.37 | 39 | 21.75 | 0.44 | 42 | |
Ours | 22.99 | 0.50 | 69 | 22.37 | 0.79 | 106 | 21.80 | 1.28 | 131 | |
Parrot | AA | 20.41 | 1.00 | 500 | 20.30 | 1.13 | 500 | 19.71 | 1.03 | 500 |
RLO | 20.35 | 0.93 | 500 | 20.25 | 0.97 | 500 | 19.67 | 0.98 | 500 | |
ZWN | 22.28 | 0.43 | 44 | 21.45 | 0.42 | 46 | 20.64 | 0.48 | 49 | |
Ours | 22.35 | 0.72 | 77 | 21.65 | 0.79 | 106 | 20.97 | 0.89 | 131 | |
House | AA | 24.19 | 0.97 | 500 | 23.73 | 1.08 | 500 | 22.06 | 1.01 | 500 |
RLO | 24.17 | 0.96 | 500 | 23.71 | 1.01 | 500 | 22.06 | 1.00 | 500 | |
ZWN | 25.85 | 0.46 | 50 | 24.47 | 0.69 | 73 | 22.65 | 0.79 | 88 | |
Ours | 25.67 | 0.61 | 76 | 24.67 | 0.70 | 98 | 24.00 | 0.79 | 120 | |
Square | AA | 28.31 | 1.00 | 500 | 26.49 | 1.01 | 500 | 22.51 | 1.17 | 500 |
RLO | 28.30 | 0.96 | 500 | 26.48 | 0.95 | 500 | 22.52 | 1.14 | 500 | |
ZWN | 30.07 | 0.35 | 37 | 28.47 | 0.29 | 28 | 25.95 | 0.32 | 31 | |
Ours | 31.55 | 0.81 | 118 | 28.61 | 0.78 | 113 | 27.76 | 0.87 | 117 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che, H.; Tang, Y. A Simplified Convex Optimization Model for Image Restoration with Multiplicative Noise. J. Imaging 2023, 9, 229. https://doi.org/10.3390/jimaging9100229
Che H, Tang Y. A Simplified Convex Optimization Model for Image Restoration with Multiplicative Noise. Journal of Imaging. 2023; 9(10):229. https://doi.org/10.3390/jimaging9100229
Chicago/Turabian StyleChe, Haoxiang, and Yuchao Tang. 2023. "A Simplified Convex Optimization Model for Image Restoration with Multiplicative Noise" Journal of Imaging 9, no. 10: 229. https://doi.org/10.3390/jimaging9100229
APA StyleChe, H., & Tang, Y. (2023). A Simplified Convex Optimization Model for Image Restoration with Multiplicative Noise. Journal of Imaging, 9(10), 229. https://doi.org/10.3390/jimaging9100229