Digital Grading the Color Fastness to Rubbing of Fabrics Based on Spectral Reconstruction and BP Neural Network
Abstract
:1. Introduction
2. Methodology
2.1. Color Data Acquisition Based on Spectral Reconstruction
2.2. Color Fastness Prediction Methods
2.2.1. Existing Methods
- The color difference conversion method.
- The gray scale difference method.
2.2.2. The Proposed Method
2.3. Evaluation Metrics
3. Experiment
3.1. The Rubbing Color Fastness Experiment
3.2. The Visual Rating Experiment
3.3. The BP Neural Network Modeling
3.3.1. Data Preprocessing
3.3.2. Model Building and Training
3.4. Testing of Existing Methods
3.4.1. Testing of Color Difference Conversion Method
3.4.2. Testing of Gray Scale Difference Method
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, X.; Wang, H. Support vector machine classification model for color fastness to ironing of vat dyes. Text. Res. J. 2021, 91, 1889–1899. [Google Scholar] [CrossRef]
- Popa, S.; Radulescu-Grad, M.E.; Perdivara, A.; Mosoarca, G. Aspects regarding colour fastness and adsorption studies of a new azo-stilbene dye for acrylic resins. Sci. Rep. 2021, 11, 5889. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, Y.; Zhang, X.; Lixia, S. Development of intelligent grade system for textiles color fastness. Cotton Text. Technol. 2019, 47, 41–47. [Google Scholar]
- Huang, S.; Tu, X.; Zhou, S. Application of Kappa Coefficient Consistency Test in Visual Evaluation of Color Fastness; Knitting Industry: Nantwich, UK, 2022; p. 5. [Google Scholar]
- González-Morales, D.; Valencia, A.; Díaz-Nuñez, A.; Fuentes-Estrada, M.; López-Santos, O.; García-Beltrán, O. Development of a low-cost UV-Vis spectrophotometer and its applicatiorn for the detection of mercuric ions assisted by chemosensors. Sensors 2020, 20, 906. [Google Scholar] [CrossRef] [PubMed]
- Deidda, R.; Sacre, P.Y.; Clavaud, M.; Coïc, L.; Avohou, H.; Hubert, P.; Ziemons, E. Vibrational spectroscopy in analysis of pharmaceuticals: Critical review of innovative portable and handheld NIR and Raman spectrophotometers. TrAC Trends Anal. Chem. 2019, 114, 251–259. [Google Scholar] [CrossRef]
- An, Y.; Xue, W.; Ding, Y.; Zhang, S. Evaluation of textile color rubbing fastness based on image processing. J. Text. Res. 2023, 43, 131–137. [Google Scholar]
- Salueña, B.H.; Gamasa, C.S.; Rubial, J.M.D.; Odriozola, C.A. CIELAB color paths during meat shelf life. Meat Sci. 2019, 157, 107889. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.J.; Prasetyo, Y.T.; Siswanto, N.D.; Jiang, B.C. Optimization of color design for military camouflage in CIELAB color space. Color Res. Appl. 2019, 44, 367–380. [Google Scholar] [CrossRef]
- Cui, G.; Luo, M.; Rhodes, P.; Rigg, B.; Dakin, J. Grading textile fastness. Part 2: Development of a new staining fastness formula. Color. Technol. 2003, 119, 219–224. [Google Scholar] [CrossRef]
- Cui, G.; Luo, M.; Rigg, B.; Butterworth, M.; Dakin, J. Grading textile fastness. Part 3: Development of a new fastness formula for assessing change in colour. Color. Technol. 2004, 120, 226–230. [Google Scholar] [CrossRef]
- Zheng, C. Discussion on Evaluation of Color Fastness Grade of Fabrics by Image Method. Light Text. Ind. Technol. 2010, 39, 3. [Google Scholar]
- Zhang, Q.; Liu, J.; Gao, W. Grade evaluation of color fastness to laundering based on image analysis. J. Text. Res. 2013, 34, 100–105. [Google Scholar]
- Liang, J.; Xin, L.; Zuo, Z.; Zhou, J.; Liu, A.; Luo, H.; Hu, X. Research on the deep learning-based exposure invariant spectral reconstruction method. Front. Neurosci. 2022, 16, 1031546. [Google Scholar] [CrossRef]
- Zhao, Y.; Po, L.M.; Yan, Q.; Liu, W.; Lin, T. Hierarchical Regression Network for Spectral Reconstruction from RGB Images. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 1695–1704. [Google Scholar]
- Liang, J.; Wan, X. Optimized method for spectral reflectance reconstruction from camera responses. Opt. Express 2017, 25, 28273–28287. [Google Scholar] [CrossRef]
- Hong, G.; Luo, M.R.; Rhodes, P.A. A study of digital camera colorimetric characterization based on polynomial modeling. Color Res. Appl. 2001, 26, 76–84. [Google Scholar] [CrossRef]
- Jianxin, Z.; Kangping, Z.; Junkai, W.; Xudong, H. Color segmentation and extraction of yarn-dyed fabric based on a hyperspectral imaging system. Text. Res. J. 2021, 91, 729–742. [Google Scholar] [CrossRef]
- Qiu, K.; Chen, W.; Zhou, H. Research and development of textile color measurement based on imaging technologies. J. Text. Res. 2020, 41, 73–80. [Google Scholar]
- Zhang, J.; Wu, J.; Hu, X.; Zhang, X. Multi-color measurement of printed fabric using the hyperspectral imaging system. Text. Res. J. 2020, 90, 1024–1037. [Google Scholar] [CrossRef]
- Li, Y.; Liu, P.; Zhou, J.; Ren, Y.; Jin, J. Center extraction of structured light stripe based on back propagation neural network. Acta Opt. Sin. 2019, 39, 1212005. [Google Scholar]
- Luo, Y.; Pei, L.; Zhang, H.; Zhong, Q.; Wang, J. Improvement of the rubbing fastness of cotton fiber in indigo/silicon non-aqueous dyeing systems. Polymers 2019, 11, 1854. [Google Scholar] [CrossRef]
- Lei, Z. Study on Test of Color Fastness to Rubbing of Textiles. Iop Conf. Ser. Mater. Sci. Eng. 2020, 793, 012017. [Google Scholar] [CrossRef]
- Kert, M.; Gorjanc, M. The study of colour fastness of commercial microencapsulated photoresponsive dye applied on cotton, cotton/polyester and polyester fabric using a pad-dry-cure process. Color. Technol. 2017, 133, 491–497. [Google Scholar] [CrossRef]
- Sezgin Bozok, S.; Ogulata, R.T. Effect of silica based sols on the optical properties and colour fastness of synthetic indigo dyed denim fabrics. Color. Technol. 2021, 137, 209–216. [Google Scholar] [CrossRef]
- Kumar, R.; Ramratan, K.A.; Uttam, D. To study natural herbal dyes on cotton fabric to improving the colour fastness and absorbency performance. J. Text. Eng. Fash. Technol. 2021, 7, 51–56. [Google Scholar]
- Liang, J.; Xiao, K.; Pointer, M.R.; Wan, X.; Li, C. Spectra estimation from raw camera responses based on adaptive local-weighted linear regression. Opt. Express 2019, 27, 5165–5180. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Wang, X.; Li, X.; Song, Y.; Li, R. A study of spectral reflectance reconstruction using the weighted fitting algorithm based on the Sino Colour Book. Color. Technol. 2023, in press.
- Connah, D.R.; Hardeberg, J.Y. Spectral recovery using polynomial models. In Proceedings of the Color Imaging X: Processing, Hardcopy, and Applications, SPIE, San Jose, CA, USA, 17 January 2005; Volume 5667, pp. 65–75. [Google Scholar]
- ISO 105-A11:2012; Textiles—Tests for Colour Fastness—Part A11: Determination of Colour Fastness Grades by Digital Imaging Techniques. ISO: Geneva, Switzerland, 2012.
- Song, S.; Xiong, X.; Wu, X.; Xue, Z. Modeling the SOFC by BP neural network algorithm. Int. J. Hydrogen Energy 2021, 46, 20065–20077. [Google Scholar] [CrossRef]
- ISO 105-X12:2016; Textiles—Tests for Colour Fastness—Part X12: Colour Fastness to Rubbing. ISO: Geneva, Switzerland, 2016.
- ISO 105-A03:1996; Textiles—Tests for Colour Fastness—Part A03: Grey Scale for Assessing Staining. ISO: Geneva, Switzerland, 1996.
Texture | 100% cotton twill |
---|---|
Size | 10 × 25 cm |
Yarn count | 40 counts |
Density | 133 × 72 |
Color | pink, purple, yellow, blue, orange, green |
Model | Unstandardized Coefficients | Standardized Coefficient | t | Significance (p-Value) | Covariance Statistics | ||
---|---|---|---|---|---|---|---|
B | Standard Error | Tolerance | VIF | ||||
Constant | −0.121 | 0.044 | −2.777 | 0.007 | |||
ΔL* | −0.034 | 0.009 | −0.469 | −3.779 | 0.000 | 0.637 | 1.57 |
Δa* | −0.021 | 0.017 | −0.209 | −1.234 | 0.222 | 0.343 | 2.92 |
Δb* | −0.014 | 0.014 | −0.171 | −0.985 | 0.328 | 0.325 | 3.075 |
Gray Scale Difference | Fitting Equation | Correlation Coefficient |
---|---|---|
third-order polynomial |
BP Model | Color Difference Conversion | Gray Scale Difference | Color Difference Conversion (Five-Fold) | Optimized Gray Scale Difference | |
---|---|---|---|---|---|
Ave. | 0.24 | 0.26 | 0.34 | 0.29 | 0.28 |
Max. | 0.72 | 1.17 | 0.95 | 1.43 | 0.75 |
Min. | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 |
90% | 0.49 | 0.54 | 0.71 | 0.63 | 0.48 |
Std. | 0.17 | 0.22 | 0.26 | 0.26 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Zhou, J.; Hu, X.; Luo, H.; Cao, G.; Liu, L.; Xiao, K. Digital Grading the Color Fastness to Rubbing of Fabrics Based on Spectral Reconstruction and BP Neural Network. J. Imaging 2023, 9, 251. https://doi.org/10.3390/jimaging9110251
Liang J, Zhou J, Hu X, Luo H, Cao G, Liu L, Xiao K. Digital Grading the Color Fastness to Rubbing of Fabrics Based on Spectral Reconstruction and BP Neural Network. Journal of Imaging. 2023; 9(11):251. https://doi.org/10.3390/jimaging9110251
Chicago/Turabian StyleLiang, Jinxing, Jing Zhou, Xinrong Hu, Hang Luo, Genyang Cao, Liu Liu, and Kaida Xiao. 2023. "Digital Grading the Color Fastness to Rubbing of Fabrics Based on Spectral Reconstruction and BP Neural Network" Journal of Imaging 9, no. 11: 251. https://doi.org/10.3390/jimaging9110251
APA StyleLiang, J., Zhou, J., Hu, X., Luo, H., Cao, G., Liu, L., & Xiao, K. (2023). Digital Grading the Color Fastness to Rubbing of Fabrics Based on Spectral Reconstruction and BP Neural Network. Journal of Imaging, 9(11), 251. https://doi.org/10.3390/jimaging9110251