Understanding Error Patterns: An Analysis of Alignment Errors in Rigid 3D Body Scans
Abstract
:1. Introduction
2. Materials and Methods
2.1. 3D Body Scans Used for Simulating the Misalignment
2.2. Simulation of Misalignment
2.2.1. Translational Misalignment
2.2.2. Rotational Misalignment
2.2.3. Assumptions
2.3. Circumference Measurement
2.4. Evaluation of the Measurement Error
2.5. Verification
3. Results and Discussion
3.1. Translational and Rotational Misalignment Error
3.1.1. Translational Component of the Misalignment Error
3.1.2. Tilt Component of the Misalignment Error
3.1.3. Application of the Results
- Recommendation 1:Calculate the change of the circumference along the height as well as the change of the reference point clouds’ mean outline and use the height where both approach 0 as a landmark to compare the 3D point clouds.
- Recommendation 2:Use the ankle or calf as landmarks to compare the 3D point clouds. Since the ankle or calf are usually the landmarks where the local circumference is minimum or maximum, respectively, the change of the circumference at these landmarks approaches 0, making them more robust landmarks.
3.2. Verification of the Results
3.3. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kantaros, A.; Soulis, E.; Alysandratou, E. Digitization of Ancient Artefacts and Fabrication of Sustainable 3D-Printed Replicas for Intended Use by Visitors with Disabilities: The Case of Piraeus Archaeological Museum. Sustainability 2023, 15, 12689. [Google Scholar] [CrossRef]
- Kantaros, A.; Ganetsos, T.; Petrescu, F.I.T. Three-Dimensional Printing and 3D Scanning: Emerging Technologies Exhibiting High Potential in the Field of Cultural Heritage. Appl. Sci. 2023, 13, 4777. [Google Scholar] [CrossRef]
- Bräuer-Burchardt, C.; Munkelt, C.; Bleier, M.; Heinze, M.; Gebhart, I.; Kühmstedt, P.; Notni, G. Underwater 3D Scanning System for Cultural Heritage Documentation. Remote Sens. 2023, 15, 1864. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Pratap Singh, R.; Suman, R. Industrial Perspectives of 3D Scanning: Features, Roles and It’s Analytical Applications. Sens. Int. 2021, 2, 100114. [Google Scholar] [CrossRef]
- Caesar I, the Most Comprehensive Source for Body Measurement Data. Available online: http://store.sae.org/caesar/ (accessed on 23 August 2022).
- UK National Sizing Survey. Available online: http://www.size.org/ (accessed on 23 August 2022).
- Sizeusa Dataset. Available online: https://www.tc2.com/size-usa.html (accessed on 23 August 2022).
- Simmons, K.P.; Istook, C.L. Body Measurement Techniques: Comparing 3D Body-scanning and Anthropometric Methods for Apparel Applications. J. Fash. Mark. Manag. Int. J. 2003, 7, 306–332. [Google Scholar] [CrossRef]
- D’Apuzzo, N. 3D Body Scanning Technology for Fashion and Apparel Industry. In Proceedings of the Electronic Imaging 2007, San Jose, CA, USA, 28 January 2007; p. 649100. [Google Scholar]
- Apeagyei, P.R. Application of 3D Body Scanning Technology to Human Measurement for Clothing Fit. JDCTA 2010, 4, 58–68. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M. 3D Scanning Applications in Medical Field: A Literature-Based Review. Clin. Epidemiol. Glob. Health 2019, 7, 199–210. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Bourgeois, B.; Ng, B.K.; Sommer, M.J.; Li, X.; Shepherd, J.A. Digital Anthropometry: A Critical Review. Eur. J. Clin. Nutr. 2018, 72, 680–687. [Google Scholar] [CrossRef]
- Yu, F.; Zeng, L.; Pan, D.; Sui, X.; Tang, J. Evaluating the Accuracy of Hand Models Obtained from Two 3D Scanning Techniques. Sci. Rep. 2020, 10, 11875. [Google Scholar] [CrossRef] [PubMed]
- Negru, N.; Leba, M.; Rosca, S.; Marica, L.; Ionica, A. A New Approach on 3D Scanning-Printing Technologies with Medical Applications. IOP Conf. Ser. Mater. Sci. Eng. 2019, 572, 012049. [Google Scholar] [CrossRef]
- Lindell, E.; Tingsvik, H.; Guo, L.; Peterson, J. 3D Body Scan as Anthropometric Tool for Individualized Prosthetic Socks. Autex Res. J. 2021, 22, 000010247820210007. [Google Scholar] [CrossRef]
- Yu, A.; Yick, K.L.; Ng, S.P.; Yip, J. 2D and 3D Anatomical Analyses of Hand Dimensions for Custom-Made Gloves. Appl. Ergon. 2013, 44, 381–392. [Google Scholar] [CrossRef]
- Kowalski, K.; Kłonowska, M.; Sujka, W.; Latańska, I.; Kowalski, T.M. Computer-Assisted Modeling and Design of Compression Garments with Graded Unit Compression. Autex Res. J. 2022, 22, 80–88. [Google Scholar] [CrossRef]
- Ballester, A.; Pierola, A.; Parrilla, E.; Uriel, J.; Ruescas, A.V.; Perez, C.; Dura, J.V.; Alemany, S. 3D Human Models from 1D, 2D and 3D Inputs: Reliability and Compatibility of Body Measurements. In Proceedings of the 3DBODY.TECH 2018—9th International Conference and Exhibition on 3D Body Scanning and Processing Technologies, Lugano, Switzerland, 16–17 October 2018; Hometrica Consulting—Dr. Nicola D’Apuzzo: Lugano, Switzerland, 2018; pp. 132–141. [Google Scholar]
- Robinette, K.M.; Daanen, H.A.M. Precision of the CAESAR Scan-Extracted Measurements. Appl. Ergon. 2006, 37, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Rumbo-Rodríguez, L.; Sánchez-SanSegundo, M.; Ferrer-Cascales, R.; García-D’Urso, N.; Hurtado-Sánchez, J.A.; Zaragoza-Martí, A. Comparison of Body Scanner and Manual Anthropometric Measurements of Body Shape: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 6213. [Google Scholar] [CrossRef] [PubMed]
- Haleem, A.; Javaid, M.; Singh, R.P.; Rab, S.; Suman, R.; Kumar, L.; Khan, I.H. Exploring the Potential of 3D Scanning in Industry 4.0: An Overview. Int. J. Cogn. Comput. Eng. 2022, 3, 161–171. [Google Scholar] [CrossRef]
- Bartol, K.; Bojanic, D.; Petkovic, T.; Pribanic, T. A Review of Body Measurement Using 3D Scanning. IEEE Access 2021, 9, 67281–67301. [Google Scholar] [CrossRef]
- Daanen, H.A.M.; Psikuta, A. 3D Body Scanning. In Automation in Garment Manufacturing; Elsevier: Amsterdam, The Netherlands, 2018; pp. 237–252. ISBN 978-0-08-101211-6. [Google Scholar]
- Kouchi, M.; Mochimaru, M.; Bradtmiller, B.; Daanen, H.; Li, P.; Nacher, B.; Nam, Y. A Protocol for Evaluating the Accuracy of 3D Body Scanners. Work 2012, 41, 4010–4017. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Chen, Y.; Medioni, G. Object Modelling by Registration of Multiple Range Images. Image Vis. Comput. 1992, 10, 145–155. [Google Scholar] [CrossRef]
- Huang, X.; Mei, G.; Zhang, J.; Abbas, R. A Comprehensive Survey on Point Cloud Registration. arXiv 2021, arXiv:2103.02690. [Google Scholar]
- O’Toole, S.; Osnes, C.; Bartlett, D.; Keeling, A. Investigation into the Accuracy and Measurement Methods of Sequential 3D Dental Scan Alignment. Dent. Mater. 2019, 35, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Ho, E.S.L.; Munteanu, A. AlignBodyNet: Deep Learning-Based Alignment of Non-Overlapping Partial Body Point Clouds From a Single Depth Camera. IEEE Trans. Instrum. Meas. 2023, 72, 1–9. [Google Scholar] [CrossRef]
- Hu, P.; Munteanu, A. Method for Registration of 3D Shapes without Overlap for Known 3D Priors. Electron. Lett. 2021, 57, 357–359. [Google Scholar] [CrossRef]
- Hu, P.; Zhao, R.; Dai, X.; Munteanu, A. Predicting High-Fidelity Human Body Models from Impaired Point Clouds. Signal Process. 2022, 192, 108375. [Google Scholar] [CrossRef]
- VITRONIC Dr.-Ing. Stein Bildverarbeitungssysteme GmbH High-Precision, Fast, and Color 3D Scans. 2016. Available online: https://vicwebsite2019.cdn.prismic.io/vicwebsite2019/b4d146cf-2766-470f-929a-898264325f9c_VITRONIC-3D-bodyscan-en.pdf (accessed on 10 January 2023).
- The MathWorks, Inc. Downsample a 3-D Point Cloud. Available online: https://www.mathworks.com/help/vision/ref/pcdownsample.html#bupqqn1-1-gridAverage (accessed on 11 October 2023).
- ISO 20685-1:2018; 3D-Scanning Methodologies for Internationally Compatible Anthropometric Databases—Part 1: Evaluation Protocol for Body Dimensions Extracted from 3-D Body Scans. International Organization of Standardization: Geneva, Switzerland, 2018.
- Salleh, M.N.; Mad Lazim, H.; Lamsali, H. Body Measurement Using 3D Handheld Scanner. MoHE 2018, 7, 179–187. [Google Scholar] [CrossRef]
- ISO 8559-1:2017; Size Designation of Clothes—Part 1: Anthropometric Definitions for Body Measurement. International Organization of Standardization: Geneva, Switzerland, 2017.
- RAL-GZ 387/1; Medical Compression Hosiery—Quality Assurance. Deutsches Institut für Gütesicherung und Kennzeichnung e.V.: Bonn, Germany, 2008.
- BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. International Vocabulary of Metrology—Basic and General Concepts and Associated Terms (VIM). Joint Committee for Guides in Metrology, JCGM 200:2012. (3rd Edition). 2008. Available online: https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf/f0e1ad45-d337-bbeb-53a6-15fe649d0ff1 (accessed on 9 February 2023).
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
Left Leg | Right Leg | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Height (cm) | APE (%) | Diff. (pp) | Height (cm) | APE (%) | Diff. (pp) | |||||
Subject | Recommended | Knee | Recommended | Knee | Recommended | Knee | Recommended | Knee | ||
1 | 35 | 44 | 0.45 | 1.30 | −0.85 | 34 | 45 | 0.15 | 1.10 | −0.95 |
2 | 41 | 58 | 0.02 | 0.65 | −0.63 | 40 | 57 | 0.22 | 0.47 | −0.25 |
3 | 11 | 47 | 0.39 | 0.58 | −0.19 | 13 | 47 | 0.27 | 0.37 | −0.09 |
4 | 31 | 44 | 0.10 | 1.05 | −0.95 | 31 | 42 | 0.11 | 1.07 | −0.96 |
5 | 31 | 42 | 0.20 | 0.47 | −0.27 | 32 | 41 | 0.08 | 0.47 | −0.40 |
6 | 36 | 51 | 0.21 | 0.27 | −0.06 | 36 | 52 | 0.15 | 0.82 | −0.67 |
7 | 37 | 47 | 0.25 | 0.46 | −0.21 | 36 | 47 | 0.03 | 0.53 | −0.51 |
8 | 11 | 45 | 0.31 | 0.89 | −0.58 | 11 | 45 | 0.24 | 1.11 | −0.87 |
9 | 32 | 42 | 0.56 | 0.17 | +0.39 | 33 | 44 | 0.08 | 0.22 | −0.14 |
10 | 37 | 50 | 0.24 | 0.89 | −0.65 | 38 | 51 | 0.06 | 0.57 | −0.51 |
11 | 39 | 55 | 0.29 | 0.98 | −0.69 | 14 | 55 | 0.09 | 0.80 | −0.71 |
12 | 39 | 55 | 0.36 | 0.60 | −0.23 | 60 | 58 | 0.10 | 0.28 | −0.18 |
13 | 12 | 44 | 0.33 | 0.90 | −0.57 | 30 | 43 | 0.16 | 1.05 | −0.89 |
14 | 13 | 53 | 1.06 | 0.22 | +0.84 | 58 | 53 | 0.03 | 0.37 | −0.34 |
15 | 32 | 45 | 0.30 | 1.42 | −1.12 | 49 | 43 | 0.19 | 1.38 | −1.19 |
16 | 36 | 48 | 0.36 | 0.55 | −0.20 | 37 | 50 | 0.08 | 0.75 | −0.67 |
17 | 36 | 50 | 0.48 | 1.08 | −0.60 | 36 | 49 | 0.02 | 0.87 | −0.84 |
18 | 12 | 48 | 0.71 | 1.27 | −0.56 | 34 | 47 | 0.19 | 0.75 | −0.55 |
19 | 36 | 49 | 0.31 | 1.34 | −1.04 | 35 | 50 | 0.01 | 0.48 | −0.47 |
20 | 34 | 46 | 0.21 | 1.09 | −0.88 | 14 | 46 | 0.13 | 0.64 | −0.52 |
21 | 36 | 48 | 0.09 | 1.16 | −1.07 | 36 | 48 | 0.28 | 0.91 | −0.63 |
22 | 35 | 47 | 0.28 | 1.48 | −1.19 | 13 | 46 | 0.31 | 0.96 | −0.65 |
23 | 38 | 53 | 0.42 | 1.62 | −1.21 | 15 | 52 | 0.13 | 1.12 | −0.99 |
24 | 15 | 51 | 0.27 | 0.78 | −0.51 | 34 | 50 | 0.06 | 0.69 | −0.62 |
25 | 12 | 46 | 0.07 | 1.31 | −1.24 | 34 | 45 | 0.26 | 2.09 | −1.83 |
26 | 33 | 47 | 0.02 | 1.57 | −1.55 | 33 | 47 | 0.02 | 0.97 | −0.96 |
27 | 32 | 46 | 0.04 | 1.19 | −1.15 | 31 | 44 | 0.09 | 1.29 | −1.20 |
28 | 15 | 55 | 0.10 | 0.38 | −0.29 | 39 | 54 | 0.03 | 0.52 | −0.49 |
29 | 13 | 45 | 0.88 | 1.30 | −0.43 | 32 | 42 | 0.13 | 1.00 | −0.87 |
30 | 34 | 49 | 0.14 | 1.29 | −1.15 | 34 | 47 | 0.09 | 1.00 | −0.91 |
Mean | 0.31 | 0.94 | −0.63 | 0.13 | 0.82 | −0.69 | ||||
STD | 0.24 | 0.42 | 0.51 | 0.08 | 0.37 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meißner, J.; Kisiel, M.; Thoppey, N.M.; Morlock, M.M.; Bannwarth, S. Understanding Error Patterns: An Analysis of Alignment Errors in Rigid 3D Body Scans. J. Imaging 2023, 9, 255. https://doi.org/10.3390/jimaging9120255
Meißner J, Kisiel M, Thoppey NM, Morlock MM, Bannwarth S. Understanding Error Patterns: An Analysis of Alignment Errors in Rigid 3D Body Scans. Journal of Imaging. 2023; 9(12):255. https://doi.org/10.3390/jimaging9120255
Chicago/Turabian StyleMeißner, Julian, Michael Kisiel, Nagarajan M. Thoppey, Michael M. Morlock, and Sebastian Bannwarth. 2023. "Understanding Error Patterns: An Analysis of Alignment Errors in Rigid 3D Body Scans" Journal of Imaging 9, no. 12: 255. https://doi.org/10.3390/jimaging9120255
APA StyleMeißner, J., Kisiel, M., Thoppey, N. M., Morlock, M. M., & Bannwarth, S. (2023). Understanding Error Patterns: An Analysis of Alignment Errors in Rigid 3D Body Scans. Journal of Imaging, 9(12), 255. https://doi.org/10.3390/jimaging9120255