The Influence of Substrate on the Optical Properties of Gold Nanoslits
Abstract
:1. Introduction
2. Formulation
2.1. Permittivity and Conductivity
- The phase of the electric field in the metal is retarded by with respect to the magnetic field phase in the metal.
- The amplitude of the electric field incident at the surface is reduced by a factor of and lags the electric field phase in the metal by .
- The magnetic field in the metal has an amplitude that is roughly twice than that of the incident field.
- The frequency is constant across the boundaries.
- The conduction current is in phase with the incident electric field, and the reflected electric field is out of phase by with respect to the incident electric field.
2.2. Electromagnetic Fields Generated Inside the Nanoslit
3. Results
3.1. Electric Field Enhancement
3.1.1. The Cutoff for Subwavelength Slits under (TE) Illumination
3.1.2. (TM) Light Transmission through Subwavelength Slits
3.2. Magnetic Field
3.3. Power Flow
3.4. Effect of Substrate on the Transmission of Light
3.4.1. Effect on Electric Field Enhancement and Power Flow of Using BK7 Glass as a Substrate
3.4.2. Effect on Electric Field Enhancement and Power Flow of Using Alumina (AlO) as a Substrate
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FEM | Finite element methods |
EOT | Extraordinary optical transmission |
SPP | Surface plasmon polaritons |
TE | Transverse electric |
TM | Transverse magnetic |
SP | Surface plasmon |
LSPR | Localized surface plasmon resonance |
T-SPR | Transmission surface plasmon resonance |
References
- Abbas, G.; Afzaal, M.; Nunes, F.D.; Naz, M.Y.; AbdEl-Salam, N.M.; Ibrahim, K.A.; Mohamed, H.F.; Khan, Y. Numerical analysis of optical properties and equivalent electrical circuits of chemically synthesized silver and gold nanospheres. AIP Adv. 2021, 11, 045301. [Google Scholar] [CrossRef]
- Qamar, M.; Abbas, G.; Afzaal, M.; Naz, M.Y.; Ghuffar, A.; Irfan, M.; Legutko, S.; Jozwik, J.; Zawada-Michalowska, M.; Ghanim, A.A.J.; et al. Gold nanorods for doxorubicin delivery: Numerical analysis of electric field enhancement, optical properties and drug loading/releasing efficiency. Materials 2022, 15, 1764. [Google Scholar] [CrossRef]
- Stewart, M.E.; Anderton, C.R.; Thompson, L.B.; Maria, J.; Gray, S.K.; Rogers, J.A.; Nuzzo, R.G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521. [Google Scholar] [CrossRef] [PubMed]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Ghaemi, H.F.; Thio, T.; Grupp, D.E.A.; Ebbesen, T.W.; Lezec, H.J. Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B 1998, 58, 6779. [Google Scholar] [CrossRef]
- Sönnichsen, C.; Franzl, T.; Wilk, T.; von Plessen, G.; Feldmann, J. Plasmon resonances in large noble-metal clusters. New J. Phys. 2002, 4, 93. [Google Scholar] [CrossRef]
- Aslan, K.; Lakowicz, J.R.; Geddes, C.D. Rapid deposition of triangular silver nanoplates on planar surfaces: Application to metal-enhanced fluorescence. J. Phys. Chem. B 2005, 109, 6247–6251. [Google Scholar] [CrossRef]
- Fahlman, B.D. Materials Chemistry; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Li, W.-R.; Xie, X.-B.; Shi, Q.-S.; Zeng, H.-Y.; Ou-Yang, Y.-S.; Chen, Y.-B. Antibacterial activity and mechanism of silver nano particles on Escherichia coli. Appl. Microbiol. Biotechnol. 2010, 85, 1115–1122. [Google Scholar] [CrossRef]
- Genet, C.; Ebbesen, T.W. Light in tiny holes. Nature 2007, 445, 39–46. [Google Scholar] [CrossRef]
- Ortuño, N.; García-Meca, C.; Rodríguez-Fortuño, F.J.; Martí, J.; Martínez, A. Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays. Phys. Rev. B 2009, 79, 075425. [Google Scholar] [CrossRef]
- Schröter, U.; Heitmann, D. Surface-plasmon-enhanced transmission through metallic gratings. Phys. Rev. B 1998, 58, 15419–15421. [Google Scholar] [CrossRef]
- Porto, J.A.; Garcia-Vidal, F.J.; Pendry, J.B. Transmission resonances on metallic gratings with very narrow slits. Phys. Rev. Lett. 1999, 83, 2845–2848. [Google Scholar] [CrossRef]
- Xie, Y.; Zakharian, A.R.; Moloney, J.V.; Mansuripur, M. Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts. Opt. Express 2006, 14, 6400–6413. [Google Scholar] [CrossRef]
- Wu, F.Q.; Han, D.Z.; Li, X.; Liu, X.H. Enhanced transmission mediated by guided resonances in metallic gratings coated with dielectric layers. Opt. Express 2008, 16, 6619–6624. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Domínguez, A.I.; García-Vidal, F.J.; Martín-Moreno, L. Resonant transmission of light through finite arrays of slits. Phys. Rev. B 2007, 76, 235430. [Google Scholar] [CrossRef]
- Romanato, F.; Ongarello, T.; Zacco, G.; Garoli, D.; Zilio, P.; Massari, M. Extraordinary optical transmission in one-dimensional gold gratings: Near- and far-field analysis. Appl. Opt. 2011, 50, 4529–4534. [Google Scholar] [CrossRef]
- Pendry, J.B.; Martín-Moreno, L.; Garcia-Vidal, F.J. Mimicking surface plasmons with structure surface. Science 2004, 305, 847–848. [Google Scholar] [CrossRef]
- García-Vidal, F.J.; Martín-Moreno, L.; Pendry, J.B. Surfaces with holes in them: New plasmonic metamaterials. J. Opt. A Pure Appl. Opt. 2005, 7, S97–S101. [Google Scholar] [CrossRef]
- Hibbins, A.P.; Evans, B.R.; Sambles, J.R. Experimental verification of designer surface plasmons. Science 2005, 308, 670–672. [Google Scholar] [CrossRef]
- Moreno, E.; Martin-Moreno, L.; Garcia-Vidal, F.J. Extraordinary optical transmission without plasmons: The s-polarization case. J. Opt. A: Pure Appl. Opt. 2006, 8, S94. [Google Scholar] [CrossRef]
- Nikitin, A.Y.; Garcia-Vidal, F.J.; Martin-Moreno, L. Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes. J. Opt. A Pure Appl. Opt. 2009, 11, 125702. [Google Scholar] [CrossRef]
- Wang, Y.W.; Liu, M.L.; Liu, R.J.; Lei, H.N.; Deng, X.B. Extraordinary transmission through one-dimensional metallic gratings with sub-wavelength slits under transverse electric wave excitation. Acta Phys. Sin. 2010, 59, 4030–4035. [Google Scholar] [CrossRef]
- Wang, Y.W.; Liu, M.L.; Liu, R.J.; Lei, H.N.; Tian, X.N. Fabry-Perot resonance on extraordinary transmission through one-dimensional metallic gratings with sub-wavelength under transverse electric wave excitation. Acta Phys. Sin. 2011, 60, 024217. [Google Scholar] [CrossRef]
- Ongarello, T.; Romanato, F.; Zilio, P.; Massari, M. Polarization independence of extraordinary transmission trough 1D metallic gratings. Opt. Express 2011, 19, 9426–9433. [Google Scholar] [CrossRef] [PubMed]
- Guillaumee, M.; Nikitin, A.Y.; Klein, M.J.K.; Dunbar, L.A.; Spassov, V.; Eckert, R.; Martin-Moreno, L.; Garcia-Vidal, F.J.; Stanley, R.P. Observation of enhanced transmission for s-polarized light through a subwavelength slit. Opt. Express 2010, 18, 9722–9727. [Google Scholar] [CrossRef] [PubMed]
- Crouse, D.; Keshavareddy, P. Polarization independent enhanced optical transmission in one-dimensional gratings and device applications. Opt. Express 2007, 15, 1415–1427. [Google Scholar] [CrossRef]
- Bian, T.T.; Dong, B.Z.; Zhang, Y. Polarization independent extraordinary transmission through a subwavelength slit. Opt. Commun. 2012, 285, 1523–1527. [Google Scholar] [CrossRef]
- Lu, Y.H.; Cho, M.H.; Lee, Y.P.; Rhee, J.Y. Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits. Appl. Phys. Lett. 2008, 93, 061102. [Google Scholar] [CrossRef]
- Xie, Y.; Zakharian, A.R.; Moloney, J.V.; Mansuripur, M. Transmission of light through slit apertures in metallic films. Opt. Express 2004, 12, 6106–6121. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Thio, T.; Ghaemi, H.F.; Lezec, H.J.; Wolff, P.A.; Ebbesen, T.W. Surface-plasmon-enhanced transmission through hole arrays in Cr films. JOSA B 1999, 16, 1743–1748. [Google Scholar] [CrossRef]
- Amendola, V.; Pilot, R.; Frasconi, M.; Maragó, O.M.; Iatí, M.A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Cond. Mat. 2017, 29, 203002. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q. A novel plasmonic zone plate lens based on nano-slits with refractive index modulation. Plasmonics 2011, 6, 381–385. [Google Scholar] [CrossRef]
- Lu, M.; Ocola, L.E.; Gray, S.K.; Wiederrecht, G.P. Fabrication of metallic nanoslit waveguides with sharp bends. J. Vac. Sci. Technol. B 2008, 26, 2151–2155. [Google Scholar] [CrossRef]
- He, R.; Chen, C.; Tang, X.; Zheng, Y.; Chen, L.; Guo, J. Performance of finite-size metal-dielectric nanoslits metasurface optical filters. Opt. Express 2023, 31, 29573–29588. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Fu, Y.; Zhou, Q.; Ou, X.; Gao, L.; Chen, H.; Xu, Y. Mechanism Behind Angularly Asymmetric Diffraction in Phase-Gradient Metasurfaces. Phys. Rev. Appl. 2019, 12, 024006. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y.; Kerman, S.; Neutens, P.; Willems, K.; Cornelissen, S.; Lagae, L.; Stakenborg, T.; Van Dorpe, P. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nat. Commun. 2018, 9, 1733. [Google Scholar] [CrossRef]
- Xie, Y.; Zakharian, A.R.; Moloney, J.V.; Mansuripur, M. Transmission of light through a periodic array of slits in a thick metallic film. Opt. Express 2005, 13, 4485–4491. [Google Scholar] [CrossRef]
- Weiner, J.; Nunes, F.D. Light-Matter Interaction: Physics and Engineering at the Nanoscale; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Abbas, G.; Afzaal, M.; Vasconcelos, T.C.; Naz, M.Y.; Nunes, F.D.; Lins, E.C.C.C.; Ghuffar, A.; Wazir, Z. Equivalent circuit, enhanced light transmission and power flow through subwavelength nanoslit of silver and gold and surrounding medium. Opt. Quantum Electron. 2022, 54, 857. [Google Scholar] [CrossRef]
- Weiner, J.; Nunes, F.D. High-frequency response of subwavelength-structured metals in the petahertz domain. Opt. Express 2008, 16, 21256–21270. [Google Scholar] [CrossRef]
- Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics; Cambridge University Press: Cambridge, UK, 1995; Chapter 3; pp. 109–120. [Google Scholar]
- Feng, L.; Tetz, K.A.; Slutsky, B.; Lomakin, V.; Fainman, Y. Fourier plasmonics: Diffractive focusing of in-plane surface plasmon polariton waves. Appl. Phys. Lett. 2007, 91, 081101. [Google Scholar] [CrossRef]
- Minin, O.V.; Minin, I.V.; Zhou, S. Superresonance in Micron Borosilicate Glass Sphere in Optical Range. Optoelectron. Instrum. Data Process. 2022, 58, 514–519. [Google Scholar] [CrossRef]
- Malitson, I.H.; Dodge, M.J. Refractive index and birefringence of synthetic sapphire. J. Opt. Soc. Am. 1972, 62, 1405. [Google Scholar]
Parameter | Value (nm) |
---|---|
Width of the model | 1500 |
Height of the model | 3000 |
Width of the nanoslit | 100 |
Height of the nanoslit | 500 |
Wavelength | 650 |
BK7 Substrate Thickness | Electric Field Enhancement | Power Flow |
---|---|---|
(nm) | (V/m) | () |
0 | 3.5 | 2.81–1.50 |
5 | 5 | 2.45–1.30 |
10 | 4 | 1.90–1.05 |
15 | 3 | 1.65–0.90 |
20 | 3 | 1.45–0.75 |
25 | 3 | 1.35–0.65 |
AlO Substrate Thickness | Electric Field Enhancement | Power Flow |
---|---|---|
(nm) | (V/m) | () |
0 | 3.5 | 2.81–1.50 |
5 | 5 | 1.95–1.15 |
10 | 3.5 | 1.47–0.85 |
15 | 3 | 1.15–0.65 |
20 | 2.5 | 0.97–0.50 |
25 | 2.5 | 0.88–0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ammara, A.; Abbas, G.; Pepe, F.V.; Afzaal, M.; Qamar, M.; Ghuffar, A. The Influence of Substrate on the Optical Properties of Gold Nanoslits. J. Imaging 2023, 9, 269. https://doi.org/10.3390/jimaging9120269
Ammara A, Abbas G, Pepe FV, Afzaal M, Qamar M, Ghuffar A. The Influence of Substrate on the Optical Properties of Gold Nanoslits. Journal of Imaging. 2023; 9(12):269. https://doi.org/10.3390/jimaging9120269
Chicago/Turabian StyleAmmara, Ammara, Ghulam Abbas, Francesco V. Pepe, Muhammad Afzaal, Muhammad Qamar, and Abdul Ghuffar. 2023. "The Influence of Substrate on the Optical Properties of Gold Nanoslits" Journal of Imaging 9, no. 12: 269. https://doi.org/10.3390/jimaging9120269
APA StyleAmmara, A., Abbas, G., Pepe, F. V., Afzaal, M., Qamar, M., & Ghuffar, A. (2023). The Influence of Substrate on the Optical Properties of Gold Nanoslits. Journal of Imaging, 9(12), 269. https://doi.org/10.3390/jimaging9120269