Diagnostic Accuracy of PET with Different Radiotracers versus Bone Scintigraphy for Detecting Bone Metastases of Breast Cancer: A Systematic Review and a Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sources and Strategy for the Literature Search
2.2. Research Question and Study Exclusion Criteria
2.3. Risk of Bias and Publication Bias Assessment
2.4. Data Extraction
2.5. Statistical Analysis
3. Results
3.1. Literature Search and Selection of Studies
3.2. Results of the Risk of Bias Assessment
3.3. Study Characteristics
3.4. Evaluation of the Diagnostic Accuracy of Imaging Modalities
3.5. Subgroup Analysis and Exploration of Heterogeneity
3.6. Analysis of Publication Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Barzaman, K.; Karami, J.; Zarei, Z.; Hosseinzadeh, A.; Kazemi, M.H.; Moradi-Kalbolandi, S.; Safari, E.; Farahmand, L. Breast cancer: Biology, biomarkers, and treatments. Int. Immunopharmacol. 2020, 84, 106535. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.Y. Breast Cancer Metastasis. Adv. Exp. Med. Biol. 2021, 1187, 183–204. [Google Scholar] [PubMed]
- Coleman, R.E.; Rubens, R.D. The clinical course of bone metastases from breast cancer. Br. J. Cancer 1987, 55, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Macedo, F.; Ladeira, K.; Pinho, F.; Saraiva, N.; Bonito, N.; Pinto, L.; Gonçalves, F. Bone Metastases: An Overview. Oncol. Rev. 2017, 11, 321. [Google Scholar] [PubMed]
- Hong, S.; Youk, T.; Lee, S.J.; Kim, K.M.; Vajdic, C.M. Bone metastasis and skeletal-related events in patients with solid cancer: A Korean nationwide health insurance database study. PLoS ONE 2020, 15, e0234927. [Google Scholar] [CrossRef]
- Coleman, R.E.; Croucher, P.I.; Padhani, A.R.; Clézardin, P.; Chow, E.; Fallon, M.; Guise, T.; Colangeli, S.; Capanna, R.; Costa, L. Bone metastases. Nat. Rev. Dis. Prim. 2020, 6, 83. [Google Scholar] [CrossRef]
- Senkus, E.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rutgers, E.; Zackrisson, S.; Cardoso, F. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26 (Suppl. S5), v8–v30. [Google Scholar] [CrossRef]
- Tsukamoto, S.; Mavrogenis, A.F.; Langevelde, K.V.; Vucht, N.V.; Kido, A.; Errani, C. Imaging of Spinal Bone Tumors: Principles and Practice. Curr. Med. Imaging 2022, 18, 142–161. [Google Scholar] [CrossRef]
- Frühling, J.; Verbist, A.; Balikdjian, D. Which diphosphonate for routine bone scintigraphy (MDP, HDP or DPD)? Nucl. Med. Commun. 1986, 7, 415–425. [Google Scholar] [CrossRef]
- Gates, G.F. SPECT bone scanning of the spine. Semin. Nucl. Med. 1998, 28, 78–94. [Google Scholar] [CrossRef] [PubMed]
- Muindi, J.; Coombes, R.C.; Golding, S.; Powles, T.J.; Khan, O.; Husband, J. The role of computed tomography in the detection of bone metastases in breast cancer patients. Br. J. Radiol. 1983, 56, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, L.; Cervino, A.R. Nuclear imaging and early breast cancer detection. Curr. Radiopharm. 2014, 7, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Beheshti, M.; Rezaee, A.; Geinitz, H.; Loidl, W.; Pirich, C.; Langsteger, W. Evaluation of Prostate Cancer Bone Metastases with 18F-NaF and 18F-Fluorocholine PET/CT. J. Nucl. Med. 2016, 57 (Suppl. S3), 55s–60s. [Google Scholar] [CrossRef] [PubMed]
- Vaarwerk, B.; Breunis, W.B.; Haveman, L.M.; de Keizer, B.; Jehanno, N.; Borgwardt, L.; van Rijn, R.R.; van den Berg, H.; Cohen, J.F.; van Dalen, E.C.; et al. Fluorine-18-fluorodeoxyglucose (FDG) positron emission tomography (PET) computed tomography (CT) for the detection of bone, lung, and lymph node metastases in rhabdomyosarcoma. Cochrane Database Syst. Rev. 2021, 11, CD012325. [Google Scholar]
- Çelebi, F. What is the Diagnostic Performance of 18F-FDG-PET/MRI in the Detection of Bone Metastasis in Patients with Breast Cancer? Eur. J. Breast Health 2019, 15, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Pujara, A.C.; Kim, E.; Axelrod, D.; Melsaether, A.N. PET/MRI in Breast Cancer. J. Magn. Reson. Imaging 2019, 49, 328–342. [Google Scholar] [CrossRef] [PubMed]
- Paydary, K.; Seraj, S.M.; Zadeh, M.Z.; Emamzadehfard, S.; Shamchi, S.P.; Gholami, S.; Werner, T.J.; Alavi, A. The Evolving Role of FDG-PET/CT in the Diagnosis, Staging, and Treatment of Breast Cancer. Mol. Imaging Biol. 2019, 21, 1–10. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Bruckmann, N.M.; Kirchner, J.; Umutlu, L.; Fendler, W.P.; Seifert, R.; Herrmann, K.; Bittner, A.K.; Hoffmann, O.; Mohrmann, S.; Antke, C.; et al. Prospective comparison of the diagnostic accuracy of 18F-FDG PET/MRI, MRI, CT, and bone scintigraphy for the detection of bone metastases in the initial staging of primary breast cancer patients. Eur. Radiol. 2021, 31, 8714–8724. [Google Scholar] [CrossRef]
- Hansen, J.A.; Naghavi-Behzad, M.; Gerke, O.; Baun, C.; Falch, K.; Duvnjak, S.; Alavi, A.; Høilund-Carlsen, P.F.; Hildebrandt, M.G. Diagnosis of bone metastases in breast cancer: Lesion-based sensitivity of dual-time-point FDG-PET/CT compared to low-dose CT and bone scintigraphy. PLoS ONE 2021, 16, e0260066. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elkader, M.A.M.; Hassan, A.A.E.-K.; Omar, N.N.M.; Sherif, M.F.H.; Abdel-Tawab, M. The added value of hybrid 18F-FDG PET/CT over CT in the detection of breast cancer metastatic deposits. Egypt. J. Radiol. Nucl. Med. 2020, 51, 115. [Google Scholar] [CrossRef]
- Rager, O.; Lee-Felker, S.A.; Tabouret-Viaud, C.; Felker, E.R.; Poncet, A.; Amzalag, G.; Garibotto, V.; Zaidi, H.; Walter, M.A. Accuracy of whole-body HDP SPECT/CT, FDG PET/CT, and their combination for detecting bone metastases in breast cancer: An intra-personal comparison. Am. J. Nucl. Med. Mol. Imaging 2018, 8, 159–168. [Google Scholar] [PubMed]
- Capitanio, S.; Bongioanni, F.; Piccardo, A.; Campus, C.; Gonella, R.; Tixi, L.; Naseri, M.; Pennone, M.; Altrinetti, V.; Buschiazzo, A.; et al. Comparisons between glucose analogue 2-deoxy-2-(18F) fluoro-D-glucose and 18F-sodium fluoride positron emission tomography/computed tomography in breast cancer patients with bone lesions. World J Radiol. 2016, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Abikhzer, G.; Srour, S.; Fried, G.; Drumea, K.; Kozlener, E.; Frenkel, A.; Israel, O.; Fogelman, I.; Kagna, O. Prospective comparison of whole-body bone SPECT and sodium 18F-fluoride PET in the detection of bone metastases from breast cancer. Nucl. Med. Commun. 2016, 37, 1160–1168. [Google Scholar] [CrossRef]
- Haraldsen, A.; Bluhme, H.; Røhl, L.; Pedersen, E.M.; Jensen, A.B.; Hansen, E.B.; Nellemann, H.; Rasmussen, F.; Morsing, A. Single photon emission computed tomography (SPECT) and SPECT/low-dose computerized tomography did not increase sensitivity or specificity compared to planar bone scintigraphy for detection of bone metastases in advanced breast cancer. Clin. Physiol. Funct. Imaging 2016, 36, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Caglar, M.; Kupik, O.; Karabulut, E.; Høilund-Carlsen, P.F. Detection of bone metastases in breast cancer patients in the PET/CT era: Do we still need the bone scan? Rev. Esp. Med. Nucl. Imagen Mol. 2016, 35, 3–11. [Google Scholar]
- Catalano, O.A.; Nicolai, E.; Rosen, B.R.; Luongo, A.; Catalano, M.; Iannace, C.; Guimaraes, A.; Vangel, M.G.; Mahmood, U.; Soricelli, A.; et al. Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients. Br. J. Cancer 2015, 112, 1452–1460. [Google Scholar] [CrossRef]
- Yoon, S.H.; Kim, K.S.; Kang, S.Y.; Song, H.S.; Jo, K.S.; Choi, B.H.; Lee, S.J.; Yoon, J.K.; An, Y.S. Usefulness of 18F-fluoride PET/CT in Breast Cancer Patients with Osteosclerotic Bone Metastases. Nucl. Med. Mol Imaging 2013, 47, 27–35. [Google Scholar] [CrossRef]
- Piccardo, A.; Altrinetti, V.; Bacigalupo, L.; Puntoni, M.; Biscaldi, E.; Gozza, A.; Cabria, M.; Iacozzi, M.; Pasa, A.; Morbelli, S.; et al. Detection of metastatic bone lesions in breast cancer patients: Fused 18F-Fluoride-PET/MDCT has higher accuracy than, M.D.C.T. Preliminary experience. Eur. J. Radiol. 2012, 81, 2632–2638. [Google Scholar] [CrossRef]
- Balci, T.A.; Koc, Z.P.; Komek, H. Bone scan or 18F-Fluorodeoxyglucose positron emission tomography/computed tomography; Which modality better shows bone metastases of breast cancer? Breast Care 2012, 7, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Hahn, S.; Heusner, T.; Kümmel, S.; Köninger, A.; Nagarajah, J.; Müller, S.; Boy, C.; Forsting, M.; Bockisch, A.; Antoch, G.; et al. Comparison of FDG-PET/CT and bone scintigraphy for detection of bone metastases in breast cancer. Acta Radiol. 2011, 52, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Tateishi, U.; Morita, S.; Taguri, M.; Shizukuishi, K.; Minamimoto, R.; Kawaguchi, M.; Murano, T.; Terauchi, T.; Inoue, T.; Kim, E.E. A meta-analysis of 18F-Fluoride positron emission tomography for assessment of metastatic bone tumor. Ann. Nucl. Med. 2010, 24, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Solomayer, E.F.; Diel, I.J.; Meyberg, G.C.; Gollan, C.; Bastert, G. Metastatic breast cancer: Clinical course, prognosis and therapy related to the first site of metastasis. Breast Cancer Res. Treat. 2000, 59, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Cheran, S.K.; Herndon, I.I.J.E.; Patz, E.F., Jr. Comparison of whole-body FDG-PET to bone scan for detection of bone metastases in patients with a new diagnosis of lung cancer. Lung Cancer 2004, 44, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Even-Sapir, E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J. Nucl. Med. 2005, 46, 1356–1367. [Google Scholar]
- Bar, R.; Przewloka, K.; Karry, R.; Frenkel, A.; Golz, A.; Keidar, Z. Half-time SPECT acquisition with resolution recovery for Tc-MIBI SPECT imaging in the assessment of hyperparathyroidism. Mol. Imaging Biol. 2012, 14, 647–651. [Google Scholar] [CrossRef]
- Schiepers, C.; Nuyts, J.; Bormans, G.; Dequeker, J.; Bouillon, R.; Mortelmans, L.; Verbruggen, A.; De Roo, M. Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride, P.E.T. J. Nucl. Med. 1997, 38, 1970–1976. [Google Scholar]
- Cook, G.J.; Fogelman, I. The role of positron emission tomography in the management of bone metastases. Cancer 2000, 88 (Suppl. S12), 2927–2933. [Google Scholar] [CrossRef]
- Clavo, A.C.; Brown, R.S.; Wahl, R.L. Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J. Nucl. Med. 1995, 36, 1625–1632. [Google Scholar]
- Kato, H.; Miyazaki, T.; Nakajima, M.; Takita, J.; Kimura, H.; Faried, A.; Sohda, M.; Fukai, Y.; Masuda, N.; Fukuchi, M.; et al. Comparison between whole-body positron emission tomography and bone scintigraphy in evaluating bony metastases of esophageal carcinomas. Anticancer Res. 2005, 25, 4439–4444. [Google Scholar]
- Shie, P.; Cardarelli, R.; Brandon, D.; Erdman, W.; Abdulrahim, N. Meta-analysis: Comparison of F-18 Fluorodeoxyglucose-positron emission tomography and bone scintigraphy in the detection of bone metastases in patients with breast cancer. Clin. Nucl. Med. 2008, 33, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.L.; Liu, T.; Wang, X.M.; Xu, Y.; Deng, S.M. Diagnosis of bone metastases: A meta-analysis comparing ¹⁸FDG PET, CT, MRI and bone scintigraphy. Eur. Radiol. 2011, 21, 2604–2617. [Google Scholar] [CrossRef] [PubMed]
- Gnant, M.; Mlineritsch, B.; Schippinger, W.; Luschin-Ebengreuth, G.; Pöstlberger, S.; Menzel, C.; Jakesz, R.; Seifert, M.; Hubalek, M.; Bjelic-Radisic, V.; et al. Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N. Engl. J. Med. 2009, 360, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Sonni, I.; Minamimoto, R.; Baratto, L.; Iagaru, A. Response to: Letter to the Editors: Re: Simultaneous PET/MRI in the Evaluation of Breast and Prostate Cancer Using Combined Na [18F] F and [18F] FDG: A Focus on Skeletal Lesions. Mol. Imaging Biol. 2020, 22, 221–222. [Google Scholar] [CrossRef]
- Van den Wyngaert, T.; Strobel, K.; Kampen, W.U.; Kuwert, T.; van der Bruggen, W.; Mohan, H.K.; Gnanasegaran, G.; Delgado-Bolton, R.; Weber, W.A.; Beheshti, M.; et al. The EANM practice guidelines for bone scintigraphy. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1723–1738. [Google Scholar] [CrossRef] [PubMed]
- Dickson, J.C.; Armstrong, I.S.; Gabiña, P.M.; Denis-Bacelar, A.M.; Krizsan, A.K.; Gear, J.M.; Van den Wyngaert, T.; de Geus-Oei, L.F.; Herrmann, K. KEANM practice guideline for quantitative SPECT-CT. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 980–995. [Google Scholar] [CrossRef]
- Rundo, L.; Stefano, A.; Militello, C.; Russo GSabini, M.G.; D’Arrigo, C.; Marletta, F.; Ippolito, M.; Mauri, G.; Vitabile, S.; Gilardi, M.C. A Fully Automatic Approach for Multimodal PET and MR Image Segmentation in Gamma Knife Treatment Planning. Comput. Methods Programs Biomed. 2017, 144, 77–96. [Google Scholar] [CrossRef]
- Fu, X.; Bi, L.; Kumar, A.; Fulham, M.; Kim, J. Multimodal spatial attention module for targeting multimodal PET-CT lung tumor segmentation. IEEE J. Biomed. Health Inform. 2021, 25, 3507–3516. [Google Scholar] [CrossRef]
- Andrade-Miranda, G.; Jaouen, V.; Tankyevych, O.; Cheze Le Rest, C.; Visvikis, D.; Conze, P.H. Multi-modal medical Transformers: A meta-analysis for medical image segmentation in oncology. Comput. Med. Imaging Graph. 2023, 110, 102308. [Google Scholar] [CrossRef]
First Author/Year of Publication | Country | Sample Size | Age Mean (Min–Max) in Years | Study Type | Test Type | PET Device Model | BS Device Model |
---|---|---|---|---|---|---|---|
Bruckmann et al. [20]/2021 | Germany | 154 | NR | Prospective | [18F]FDG PET/MRI [99mTc]Tc-HDP BS (Planar) | NR | Symbia S, Siemens Healthineers, Germany |
Hansen et al. [21]/2021 | Denmark | 18 | 61.5 (38–76) | Prospective | [18F]FDG PET/CT [99mTc]Tc-DPD BS (Planar) | Philips Medical, Surrey, UK | GE Healthcare Systems, Chicago, IL, USA |
Abd-Elkader et al. [22]/2020 | Egypt | 71 | 54.7 (30–79) | Retrospective | [18F]FDG PET [18F]FDG PET/CT | Gemini, Philips Medical Systems, Netherlands | - |
Rager et al. [23]/2018 | Switzerland | 25 | NR | Retrospective | [18F]FDG PET/CT | Biograph 16-slice PET/CT scanner, Siemens Healthcare, Erlangen, Germany | - |
Capitanio et al. [24]/2016 | Italy | 45 | 61 | Prospective | [18F]FDG PET/CT Na[18F]F PET/CT | (1) Siemens Medical Solutions, Knoxville TN, USA (2) GE Medical Systems, Milwaukee, WI, USA | - |
Abikhzer et al. [25]/2016 | Israel | 41 | 58 (30–75) | Prospective | Na[18F]F PET/CT [99mTc]Tc-MDP BS (SPECT) | GE Healthcare, Waukesha, Wisconsin, USA | GE Healthcare, Waukesha, Wisconsin, USA |
Haraldsen et al. [26]/2014 | Denmark | 76 | 61.7 (29–89) | Prospective | [99mTc]Tc-DPD BS (Planar) [99mTc]Tc-DPD BS (SPECT) | - | Philips Healthcare, Eindhoven, Netherlands |
Caglar et al. [27]/2015 | Turkey | 150 | 52 (27–85) | Retrospective | [18F]FDG PET/CT [99mTc]Tc-MDP BS (Planar) | GE Medical Systems, Waukesha, WI, USA | Infinia GP3, GE Healthcare, Milwaukee, WI, USA |
Catalano et al. [28]/2015 | Italy | 109 | 58.1 | Retrospective | [18F]FDG PET/CT [18F]FDG PET/MRI | Gemini TF; Philips, Best, Netherlands Siemens Healthcare, Erlangen, Germany | - |
Yoon et al. [29]/2013 | Korea | 9 | 55.6 | Prospective | Na[18F]F PET/CT | GE Healthcare, USA | - |
Piccardo et al. [30]/2012 | Italy | 32 | 60 | Retrospective | Na[18F]F PET/CT | General Electric Medical Systems, Milwaukee, WI, USA | - |
Balci et al. [31]/2012 | Turkey | 162 | 50.6 | Retrospective | [18F]FDG PET/CT [99mTc]Tc-MDP BS (Planar) | Siemens AG, Munich, Germany | GE Healthcare Israel Ltd., Tirat Hacarmel, Israel |
Hahn et al. [32]/2011 | Germany | 29 | 58 (35–78) | Retrospective | [18F]FDG PET/CT [99mTc]Tc-MDP BS (Planar) | Siemens Molecular Imaging, Hoffman Estates, IL, USA | Symbia S Siemens, Erlangen, Germany |
First Author/Year of Publication | Test Type | Injected Activity (MBq or MBq/kg) | Waiting Time for Imaging | Bed Positions | Time per Bed Position | Most Frequent Bone Metastases | Follow-Up Time | Most Frequent Sites of Bone Metastases |
---|---|---|---|---|---|---|---|---|
Bruckmann et al. [20]/2021 | [18F]FDG PET/MRI | 254.4 MBq | 64 min | 3–5 | 3 min | Osteolytic | 3.8 ± 1.3 months | Vertebrae > Pelvic > Limbs > Ribs |
[99mTc]Tc-HDP BS | 700 MBq | 20–35 min | - | - | Osteolytic | |||
Hansen et al. [21]/2021 | [18F]FDG PET/CT | 4 MBq/kg | 210 min | 7–9 | (2.5–3.5) min | Osteolytic | NR | NR |
[99mTc]Tc-DPD BS | 700 MBq | 240 min | - | - | Osteolytic | |||
Abd-Elkader et al. [22]/2020 | [18F]FDG PET | 2.43–4.59 MBq/kg | 45 min | 8 | 2.5 min | Osteolytic | NR | NR |
[18F]FDG PET/CT | 2.43–4.59 MBq/kg | 45 min | 8 | 2.5 min | Osteolytic | |||
Rager et al. [23]/2018 | [18F]FDG PET/CT | 370 MBq | 60 min | 7–9 | 3 min | NR | 21 months | Vertebrae > Ribs > Pelvic > Sacrum > Humerus > Clavicle, Sternum > Cranium, Femur > Clavicle |
Capitanio et al. [24]/2016 | [18F]FDG PET/CT | NR | NR | NR | NR | Osteolytic | 12 months | Ribs > Spine |
Na[18F]F PET/CT | NR | NR | NR | NR | Osteosclerotic | |||
Abikhzer et al. [25]/2016 | Na[18F]F PET/CT | 333–555 MBq | 60 min | 9 | 2.5 min | NR | 33 months | Pelvic > Thoracic > Lumbar spine > Ribs > Cervical |
[99mTc]Tc-MDP BS (SPECT) | 925 MBq | 120 min | - | - | NR | |||
Haraldsen et al. [26]/2014 | [99mTc]Tc-DPD BS (Planar) | 750 MBq | 180 min | - | - | NR | NR | NR |
[99mTc]Tc-DPD BS (SPECT) | 750 MBq | 180 min | - | - | NR | |||
Caglar et al. [27]/2015 | [18F]FDG PET/CT | 259–370 MBq | 60 min | NR | 3 min | NR | 22 months | Vertebrae > Pelvic > Ribs > Sternum, Clavicles, Scapula > Extremities > Skull |
[99mTc]Tc-MDP BS (Planar) | 740 MBq | NR | - | - | NR | |||
Catalano et al. [28]/2015 | [18F]FDG PET/CT | 370–400 MBq | 60 min | 5–7 | 1.5 min | Osteolytic | 347–621 days | Pelvic > Vertebrae > Sternum > Ribs > Appendicular |
[18F]FDG PET/MRI | 370–400 MBq | 120 min | 5–6 | 4 min | Osteolytic | |||
Yoon et al. [29]/2013 | Na[18F]F PET/CT | 370 MBq | 60 min | 7–8 | 3 min | Osteosclerotic | 14.3 ± 7.6 months | Vertebrae > Pelvic > Thoracic > Extremities |
Piccardo et al. [30]/2012 | Na[18F]F PET/CT | 370 MBq | 60 min | 10–12 | 3 min | NR | 12 months | Spine > Thorax > Pelvic > Extremities > Skull |
Balci et al. [31]/ 2012 | [18F]FDG PET/CT | 370–550 MBq | 60 min | NR | NR | NR | NR | NR |
[99mTc]Tc-MDP BS (Planar) | 550–1000 MBq | 120–180 min | - | - | NR | |||
Hahn et al. [32]/2011 | [18F]FDG PET/CT | 184–340 MBq | 60 min | NR | NR | Osteolytic | 170–425 days | NR |
[99mTc]Tc-MDP BS (Planar) | NR | NR | - | - | Osteolytic |
First Author | Reference Standard | Test Type | Per Patient | Per Lesion | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TP | FP | FN | TN | TP | FP | FN | TN | |||
Bruckmann et al. [20] | CT or MRI scan | [18F]FDG PET/MRI [99mTc]Tc-HDP BS (Planar) | 7 2 | 0 1 | 0 5 | 7 6 | 41 15 | 0 - | 0 28 | 41 - |
Abd-Elkader et al. [22] | MRI, and bone scan | [18F]FDG-PET [18F]FDG PET/CT | 9 71 | 62 0 | 0 0 | 0 71 | 1 6 | 65 65 | 0 0 | 5 0 |
Rager et al. [23] | CT or MRI scan (PET, SPECT/CT, bone scan in some cases) | [18F]FDG PET/CT | 10 | 0 | 2 | 13 | 43 | 0 | 48 | 18 |
Capitanio et al. [24] | Physical examination, blood tests, CT, MRI, [18F]FDG-PET/CT, X-ray, and bone scan | [18F]FDG PET/CT Na[18F]F PET/CT | 34 41 | 1 11 | 11 4 | 44 34 | 160 219 | 9 202 | 84 25 | 235 42 |
Abikhzer et al. [25] | CT | Na[18F]F PET/CT [99mTc]Tc-MDP BS (SPECT) | 21 19 | 3 1 | 0 2 | 17 19 | 76 50 | 9 6 | 195 198 | 4 30 |
Haraldsen et al. [26] | MRI | [99mTc]Tc-DPD BS (Planar) [99mTc]Tc-DPD BS (SPECT) | 33 33 | 14 11 | 5 5 | 24 27 | - - | - - | - - | - - |
Catalano et al. [28] | Bone scan, PET/CT, and PET/MRI | [18F]FDG PET/MRI | 24 | 0 | 1 | 25 | 135 | 3 | 6 | 138 |
Piccardo et al. [30] | Physical examination, blood tests, CT, MRI, [18F]FDG-PET/CT, X-ray, and bone scan | Na[18F]F PET/CT | 27 | 0 | 0 | 27 | - | - | - | - |
Yoon et al. [29] | Blood tests and imaging | Na[18F]F PET/CT | 9 | 5 | 0 | 4 | 49 | 36 | 3 | 31 |
Balci et al. [31] | [18F]FDG PET/CT and bone scan | [18F]FDG PET/CT [99mTc]Tc-MDP BS (Planar) | 47 40 | 0 0 | 2 9 | 49 49 | - - | - - | - - | - - |
Hahn et al. [32] | [18F]FDG PET/CT, MRI, and bone scan | [18F]FDG PET/CT [99mTc]Tc-MDP BS (Planar) | 28 22 | 2 1 | 1 7 | 27 28 | 67 53 | 54 56 | 3 17 | 5 3 |
Test Type | LR | DOR | |
---|---|---|---|
LR+ | LR− | ||
[99mTc]Tc-diphosphonates bone scan | 10.2 (2.2–47.9) | 0.18 (0.06–0.56) | 62.6 (10.4–375) |
[99mTc]Tc-diphosphonates bone scan (planar only) | 16.2 (0.2–1095) | 0.20 (0.04–1.02) | 80.3 (3.8–1707) |
[18F]FDG PET/CT | 28.2 (11.4–69.9) | 0.08 (0.02–0.29) | 510.7 (102.5–2547) |
Na[18F]F PET/CT | 4.2 (1.6–11.3) | 0.09 (0.04–0.20) | 84.7(12.7–564) |
Variables | [99mTc]Tc-Diphosphonates BS | ([18F]FDG-Na[18F]F) PET/CT | ||||||
---|---|---|---|---|---|---|---|---|
Coefficient | SD | Z | P > Z | Coefficient | SD | Z | P > Z | |
Publication year | 0.0060353 | 0.021 | 0.28 | 0.777 | 0 | 0.011 | 0.00 | 1.00 |
Sample size | 0.0012897 | 0.001 | 0.97 | 0.331 | 0 | 0.001 | 0.00 | 1.00 |
Type of study | −0.110445 | 0.143 | −0.77 | 0.442 | 0 | 0.046 | 0.00 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamanian, M.; Treglia, G.; Abedi, I. Diagnostic Accuracy of PET with Different Radiotracers versus Bone Scintigraphy for Detecting Bone Metastases of Breast Cancer: A Systematic Review and a Meta-Analysis. J. Imaging 2023, 9, 274. https://doi.org/10.3390/jimaging9120274
Zamanian M, Treglia G, Abedi I. Diagnostic Accuracy of PET with Different Radiotracers versus Bone Scintigraphy for Detecting Bone Metastases of Breast Cancer: A Systematic Review and a Meta-Analysis. Journal of Imaging. 2023; 9(12):274. https://doi.org/10.3390/jimaging9120274
Chicago/Turabian StyleZamanian, Maryam, Giorgio Treglia, and Iraj Abedi. 2023. "Diagnostic Accuracy of PET with Different Radiotracers versus Bone Scintigraphy for Detecting Bone Metastases of Breast Cancer: A Systematic Review and a Meta-Analysis" Journal of Imaging 9, no. 12: 274. https://doi.org/10.3390/jimaging9120274
APA StyleZamanian, M., Treglia, G., & Abedi, I. (2023). Diagnostic Accuracy of PET with Different Radiotracers versus Bone Scintigraphy for Detecting Bone Metastases of Breast Cancer: A Systematic Review and a Meta-Analysis. Journal of Imaging, 9(12), 274. https://doi.org/10.3390/jimaging9120274