Impact of Wavelet Kernels on Predictive Capability of Radiomic Features: A Case Study on COVID-19 Chest X-ray Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Characteristics and Lung Delineation
2.2. Wavelet Transform
2.3. Radiomic Features Extraction
2.4. Radiomic Features Preprocessing
- Near-zero variance analysis: aimed at removing features with low information content. This operation considered a variance cutoff of 0.01: features with a variance less than or equal to this threshold were discarded;
- Correlation analysis: aimed at removing highly correlated features, by means of the Spearman correlation for pairwise feature comparison. For each set of N correlated features, N-1 were removed. Specifically, the correlation matrix was first calculated, and then it was analyzed according to the following decomposition priority: , , , and . As values larger than 0.80 are commonly used for Spearman correlation [46,47,48,49], and a threshold of 0.85 was chosen.
- Statistical analysis: the Mann–Whitney U test was used to test the difference between mild and severe distribution, computing the p-value for each features selected from the previous step. The p-value threshold was set to 0.05.
2.5. Features Selection and Model Training
- RF was trained using the bootstrap technique with 100 estimators and the Gini criterion.
- SVM was trained setting the regularization parameter , considering the radial basis function as kernel, the coefficient , the shrinking method [51], and the probability estimates to enable the AUROC computation. In addition, for SVM, the features were standardized before the training.
- XGB was trained using 100 estimators, , and ‘gain’ as the importance type. In addition, the binary logistic loss function was used to model the binary classification problem, considering a learning rate of .
3. Results
3.1. Features Preprocessing
3.2. Features Selection
3.3. Predictive Model Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AUROC | Area Under Receiver Operating Characteristic |
Bior | Biorthogonal Wavelet Kernel |
Coif | Coiflets Wavelet Kernel |
CT | Computed Tomography |
CV | Cross Validation |
CXR | Chest X-ray |
Db | Daubechies Wavelet Kernel |
Dmey | Discrete Meyer Wavelet kernel |
DPI | Dots Per Inch |
DWT | Discrete Wavelet Transform |
FO | First Order |
GLCM | Gray Level Co-occurrence Matrix |
GLDM | Gray Level Dependence Matrix |
GLRLM | Gray Level Run Length Matrix |
GLSZM | Gray Level Size Zone Matrix |
Haar | Haar Wavelet Kernel |
LoG | Laplacian of Gaussian |
MRI | Magnetic Resonance Imaging |
NGTDM | Neighboring Gray Tone Difference Matrix |
Rbio | Reverse Biorthogonal Wavelet Lernel |
RF | Random Forest |
ROI | Region Of Interest |
SVM | Support Vector Machine |
Sym | Symlets Wavelet kernel |
XGB | XGBoost |
Appendix A
Wavelet | Radiomic | Feature | Wavelet Kernel | ||||||
---|---|---|---|---|---|---|---|---|---|
Decomposition | Category | Name | Bior1.5 | Coif1 | Db3 | Dmey | Haar | Rbio1.5 | Sym2 |
LL | FO | 10Percentile | X | X | X | X | X | X | |
LL | FO | 90Percentile | X | X | X | X | X | ||
LL | FO | Kurtosis | X | X | X | X | X | ||
LL | FO | Minimum | X | X | X | ||||
LL | FO | Range | X | X | X | X | X | X | X |
LL | FO | Skewness | X | X | X | X | X | X | X |
LL | GLRLM | GrayLevelNonUniformity | X | X | |||||
LL | GLSZM | HighGrayLevelZoneEmphasis | X | X | X | X | |||
LL | GLSZM | SmallAreaHighGrayLevelEmphasis | X | X | X | X | X | ||
LH | FO | Energy | X | X | X | X | |||
LH | FO | Kurtosis | X | ||||||
LH | FO | Skewness | X | X | X | ||||
LH | GLRLM | LongRunEmphasis | X | X | |||||
LH | GLSZM | GrayLevelNonUniformity | X | ||||||
LH | GLSZM | HighGrayLevelZoneEmphasis | X | X | |||||
LH | GLSZM | LargeAreaEmphasis | X | ||||||
LH | GLSZM | SizeZoneNonUniformity | |||||||
LH | GLSZM | SmallAreaHighGrayLevelEmphasis | |||||||
LH | GLSZM | ZoneEntropy | X | X | X | ||||
LH | GLDM | DependenceNonUniformity | X | X | X | X | X | ||
LH | GLDM | DependenceVariance | X | ||||||
LH | GLDM | LargeDependenceEmphasis | X | X | X | X | |||
LH | GLDM | LargeDependenceHighGrayLevelEmphasis | |||||||
HL | FO | Skewness | X | X | |||||
HL | FO | Maximum | X | X | |||||
HL | GLRLM | LongRunEmphasis | X | ||||||
HL | GLSZM | HighGrayLevelZoneEmphasis | X | ||||||
HL | GLSZM | LargeAreaEmphasis | X | X | |||||
HL | GLSZM | SizeZoneNonUniformity | X | ||||||
HL | GLSZM | SmallAreaHighGrayLevelEmphasis | X | ||||||
HL | GLSZM | ZoneEntropy | X | X | X | X | X | X | |
HL | GLDM | DependenceVariance | X | ||||||
HH | FO | Minimum | X | X | |||||
HH | FO | Skewness | |||||||
HH | FO | Range | X | ||||||
HH | GLRLM | LongRunEmphasis | X | ||||||
HH | GLRLM | LongRunHighGrayLevelEmphasis | X | ||||||
HH | GLSZM | GrayLevelNonUniformity | X | X | |||||
HH | GLSZM | HighGrayLevelZoneEmphasis | X | X | |||||
HH | GLSZM | SizeZoneNonUniformity | X | X | |||||
HH | GLSZM | ZoneEntropy | X | X | |||||
HH | GLDM | LargeDependenceHighGrayLevelEmphasis | X | ||||||
TOTAL SELECTED FEATURES | 17 | 15 | 10 | 14 | 19 | 13 | 16 |
Wavelet Decomposition | Radiomic Category | Feature Name | Wavelet Kernel | ||||||
---|---|---|---|---|---|---|---|---|---|
Bior1.5 | Coif1 | Db3 | Dmey | Haar | Rbio1.5 | Sym2 | |||
LL | FO | 10Percentile | X | X | X | X | |||
LL | FO | 90Percentile | X | X | |||||
LL | FO | Kurtosis | X | X | X | X | |||
LL | FO | Minimum | X | X | X | ||||
LL | FO | Range | X | X | X | X | |||
LL | FO | Skewness | X | X | X | X | X | X | X |
LL | GLRLM | GrayLevelNonUniformity | X | ||||||
LL | GLSZM | HighGrayLevelZoneEmphasis | X | X | X | X | X | X | |
LL | GLSZM | SmallAreaHighGrayLevelEmphasis | X | X | X | ||||
LH | FO | Energy | X | ||||||
LH | FO | Kurtosis | X | X | |||||
LH | FO | Skewness | X | X | X | ||||
LH | GLRLM | LongRunEmphasis | X | X | |||||
LH | GLSZM | GrayLevelNonUniformity | X | ||||||
LH | GLSZM | HighGrayLevelZoneEmphasis | |||||||
LH | GLSZM | LargeAreaEmphasis | X | ||||||
LH | GLSZM | SizeZoneNonUniformity | |||||||
LH | GLSZM | SmallAreaHighGrayLevelEmphasis | |||||||
LH | GLSZM | ZoneEntropy | |||||||
LH | GLDM | DependenceNonUniformity | X | ||||||
LH | GLDM | DependenceVariance | X | X | |||||
LH | GLDM | LargeDependenceEmphasis | X | X | X | X | |||
LH | GLDM | LargeDependenceHighGrayLevelEmphasis | X | ||||||
HL | FO | Kurtosis | X | X | |||||
HL | FO | Skewness | X | X | |||||
HL | FO | Maximum | X | X | |||||
HL | GLRLM | LongRunEmphasis | X | X | |||||
HL | GLSZM | HighGrayLevelZoneEmphasis | X | ||||||
HL | GLSZM | LargeAreaEmphasis | X | X | |||||
HL | GLSZM | SizeZoneNonUniformity | X | ||||||
HL | GLSZM | SmallAreaHighGrayLevelEmphasis | |||||||
HL | GLSZM | ZoneEntropy | X | X | X | X | |||
HL | GLDM | DependenceVariance | X | ||||||
HH | FO | Skewness | X | ||||||
HH | FO | Range | X | ||||||
HH | GLRLM | LongRunEmphasis | X | ||||||
HH | GLRLM | LongRunHighGrayLevelEmphasis | X | X | |||||
HH | GLSZM | GrayLevelNonUniformity | X | X | |||||
HH | GLSZM | HighGrayLevelZoneEmphasis | X | X | |||||
HH | GLSZM | SizeZoneNonUniformity | X | ||||||
HH | GLSZM | ZoneEntropy | X | X | |||||
HH | GLDM | LargeDependenceHighGrayLevelEmphasis | X | ||||||
TOTAL SELECTED FEATURES | 14 | 9 | 10 | 15 | 15 | 13 | 8 |
Wavelet Decomposition | Radiomic Category | Feature Name | Wavelet Kernel | ||||||
---|---|---|---|---|---|---|---|---|---|
Bior1.5 | Coif1 | Db3 | Dmey | Haar | Rbio1.5 | Sym2 | |||
LL | FO | 10Percentile | X | X | X | X | |||
LL | FO | 90Percentile | X | X | X | ||||
LL | FO | Kurtosis | X | X | X | X | X | X | |
LL | FO | Minimum | X | X | X | X | X | X | |
LL | FO | Range | X | X | X | ||||
LL | FO | Skewness | X | X | X | X | X | X | X |
LL | GLRLM | GrayLevelNonUniformity | X | X | |||||
LL | GLSZM | HighGrayLevelZoneEmphasis | X | X | X | X | X | ||
LL | GLSZM | SmallAreaHighGrayLevelEmphasis | X | X | X | ||||
LH | FO | Energy | X | ||||||
LH | FO | Kurtosis | X | X | |||||
LH | FO | Skewness | X | X | X | ||||
LH | GLRLM | LongRunEmphasis | X | ||||||
LH | GLSZM | GrayLevelNonUniformity | |||||||
LH | GLSZM | HighGrayLevelZoneEmphasis | X | X | X | ||||
LH | GLSZM | LargeAreaEmphasis | |||||||
LH | GLSZM | SizeZoneNonUniformity | |||||||
LH | GLSZM | SmallAreaHighGrayLevelEmphasis | |||||||
LH | GLSZM | ZoneEntropy | X | X | |||||
LH | GLDM | DependenceNonUniformity | X | X | |||||
LH | GLDM | DependenceVariance | X | X | |||||
LH | GLDM | LargeDependenceEmphasis | X | X | X | X | X | X | |
LH | GLDM | LargeDependenceHighGrayLevelEmphasis | |||||||
HL | FO | Kurtosis | X | X | |||||
HL | FO | Skewness | X | X | |||||
HL | FO | Maximum | X | X | |||||
HL | GLRLM | LongRunEmphasis | |||||||
HL | GLSZM | HighGrayLevelZoneEmphasis | X | ||||||
HL | GLSZM | LargeAreaEmphasis | X | ||||||
HL | GLSZM | SizeZoneNonUniformity | X | ||||||
HL | GLSZM | SmallAreaHighGrayLevelEmphasis | X | ||||||
HL | GLSZM | ZoneEntropy | X | X | X | X | X | X | |
HL | GLDM | DependenceVariance | |||||||
HH | FO | Minimum | X | X | |||||
HH | FO | Skewness | X | ||||||
HH | FO | Range | X | ||||||
HH | GLRLM | LongRunEmphasis | X | ||||||
HH | GLRLM | LongRunHighGrayLevelEmphasis | X | X | |||||
HH | GLSZM | GrayLevelNonUniformity | X | X | |||||
HH | GLSZM | HighGrayLevelZoneEmphasis | X | ||||||
HH | GLSZM | SizeZoneNonUniformity | X | ||||||
HH | GLSZM | ZoneEntropy | X | X | X | ||||
HH | GLDM | LargeDependenceHighGrayLevelEmphasis | |||||||
TOTAL SELECTED FEATURES | 15 | 13 | 13 | 12 | 16 | 10 | 12 |
References
- Gillies, R.; Kinahan, P.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Papanikolaou, N.; Matos, C.; Koh, D. How to develop a meaningful radiomic signature for clinical use in oncologic patients. Cancer Imaging 2020, 20, 33. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [Green Version]
- Scalco, E.; Belfatto, A.; Mastropietro, A.; Rancati, T.; Avuzzi, B.; Messina, A.; Valdagni, R.; Rizzo, G. T2w-MRI signal normalization affects radiomics features reproducibility. Med. Phys. 2020, 47, 1680–1691. [Google Scholar] [CrossRef] [PubMed]
- Militello, C.; Rundo, L.; Dimarco, M.; Orlando, A.; D’Angelo, I.; Conti, V.; Bartolotta, T.V. Robustness Analysis of DCE-MRI-Derived Radiomic Features in Breast Masses: Assessing Quantization Levels and Segmentation Agreement. Appl. Sci. 2022, 12, 5512. [Google Scholar] [CrossRef]
- Saltybaeva, N.; Tanadini-Lang, S.; Vuong, D.; Burgermeister, S.; Mayinger, M.; Bink, A.; Andratschke, N.; Guckenberger, M.; Bogowicz, M. Robustness of radiomic features in magnetic resonance imaging for patients with glioblastoma: Multi-center study. Phys. Imaging Radiat. Oncol. 2022, 22, 131–136. [Google Scholar] [CrossRef]
- Jing, R.; Wang, J.; Li, J.; Wang, X.; Li, B.; Xue, F.; Shao, G.; Xue, H. A wavelet features derived radiomics nomogram for prediction of malignant and benign early-stage lung nodules. Sci. Rep. 2021, 11, 22330. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Lu, J.; Gao, C.; Zeng, J.; Zhou, C.; Lai, X.; Cai, W.; Xu, M. Predicting the response to neoadjuvant chemotherapy for breast cancer: Wavelet transforming radiomics in MRI. BMC Cancer 2020, 20, 100. [Google Scholar] [CrossRef] [Green Version]
- Hou, Z.; Yang, Y.; Li, S.; Yan, J.; Ren, W.; Liu, J.; Wang, K.; Liu, B.; Wan, S. Radiomic analysis using contrast-enhanced CT: Predict treatment response to pulsed low dose rate radiotherapy in gastric carcinoma with abdominal cavity metastasis. Quant. Imaging Med. Surg. 2018, 8, 410. [Google Scholar] [CrossRef] [PubMed]
- Kotowski, K.; Kucharski, D.; Machura, B.; Adamski, S.; Becker, B.G.; Krason, A.; Zarudzki, L.; Tessier, J.; Nalepa, J. Detecting liver cirrhosis in computed tomography scans using clinically-inspired and radiomic features. Comput. Biol. Med. 2022, 152, 106378. [Google Scholar] [CrossRef]
- Bijari, S.; Jahanbakhshi, A.; Hajishafiezahramini, P.; Abdolmaleki, P. Differentiating Glioblastoma Multiforme from Brain Metastases Using Multidimensional Radiomics Features Derived from MRI and Multiple Machine Learning Models. BioMed Res. Int. 2022, 2022, 2016006. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Yin, J.; Han, P.; Chen, N.; Kang, Q.; Qiu, Y.; Li, Y.; Lao, Q.; Sun, M.; Yang, D.; et al. Wavelet transformation can enhance computed tomography texture features: A multicenter radiomics study for grade assessment of COVID-19 pulmonary lesions. Quant. Imaging Med. Surg. 2022, 12, 4758–4770. [Google Scholar] [CrossRef] [PubMed]
- Keogh, E.; Mueen, A. Curse of Dimensionality; Springer: New York, NY, USA, 2017; pp. 314–315. [Google Scholar] [CrossRef]
- Soufi, M.; Arimura, H.; Nagami, N. Identification of optimal mother wavelets in survival prediction of lung cancer patients using wavelet decomposition-based radiomic features. Med. Phys. 2018, 45, 5116–5128. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Huang, Y.; Huang, X.; Wu, X.; Liang, C.; Liu, Z. Effects of different wavelet filters on correlation and diagnostic performance of radiomics features. Zhong Nan Da Xue Xue Bao. Yi Xue Ban = J. Cent. South Univ. Med. Sci. 2019, 44, 244–250. [Google Scholar] [CrossRef]
- Soda, P.; D’Amico, N.C.; Tessadori, J.; Valbusa, G.; Guarrasi, V.; Bortolotto, C.; Akbar, M.U.; Sicilia, R.; Cordelli, E.; Fazzini, D.; et al. AIforCOVID: Predicting the clinical outcomes in patients with COVID-19 applying AI to chest-X-rays. An Italian multicentre study. Med. Image Anal. 2021, 74, 102216. [Google Scholar] [CrossRef]
- Hackathon Website. COVID CXR Hackathon Competition. 2022. Available online: https://ai4covid-hackathon.it/ (accessed on 5 January 2023).
- Ravichandran, D.; Nimmatoori, R.; Gulam Ahamad, M. Mathematical representations of 1D, 2D and 3D wavelet transform for image coding. Int. J. Adv. Comput. Theory Eng. 2016, 5, 20–27. [Google Scholar]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- Al Jumah, A. Denoising of an image using discrete stationary wavelet transform and various thresholding techniques. J. Signal Inf. Process. 2013, 4, 28281. [Google Scholar] [CrossRef] [Green Version]
- Dautov, Ç.P.; Özerdem, M.S. Wavelet transform and signal denoising using Wavelet method. In Proceedings of the 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2–5 May 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Boix, M.; Canto, B. Wavelet Transform application to the compression of images. Math. Comput. Model. 2010, 52, 1265–1270. [Google Scholar] [CrossRef]
- Prasad, P.; Prasad, D.; Rao, G.S. Performance analysis of orthogonal and biorthogonal wavelets for edge detection of X-ray images. Procedia Comput. Sci. 2016, 87, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.; Gommers, R.; Waselewski, F.; Wohlfahrt, K.; O’Leary, A. PyWavelets: A Python package for wavelet analysis. J. Open Source Softw. 2019, 4, 1237. [Google Scholar] [CrossRef]
- Pragada, S.; Sivaswamy, J. Image denoising using matched biorthogonal wavelets. In Proceedings of the 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, Bhubaneswar, India, 16–19 December 2008; pp. 25–32. [Google Scholar] [CrossRef]
- Abidin, Z.Z.; Manaf, M.; Shibhgatullah, A.S. Experimental approach on thresholding using reverse biorthogonal wavelet decomposition for eye image. In Proceedings of the 2013 IEEE International Conference on Signal and Image Processing Applications, Melaka, Malaysia, 8–10 October 2013; pp. 349–353. [Google Scholar] [CrossRef]
- Tilak, T.N.; Krishnakumar, S. Reverse Biorthogonal Spline Wavelets in Undecimated Transform for Image Denoising. Int. J. Comput. Sci. Eng. 2018, 6, 66–72. [Google Scholar] [CrossRef]
- Rohima; Barkah Akbar, M. Wavelet Analysis and Comparison from Coiflet Family on Image Compression. In Proceedings of the 2020 8th International Conference on Cyber and IT Service Management (CITSM), Pangkal, Indonesia, 23–24 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Karim, S.A.A.; Hasan, M.K.; Sulaiman, J.; Janier, J.B.; Ismail, M.T.; Muthuvalu, M.S. Denoising solar radiation data using coiflet wavelets. In Proceedings of the AIP Conference Proceedings, Kuala Lumpur, Malaysia, 3–5 June 2014; American Institute of Physics: College Park, MA, USA, 2014; Volume 1621, pp. 394–401. [Google Scholar] [CrossRef]
- Wahid, K. Low complexity implementation of daubechies wavelets for medical imaging applications. In Discrete Wavelet Transforms-Algorithms and Applications; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Meyer, Y. Wavelets and Operators: Volume 1; Number 37 in Cambridge Studies in Advance Mathematics; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar] [CrossRef]
- Wu, M.T. Wavelet transform based on Meyer algorithm for image edge and blocking artifact reduction. Inf. Sci. 2019, 474, 125–135. [Google Scholar] [CrossRef]
- Porwik, P.; Lisowska, A. The Haar-wavelet transform in digital image processing: Its status and achievements. Mach. Graph. Vis. 2004, 13, 79–98. [Google Scholar] [CrossRef]
- Bhardwaj, J.; Nayak, A. Haar wavelet transform–based optimal Bayesian method for medical image fusion. Med. Biol. Eng. Comput. 2020, 58, 2397–2411. [Google Scholar] [CrossRef] [PubMed]
- Narula, S.; Gupta, S. Image Compression Radiography using HAAR Wavelet Transform. Int. J. Comput. Appl. 2015, 975, 8887. [Google Scholar] [CrossRef]
- Wang, J.; Huang, K. Medical image compression by using three-dimensional wavelet transformation. IEEE Trans. Med. Imaging 1996, 15, 547–554. [Google Scholar] [CrossRef]
- Arfaoui, S.; Mabrouk, A.B.; Cattani, C. Wavelet Analysis: Basic Concepts and Applications; Chapman and Hall/CRC: London, UK, 2021. [Google Scholar] [CrossRef]
- Gao, R.X.; Yan, R. Wavelets: Theory and Applications for Manufacturing; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man, Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Galloway, M.M. Texture analysis using gray level run lengths. Comput. Graph. Image Process. 1975, 4, 172–179. [Google Scholar] [CrossRef]
- Thibault, G.; Angulo, J.; Meyer, F. Advanced Statistical Matrices for Texture Characterization: Application to Cell Classification. IEEE Trans. Biomed. Eng. 2014, 61, 630–637. [Google Scholar] [CrossRef]
- Sun, C.; Wee, W.G. Neighboring gray level dependence matrix for texture classification. Comput. Vision Graph. Image Process. 1983, 23, 341–352. [Google Scholar] [CrossRef]
- Amadasun, M.; King, R. Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 1989, 19, 1264–1274. [Google Scholar] [CrossRef]
- Leger, S.; Zwanenburg, A.; Pilz, K.; Lohaus, F.; Linge, A.; Zöphel, K.; Kotzerke, J.; Schreiber, A.; Tinhofer, I.; Budach, V.; et al. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Sci. Rep. 2017, 7, 13206. [Google Scholar] [CrossRef] [Green Version]
- Niu, Q.; Jiang, X.; Li, Q.; Zheng, Z.; Du, H.; Wu, S.; Zhang, X. Texture features and pharmacokinetic parameters in differentiating benign and malignant breast lesions by dynamic contrast enhanced magnetic resonance imaging. Oncol. Lett. 2018, 16, 4607–4613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oikonomou, E.K.; Williams, M.C.; Kotanidis, C.P.; Desai, M.Y.; Marwan, M.; Antonopoulos, A.S.; Thomas, K.E.; Thomas, S.; Akoumianakis, I.; Fan, L.M.; et al. A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography. Eur. Heart J. 2019, 40, 3529–3543. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Peng, Y.; Liu, W.; Bai, J.; Zheng, J.; Yang, X.; Zhou, L. Radiomics based on multimodal MRI for the differential diagnosis of benign and malignant breast lesions. J. Magn. Reson. Imaging 2020, 52, 596–607. [Google Scholar] [CrossRef] [PubMed]
- Raschka, S. MLxtend: Providing machine learning and data science utilities and extensions to Python’s scientific computing stack. J. Open Source Softw. 2018, 3, 638. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2011, 2, 27. [Google Scholar] [CrossRef]
- Su, J.Q.; Liu, J.S. Linear Combinations of Multiple Diagnostic Markers. J. Am. Stat. Assoc. 1993, 88, 1350–1355. [Google Scholar] [CrossRef]
- Minh, D.; Wang, H.X.; Li, Y.F.; Nguyen, T.N. Explainable artificial intelligence: A comprehensive review. Artif. Intell. Rev. 2022, 55, 3503–3568. [Google Scholar] [CrossRef]
- Combi, C.; Amico, B.; Bellazzi, R.; Holzinger, A.; Moore, J.H.; Zitnik, M.; Holmes, J.H. A manifesto on explainability for artificial intelligence in medicine. Artif. Intell. Med. 2022, 133, 102423. [Google Scholar] [CrossRef] [PubMed]
Wavelet Kernel | Coefficients Number |
---|---|
Bior1.5 | 10 |
Coif1 | 6 |
Db3 | 6 |
Dmey | 62 |
Haar | 2 |
Rbio1.5 | 10 |
Sym2 | 4 |
Wavelet | Radiomic | Feature | Wavelet Kernel | ||||||
---|---|---|---|---|---|---|---|---|---|
Decomposition | Category | Name | Bior1.5 | Coif1 | Db3 | Dmey | Haar | Rbio1.5 | Sym2 |
LL | FO | 10Percentile | X | X | X | X | X | X | X |
LL | FO | 90Percentile | X | X | X | X | X | X | X |
LL | FO | Kurtosis | X | X | X | X | X | X | X |
LL | FO | Minimum | X | X | X | X | X | X | X |
LL | FO | Range | X | X | X | X | X | X | X |
LL | FO | Skewness | X | X | X | X | X | X | X |
LL | GLRLM | GrayLevelNonUniformity | X | X | X | X | X | ||
LL | GLSZM | HighGrayLevelZoneEmphasis | X | X | X | X | X | X | X |
LL | GLSZM | SmallAreaHighGrayLevelEmphasis | X | X | X | X | X | X | |
Decomposition | Category | Name | Bior1.5 | Coif1 | Db3 | Dmey | Haar | Rbio1.5 | Sym2 |
LH | FO | Energy | X | X | X | X | |||
LH | FO | Kurtosis | X | X | |||||
LH | FO | Skewness | X | X | X | X | |||
LH | GLRLM | LongRunEmphasis | X | X | X | ||||
LH | GLSZM | GrayLevelNonUniformity | X | ||||||
LH | GLSZM | HighGrayLevelZoneEmphasis | X | X | X | ||||
LH | GLSZM | LargeAreaEmphasis | X | ||||||
LH | GLSZM | SizeZoneNonUniformity | X | ||||||
LH | GLSZM | SmallAreaHighGrayLevelEmphasis | X | ||||||
LH | GLSZM | ZoneEntropy | X | X | X | X | X | X | |
LH | GLDM | DependenceNonUniformity | X | X | X | X | X | X | X |
LH | GLDM | DependenceVariance | X | X | |||||
LH | GLDM | LargeDependenceEmphasis | X | X | X | X | X | X | X |
LH | GLDM | LargeDependenceHighGrayLevelEmphasis | X | ||||||
HL | FO | Kurtosis | X | X | |||||
HL | FO | Skewness | X | X | |||||
HL | FO | Maximum | X | X | |||||
HL | GLRLM | LongRunEmphasis | X | X | X | ||||
HL | GLSZM | HighGrayLevelZoneEmphasis | X | ||||||
HL | GLSZM | LargeAreaEmphasis | X | X | |||||
HL | GLSZM | SizeZoneNonUniformity | X | ||||||
HL | GLSZM | SmallAreaHighGrayLevelEmphasis | X | ||||||
HL | GLSZM | ZoneEntropy | X | X | X | X | X | X | X |
HL | GLDM | DependenceVariance | X | ||||||
HH | FO | Minimum | X | X | |||||
HH | FO | Skewness | X | ||||||
HH | FO | Range | X | ||||||
HH | GLRLM | LongRunEmphasis | X | ||||||
HH | GLRLM | LongRunHighGrayLevelEmphasis | X | X | |||||
HH | GLSZM | GrayLevelNonUniformity | X | X | X | X | X | ||
HH | GLSZM | HighGrayLevelZoneEmphasis | X | X | |||||
HH | GLSZM | SizeZoneNonUniformity | X | X | |||||
HH | GLSZM | ZoneEntropy | X | X | X | ||||
HH | GLDM | LargeDependenceHighGrayLevelEmphasis | X | ||||||
TOTAL SELECTED FEATURES | 22 | 21 | 17 | 26 | 22 | 17 | 20 |
Wavelet Kernel | Initial Features (After Preprocessing) | Machine Learning Model | ||
---|---|---|---|---|
XGB | SVM | RF | ||
Bior1.5 | 22 | 17 | 14 | 15 |
Coif1 | 21 | 15 | 9 | 13 |
Db3 | 17 | 10 | 10 | 13 |
Dmey | 26 | 14 | 15 | 12 |
Haar | 22 | 19 | 15 | 16 |
Rbio1.5 | 17 | 13 | 13 | 10 |
Sym2 | 20 | 16 | 8 | 12 |
no wavelet | 11 | 8 | 9 | 9 |
Wavelet Kernel | Machine Learning Model | |||||
---|---|---|---|---|---|---|
XGB | SVM | RF | ||||
Train | Test | Train | Test | Train | Test | |
Bior1.5 | 0.604 | |||||
Coif1 | 0.627 | 0.631 | ||||
Db3 | 0.541 | 0.641 | 0.594 | |||
Dmey | 0.555 | 0.578 | 0.592 | |||
Haar | ||||||
Rbio1.5 | 0.586 | 0.606 | 0.600 | |||
Sym2 | ||||||
no wavelet | 0.567 | 0.619 | 0.594 |
Wavelet Kernel | Machine Learning Model | |||||
---|---|---|---|---|---|---|
XGB | SVM | RF | ||||
Train | Test | Train | Test | Train | Test | |
Bior1.5 | 0.588 | |||||
Coif1 | ||||||
Db3 | 0.577 | 0.683 | 0.627 | |||
Dmey | 0.638 | 0.722 | 0.738 | |||
Haar | ||||||
Rbio1.5 | 0.550 | 0.638 | 0.616 | |||
Sym2 | 0.594 | 0.611 | ||||
no wavelet | 0.655 | 0.683 | 0.622 |
Wavelet Kernel | Machine Learning Model | |||||
---|---|---|---|---|---|---|
XGB | SVM | RF | ||||
Train | Test | Train | Test | Train | Test | |
Bior1.5 | ||||||
Coif1 | 0.627 | |||||
Db3 | 0.519 | 0.617 | 0.575 | |||
Dmey | 0.506 | 0.493 | 0.506 | |||
Haar | ||||||
Rbio1.5 | 0.607 | 0.588 | 0.591 | |||
Sym2 | 0.591 | 0.637 | ||||
no wavelet | 0.516 | 0.581 | 0.578 |
Wavelet Kernel | Machine Learning Model | |||||
---|---|---|---|---|---|---|
XGB | SVM | RF | ||||
Train | Test | Train | Test | Train | Test | |
Bior1.5 | ||||||
Coif1 | 0.670 | 0.679 | ||||
Db3 | 0.593 | 0.676 | 0.653 | |||
Dmey | 0.611 | 0.650 | 0.662 | |||
Haar | 0.636 | |||||
Rbio1.5 | 0.623 | 0.649 | 0.649 | |||
Sym2 | ||||||
no wavelet | 0.602 | 0.629 | 0.635 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prinzi, F.; Militello, C.; Conti, V.; Vitabile, S. Impact of Wavelet Kernels on Predictive Capability of Radiomic Features: A Case Study on COVID-19 Chest X-ray Images. J. Imaging 2023, 9, 32. https://doi.org/10.3390/jimaging9020032
Prinzi F, Militello C, Conti V, Vitabile S. Impact of Wavelet Kernels on Predictive Capability of Radiomic Features: A Case Study on COVID-19 Chest X-ray Images. Journal of Imaging. 2023; 9(2):32. https://doi.org/10.3390/jimaging9020032
Chicago/Turabian StylePrinzi, Francesco, Carmelo Militello, Vincenzo Conti, and Salvatore Vitabile. 2023. "Impact of Wavelet Kernels on Predictive Capability of Radiomic Features: A Case Study on COVID-19 Chest X-ray Images" Journal of Imaging 9, no. 2: 32. https://doi.org/10.3390/jimaging9020032
APA StylePrinzi, F., Militello, C., Conti, V., & Vitabile, S. (2023). Impact of Wavelet Kernels on Predictive Capability of Radiomic Features: A Case Study on COVID-19 Chest X-ray Images. Journal of Imaging, 9(2), 32. https://doi.org/10.3390/jimaging9020032