Hyperspectral Characteristic Band Selection and Estimation Content of Soil Petroleum Hydrocarbon Based on GARF-PLSR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sample Collection and Spectral Data Acquisition
2.2. Spectral Data Preprocessing
2.3. Model Principle
2.3.1. Genetic Algorithm
- Coding: The transformation of a feasible solution of a practical problem from its solution space to the search space that can be processed using GA is called coding. The most common coding method is binary coding.
- Population analysis and design: GA randomly generates a certain number of individuals, from which better individuals are selected to form the initial population. In the iterative process, the larger the population size is, the higher the chance to obtain an optimal solution, and the smaller the possibility of the algorithm falling into a local minimum. However, the large population size will lead to an increase in the time consumption of the algorithm.
- Fitness function: A fitness function is applied to evaluate the optimization process of individuals in the population and estimate the degree close to the optimal solution.
- Crossover: GA imitates the process of gene recombination into new chromosomes in nature. Some genes in chromosomes are exchanged between two pairs of chromosomes, and a crossover operator is used to form two new individuals.
- Mutation: Mutation is introduced to induce the formation of new individuals and increase the ability to find the optimal solution.
- Termination of calculation: The individual with the maximum fitness value reserved in the evolution process is selected as the output of the optimal solution.
2.3.2. Random Forest
2.3.3. Partial Least Squares Regression
2.3.4. K-Nearest Neighbor
2.3.5. Performance Evaluation Scales
3. Results and Discussion
3.1. Selection of Optimal Characteristic Bands
3.2. Estimation Accuracies of Soil Petroleum Hydrocarbon Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Position of Characteristic Bands (nm) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
400 | 420 | 430 | 450 | 460 | 490 | 500 | 510 | 550 | 560 | 580 | 590 |
600 | 610 | 620 | 630 | 640 | 680 | 690 | 710 | 720 | 740 | 750 | 760 |
770 | 810 | 820 | 840 | 850 | 890 | 950 | 970 | 980 | 990 | 1030 | 1040 |
1050 | 1070 | 1100 | 1110 | 1120 | 1130 | 1140 | 1150 | 1210 | 1220 | 1230 | 1260 |
1270 | 1280 | 1290 | 1300 | 1310 | 1320 | 1330 | 1350 | 1380 | 1390 | 1400 | 1410 |
1460 | 1480 | 1490 | 1500 | 1520 | 1540 | 1550 | 1560 | 1580 | 1620 | 1630 | 1650 |
1660 | 1670 | 1730 | 1740 | 1760 | 1770 | 1810 | 1840 | 1860 | 1880 | 1890 | 1910 |
1940 | 2020 | 2040 | 2060 | 2070 | 2080 | 2150 | 2160 | 2170 | 2180 | 2190 | 2210 |
2220 | 2240 | 2250 | 2260 | 2280 | 2290 | 2300 | 2310 | 2350 | 2360 | 2390 | 2400 |
Position of Characteristic Bands (nm) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
390 | 410 | 420 | 430 | 440 | 460 | 490 | 520 | 540 | 560 | 580 | 590 |
620 | 640 | 650 | 670 | 680 | 690 | 730 | 790 | 800 | 830 | 880 | 890 |
900 | 920 | 960 | 970 | 980 | 1010 | 1040 | 1050 | 1080 | 1140 | 1170 | 1180 |
1220 | 1230 | 1240 | 1260 | 1290 | 1330 | 1360 | 1390 | 1400 | 1460 | 1480 | 1500 |
1510 | 1540 | 1550 | 1560 | 1570 | 1610 | 1630 | 1660 | 1720 | 1760 | 1780 | 1790 |
1830 | 1850 | 1890 | 1910 | 1920 | 1930 | 1940 | 2000 | 2010 | 2030 | 2040 | 2060 |
2070 | 2080 | 2090 | 2100 | 2110 | 2120 | 2130 | 2140 | 2150 | 2190 | 2210 | 2250 |
2260 | 2300 | 2310 | 2340 | 2350 | 2360 | 2390 |
Position of Characteristic Bands (nm) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
380 | 390 | 410 | 450 | 460 | 500 | 510 | 520 | 530 | 540 | 550 | 560 |
580 | 620 | 630 | 670 | 710 | 730 | 740 | 760 | 780 | 790 | 810 | 820 |
840 | 870 | 880 | 900 | 910 | 930 | 940 | 1000 | 1030 | 1050 | 1060 | 1080 |
1090 | 1100 | 1120 | 1140 | 1150 | 1200 | 1220 | 1240 | 1340 | 1350 | 1360 | 1380 |
1390 | 1410 | 1440 | 1460 | 1480 | 1490 | 1500 | 1520 | 1530 | 1540 | 1610 | 1630 |
1640 | 1650 | 1660 | 1670 | 1710 | 1720 | 1760 | 1780 | 1790 | 1830 | 1840 | 1850 |
1880 | 1900 | 1960 | 1970 | 1990 | 2000 | 2030 | 2060 | 2070 | 2080 | 2110 | 2120 |
2160 | 2190 | 2230 | 2240 | 2250 | 2260 | 2270 | 2280 | 2290 | 2300 | 2320 | 2340 |
2370 | 2400 |
Position of Characteristic Bands (nm) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
400 | 420 | 430 | 440 | 450 | 470 | 480 | 510 | 520 | 540 | 570 | 580 |
590 | 600 | 610 | 620 | 670 | 680 | 690 | 710 | 740 | 760 | 770 | 780 |
810 | 820 | 830 | 850 | 860 | 870 | 880 | 890 | 910 | 920 | 930 | 940 |
960 | 980 | 1010 | 1040 | 1080 | 1100 | 1130 | 1180 | 1200 | 1240 | 1260 | 1280 |
1310 | 1330 | 1350 | 1380 | 1400 | 1410 | 1430 | 1440 | 1450 | 1470 | 1490 | 1530 |
1550 | 1560 | 1580 | 1600 | 1610 | 1630 | 1640 | 1680 | 1690 | 1740 | 1750 | 1760 |
1770 | 1780 | 1800 | 1810 | 1820 | 1840 | 1860 | 1870 | 1880 | 1890 | 1910 | 1940 |
1950 | 1970 | 1980 | 2000 | 2020 | 2040 | 2050 | 2070 | 2080 | 2090 | 2170 | 2190 |
2200 | 2210 | 2220 | 2240 | 2260 | 2290 | 2300 | 2320 | 2330 | 2350 | 2390 | 2400 |
Position of Characteristic Bands (nm) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
390 | 410 | 420 | 430 | 440 | 450 | 490 | 500 | 510 | 520 | 540 | 560 |
580 | 600 | 610 | 620 | 630 | 640 | 680 | 690 | 730 | 750 | 760 | 770 |
790 | 810 | 830 | 840 | 850 | 900 | 950 | 960 | 970 | 980 | 1010 | 1030 |
1040 | 1050 | 1060 | 1070 | 1080 | 1140 | 1180 | 1210 | 1220 | 1230 | 1240 | 1250 |
1280 | 1330 | 1360 | 1390 | 1410 | 1440 | 1480 | 1500 | 1510 | 1540 | 1560 | 1570 |
1610 | 1630 | 1660 | 1720 | 1760 | 1780 | 1830 | 1850 | 1890 | 1920 | 1930 | 1960 |
1970 | 2000 | 2030 | 2040 | 2050 | 2070 | 2080 | 2100 | 2110 | 2120 | 2130 | 2140 |
2150 | 2210 | 2250 | 2300 | 2310 | 2360 | 2390 |
References
- Achard, V.; Foucher, P.-Y.; Dubucq, D. Hydrocarbon Pollution Detection and Mapping Based on the Combination of Various Hyperspectral Imaging Processing Tools. Remote Sens. 2021, 13, 1020. [Google Scholar] [CrossRef]
- Escandar, G.M.; de la Pena, A.M. Multi-way calibration for the quantification of polycyclic aromatic hydrocarbons in samples of environmental impact. Microchem. J. 2021, 164, 106016. [Google Scholar] [CrossRef]
- Truskewycz, A.; Gundry, T.D.; Khudur, L.S.; Kolobaric, A.; Taha, M.; Aburto-Medina, A.; Ball, A.S.; Shahsavari, E. Petroleum Hydrocarbon Contamination in Terrestrial Ecosystems-Fate and Microbial Responses. Molecules 2019, 24, 3400. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.L.; Yin, W.Q.; Liu, H.T.; Liu, Q.; Yang, Y. Review of Monitoring Petroleum-Hydrocarbon Contaminated Soils with Visible and Near-Infrared Spectroscopy. Spectrosc. Spectr. Anal. 2017, 37, 1723–1727. [Google Scholar]
- Lin, N.; Liu, H.-Q.; Yang, J.-J.; Wu, M.-H.; Liu, H.-L. Hyperspectral Estimation of Soil Nutrient Content in the Black Soil Region Based on BA-Adaboost. Spectrosc. Spectr. Anal. 2020, 40, 3825–3831. [Google Scholar]
- Xie, F.; Lei, C.; Yang, J.; Jin, C. An Effective Classification Scheme for Hyperspectral Image Based on Superpixel and Discontinuity Preserving Relaxation. Remote Sens. 2019, 11, 1149. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, A.; Ren, J.; Ma, J.; Wang, P.; Zhang, Y.; Jia, X. Gravitation-Based Edge Detection in Hyperspectral Images. Remote Sens. 2017, 9, 592. [Google Scholar] [CrossRef]
- Bai, X.; Xiao, Q.; Zhou, L.; Tang, Y.; He, Y. Detection of Sulfite Dioxide Residue on the Surface of Fresh-Cut Potato Slices Using Near-Infrared Hyperspectral Imaging System and Portable Near-Infrared Spectrometer. Molecules 2020, 25, 1651. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, J.; Chao, M.; Xu, X.; Song, P.; Zhang, J.; Huang, Z. A Rapid and Highly Efficient Method for the Identification of Soybean Seed Varieties: Hyperspectral Images Combined with Transfer Learning. Molecules 2020, 25, 152. [Google Scholar] [CrossRef]
- Wu, L.-G.; Wang, S.-L.; He, J.-G. Study on Soil Moisture Mechanism and Establishment of Model Based on Hyperspectral Imaging Technique. Spectrosc. Spectr. Anal. 2018, 38, 2563–2570. [Google Scholar]
- Kano, Y.; Mcclure, W.F.; Skaggs, R.W. A Near Infrared Reflectance Soil Moisture Meter. Trans. ASAE—Am. Soc. Agric. Eng. 1985, 28, 1852–1855. [Google Scholar] [CrossRef]
- Bowman, G.E.; Hooper, A.W.; Hartshorn, L. A prototype infrared reflectance moisture meter. J. Agric. Eng. Res. 1985, 31, 67–79. [Google Scholar] [CrossRef]
- Whalley, W.R.; Leeds-Harrison, P.B.; Bowman, G.E. Estimation of soil moisture status using near infrared reflectance. Hydrol. Process. 1991, 5, 321–327. [Google Scholar] [CrossRef]
- He, Y.; Huang, M.; Garcia, A.; Hernandez, A.; Song, H. Prediction of soil macronutrients content using near-infrared spectroscopy. Comput. Electron. Agric. 2007, 58, 144–153. [Google Scholar] [CrossRef]
- Daniel, K.W.; Tripathi, X.K.; Honda, K. Artificial neural network analysis of laboratory and in situ spectra for the estimation of macronutrients in soils of Lop Buri (Thailand). Aust. J. Soil Res. 2003, 41, 47–59. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Kuang, B.; Baerdemaeker, J.D.; Ramon, H. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma 2010, 158, 23–31. [Google Scholar] [CrossRef]
- Yang, H.; Kuang, B.; Mouazen, A.M. Quantitative analysis of soil nitrogen and carbon at a farm scale using visible and near infrared spectroscopy coupled with wavelength reduction. Eur. J. Soil Sci. 2012, 63, 410–420. [Google Scholar] [CrossRef]
- Luan, F.-M.; Zhang, X.-L.; Xiong, H.-G.; Zhang, F.; Wang, F. Comparative Analysis of Soil Organic Matter Content Based on Different Hyperspectral Inversion Models. Spectrosc. Spectr. Anal. 2013, 33, 196–200. [Google Scholar]
- Ma, Y.; Jiang, Q.-G.; Meng, Z.-G.; Liu, H.-X. Black Soil Organic Matter Content Estimation Using Hybrid Selection Method Based on RF and GABPSO. Spectrosc. Spectr. Anal. 2018, 38, 181–187. [Google Scholar]
- Wang, Y.; Ma, H.; Wang, J.; Liu, L.; Pietikainen, M.; Zhang, Z.; Chen, X. Hyperspectral monitor of soil chromium contaminant based on deep learning network model in the Eastern Junggar coalfield. Spectrochim. Acta Part A—Mol. Biomol. Spectrosc. 2021, 257, 119739. [Google Scholar] [CrossRef]
- Zeng, R.; Zhao, Y.G.; Li, D.C.; Wu, D.W.; Wei, C.L.; Zhang, G.L. Selection of “Local” Models for Prediction of Soil Organic Matter Using a Regional Soil Vis-NIR Spectral Library. Soil Sci. 2016, 181, 13–19. [Google Scholar] [CrossRef]
- Riedel, F.; Denk, M.; Mueller, I.; Barth, N.; Glaesser, C. Prediction of soil parameters using the spectral range between 350 and 15,000 nm: A case study based on the Permanent Soil Monitoring Program in Saxony, Germany. Geoderma 2018, 315, 188–198. [Google Scholar] [CrossRef]
- Kooistra, L.; Wehrens, R.; Leuven, R.; Buydens, L.M.C. Possibilities of visible-near-infrared spectroscopy for the assessment of soil contamination in river floodplains. Anal. Chim. Acta 2001, 446, 97–105. [Google Scholar] [CrossRef]
- Lian, S.; Ji, J.; De-Jun, T.; Hong-Bing, X.; Zhen-Fu, L.; Bo, G. Estimate of heavy metals in soil and streams using combined geochemistry and field spectroscopy in Wan-sheng mining area, Chongqing, China. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 9. [Google Scholar] [CrossRef]
- Choe, E.; van der Meer, F.; van Ruitenbeek, F.; van der Werff, H.; de Smeth, B.; Kim, Y.-W. Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain. Remote Sens. Environ. 2008, 112, 3222–3233. [Google Scholar] [CrossRef]
- Wang, J.-F.; Wang, S.-J.; Bai, X.-Y.; Liu, F.; Lu, Q.; Tian, S.-Q.; Wang, M.-M. Prediction Soil Heavy Metal Zinc Based on Spectral Reflectance in Karst Area. Spectrosc. Spectr. Anal. 2019, 39, 3873–3879. [Google Scholar]
- Waiser, T.H.; Morgan, C.L.S.; Brown, D.J.; Hallmark, C.T. In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy. Soil Sci. Soc. Am. J. 2007, 71, 389–396. [Google Scholar] [CrossRef]
- Bilgili, A.V.; Cullu, M.A.; Van Es, H.; Aydemir, A.; Aydemir, S. The Use of Hyperspectral Visible and Near Infrared Reflectance Spectroscopy for the Characterization of Salt-Affected Soils in the Harran Plain, Turkey. Arid. Land Res. Manag. 2011, 25, 19–37. [Google Scholar] [CrossRef]
- Salem, F.; Kafatos, M.; El-Ghazawi, T.; Gomez, R.; Yang, R.X. Hyperspectral image assessment of oil-contaminated wetland. Int. J. Remote Sens. 2005, 26, 811–821. [Google Scholar] [CrossRef]
- Horig, B.; Kuhn, F.; Oschutz, F.; Lehmann, F. HyMap hyperspectral remote sensing to detect hydrocarbons. Int. J. Remote Sens. 2001, 22, 1413–1422. [Google Scholar] [CrossRef]
- Kuhn, F.; Oppermann, K.; Horig, B. Hydrocarbon Index—An algorithm for hyperspectral detection of hydrocarbons. Int. J. Remote Sens. 2004, 25, 2467–2473. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, L. Soil oil content hyperspectral model in Gudong Oilfield. J. Remote Sens. 2012, 16, 378–389. [Google Scholar]
- Kumar, B.; Dikshit, O.; Gupta, A.; Singh, M.K. Feature extraction for hyperspectral image classification: A review. International Journal of Remote Sensing 2020, 41, 6248–6287. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, Z.Z.; Yang, H. Discrimination of Heavy Metal Sources in Topsoil in Zhaoyuan County Based on Multivariate Statistics and Geostatistical. Soil 2017, 49, 819–827. [Google Scholar] [CrossRef]
- Li, Y.; Yin, Y.; Yu, H.; Yuan, Y. Fast detection of water loss and hardness for cucumber using hyperspectral imaging technology. J. Food Meas. Charact. 2021, 16, 76–84. [Google Scholar] [CrossRef]
- Goodin, D.G.; Han, L.; Fraser, R.N.; Rundquist, D.C.; Stebbins, W.A. Analysis of suspended solids in water using remotely sensed high resolution derivative spectra. Photogramm. Eng. Remote Sens. 1993, 59, 505–510. [Google Scholar] [CrossRef]
- Feng, J.; Jiao, L.C.; Liu, F.; Sun, T.; Zhang, X.R. Unsupervised feature selection based on maximum information and minimum redundancy for hyperspectral images. Pattern Recognit. 2016, 51, 295–309. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Dou, Y.; Zhao, L. A Geometry-Based Band Selection Approach for Hyperspectral Image Analysis. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4318–4333. [Google Scholar] [CrossRef]
- Yang, Z.; Xiao, H.; Zhang, L.; Feng, D.; Zhang, F.; Jiang, M.; Sui, Q.; Jia, L. Fast determination of oxides content in cement raw meal using NIR-spectroscopy and backward interval PLS with genetic algorithm. Spectrochim. Acta Part A—Mol. Biomol. Spectrosc. 2019, 223, 117327. [Google Scholar] [CrossRef]
- Aghelpour, P.; Mohammadi, B.; Biazar, S.M.; Kisi, O.; Sourmirinezhad, Z. A Theoretical Approach for Forecasting Different Types of Drought Simultaneously, Using Entropy Theory and Machine-Learning Methods. ISPRS Int. J. Geo-Inf. 2020, 9, 701. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, A.; Shi, P.; Cai, L. Rapid evaluation of freshness of largemouth bass under different thawing methods using hyperspectral imaging. Food Control 2021, 125, 108023. [Google Scholar] [CrossRef]
- Pang, L.; Wang, J.; Men, S.; Yan, L.; Xiao, J. Hyperspectral imaging coupled with multivariate methods for seed vitality estimation and forecast for Quercus variabilis. Spectrochim. Acta Part A—Mol. Biomol. Spectrosc. 2021, 245, 118888. [Google Scholar] [CrossRef]
- Zhang, Y.; Hartemink, A.E.; Huang, J.; Townsend, P.A. Synergistic use of hyperspectral imagery, Sentinel-1 and LiDAR improves mapping of soil physical and geochemical properties at the farm-scale. Eur. J. Soil Sci. 2021, 72, 1690–1717. [Google Scholar] [CrossRef]
- Crusiol, L.G.T.; Nanni, M.R.; Furlanetto, R.H.; Sibaldelli, R.N.R.; Cezar, E.; Sun, L.; Foloni, J.S.S.; Mertz-Henning, L.M.; Nepomuceno, A.L.; Neumaier, N.; et al. Yield Prediction in Soybean Crop Grown under Different Levels of Water Availability Using Reflectance Spectroscopy and Partial Least Squares Regression. Remote Sens. 2021, 13, 977. [Google Scholar] [CrossRef]
- Xu, X.; Chen, S.; Xu, Z.; Yu, Y.; Zhang, S.; Dai, R. Exploring Appropriate Preprocessing Techniques for Hyperspectral Soil Organic Matter Content Estimation in Black Soil Area. Remote Sens. 2020, 12, 3765. [Google Scholar] [CrossRef]
- Cloutis, E.A. Spectral reflectance properties of hydrocarbons: Remote-sensing implications. Science 1989, 245, 165–168. [Google Scholar] [CrossRef]
- Gao, L.; Yang, B. A Study on Near Infrared Spectral Characteristics of Petroleum Matter Applied to Remote Sensing of Oil Gas Resources. Remote Sens. Land Resour. 1991, 4, 9–12+29. [Google Scholar]
- Zhu, Z. Hydrocarbon Microseepage Theory and Oil-Gas Reservoir Detecting by Remote Sensing. Remote Sens. Technol. Appl. 1994, 31, 10. [Google Scholar]
- Feng, X.; Shi, Y. Near Infrared Spectroscopy and Its Application in the Analysis of Petroleum Products; China Petrochemical Press: Beijing, China, 2022; Volume 1, p. 238. ISBN 7-80164-239-2. [Google Scholar]
- Wang, X.; Tian, Q.; Guan, Z. The Extraction of Oiland Gas Information by Using Hyperion Imagery in the Sebei Gas Field. Remote Sens. Nat. Resour. 2006, 71, 36–40+107. [Google Scholar]
- Chen, C.; Jiang, Q.; Zhang, Z.; Shi, P.; Xu, Y.; Liu, B.; Xi, J.; Chang, S. Hyperspectral Inversion of Petroleum Hydrocarbon Contents in Soil Based on Continuum Removal and Wavelet Packet Decomposition. Sustainability 2020, 12, 4218. [Google Scholar] [CrossRef]
No. | Min (g/kg−1) | Max (g/kg−1) | Ave (g/kg−1) | SD (g/kg−1) | CV |
---|---|---|---|---|---|
25 | 0.0081 | 34.1 | 8.46 | 11.02 | 130.23% |
Spectral Form | Number of Resampled Bands | Number of Selected Bands |
---|---|---|
Initial | 203 | 108 |
CR | 203 | 91 |
CR-FD | 203 | 98 |
CR-SD | 203 | 108 |
CR-LN | 203 | 91 |
Spectral Form | No. | Ave | Sum |
---|---|---|---|
Initial-GA | 47 | 0.0093 | 0.721 |
CR-GA | 17 | 0.0102 | 0.822 |
CR-FD-GA | 33 | 0.0110 | 0.810 |
CR-SD-GA | 34 | 0.0093 | 0.818 |
CR-LN-GA | 30 | 0.0110 | 0.790 |
Model | RMSE | R2 |
---|---|---|
Initial-PLSR | 6.83 | 0.62 |
CR-PLSR | 5.50 | 0.75 |
CR-GARF-PLSR | 3.52 | 0.90 |
CR-GARF-KNN | 4.70 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, P.; Jiang, Q.; Li, Z. Hyperspectral Characteristic Band Selection and Estimation Content of Soil Petroleum Hydrocarbon Based on GARF-PLSR. J. Imaging 2023, 9, 87. https://doi.org/10.3390/jimaging9040087
Shi P, Jiang Q, Li Z. Hyperspectral Characteristic Band Selection and Estimation Content of Soil Petroleum Hydrocarbon Based on GARF-PLSR. Journal of Imaging. 2023; 9(4):87. https://doi.org/10.3390/jimaging9040087
Chicago/Turabian StyleShi, Pengfei, Qigang Jiang, and Zhilian Li. 2023. "Hyperspectral Characteristic Band Selection and Estimation Content of Soil Petroleum Hydrocarbon Based on GARF-PLSR" Journal of Imaging 9, no. 4: 87. https://doi.org/10.3390/jimaging9040087
APA StyleShi, P., Jiang, Q., & Li, Z. (2023). Hyperspectral Characteristic Band Selection and Estimation Content of Soil Petroleum Hydrocarbon Based on GARF-PLSR. Journal of Imaging, 9(4), 87. https://doi.org/10.3390/jimaging9040087