1. Introduction
Decisions play a central role in every aspect of human life, both on an individual level and in the dynamics of complex organizations. The ability to make considered and rational decisions has a direct impact on one’s success in the personal, professional, and social spheres. Through a complex series of processes, individuals, groups, and organizations make decisions on a daily and continuous basis. These decisions may concern mundane aspects of our lives, but they can also be complex decisions [
1]. The quality of these decisions can vary greatly, depending on the available information and the method adopted. There are various human mental processes that lead to a decision, ranging from intuition to detailed analysis of data and information, passing through prior experience and rationality. Each approach has its strengths and weaknesses. However, the choice of the most appropriate approach depends on the nature of the decision to be made and the context in which it is made [
2]. In an increasingly intricate and interconnected world, the ability to make decisions is a critically important skill in both controlled risk situations and emergencies [
3,
4,
5]. Many previous studies have revealed that in conditions of uncertainty and risk, decision makers tend to operate with bounded rationality [
6,
7,
8,
9]. An emergency represents an unforeseen situation of real danger that occurs when individuals, property, structures, or the environment are exposed and could further be exposed to the harmful effects generated by an adverse event. These events often cause significant damage, both physical and material, to individuals or property and require response actions beyond ordinary procedures [
3,
4,
10,
11,
12]. Risk, on the other hand, is linked to the concepts of uncertainty and probability regarding the occurrence of events which could cause harm to things and people [
13,
14,
15]. Instead, a crisis occurs when a community of people perceives an urgent threat to fundamental values or life-sustaining functions, which must be addressed under conditions of uncertainty. A crisis can therefore arise from a wide variety of threats [
16,
17]. A disaster, on the other hand, is defined in the literature as an episode that is collectively interpreted as highly damaging [
18]. The destructive causes can be varied, but in most cases, they are attributed to natural causes as well as anthropogenic ones [
19]. In recent decades, theorists of public policy and emergency management have increasingly recognized that the dynamic and complex environment of rapidly evolving emergency events requires a different approach from traditional hierarchical administration [
20]. Emergency management involves a series of measures and interventions aimed at providing relief and assistance to communities affected by a disaster. Such interventions involve urgent actions and the activation of simplified procedures to expedite necessary assistance. What is needed is a theoretical foundation for the application of problem-solving assessments in educational contexts and a careful selection of tools to adequately measure this skill [
21]. Informing the affected population promptly and accurately to ensure safety and awareness is of crucial importance. Emergency management requires a rapid, coordinated, and effective response to protect lives, reduce damage, and restore normalcy in communities affected by catastrophic events [
22,
23]. Decision making in emergency situations is a critical component of crisis management and preservation of the safety of people and resources. In these situations, time is often limited, information may be incomplete or uncertain, and decisions must be made quickly [
4,
24]. Problem solving and decision making in emergencies are closely linked to knowledge and therefore being prepared in the face of an adverse event [
21], but being prepared and skilled sometimes is not enough to handle sudden crises excellently. The computational limits of human cognition must be considered [
25,
26].
The time pressure and speed of information processing must not compromise the quality and thoughtfulness of the decision-making process. At the heart of decision making in emergency situations is communication. Communication, and especially effective communication between all the actors involved, is also crucial to ensure that decisions are shared, understood, and correctly transposed by all [
3,
4,
5,
11,
12,
24], all the more so if they are taken as a group, thus also requiring taking into account the specific opinions and expertise of each individual [
27] and avoiding the possibility of uncooperative behavior [
28]. Emergency decisions can involve potentially serious risks, as a wrong choice could lead to unforeseen catastrophic consequences [
27,
29,
30]. It has been shown that emergency operations conducted according to existing plans have led to a significant reduction in response times as well as improved coordination, resulting in fewer casualties and less economic damage [
27].
R. M. Jaradat advocated for the development of methods capable of addressing the complexity, unpredictability, and uncertainty of complex systems, such as managing sudden emergencies and crisis scenarios [
31]. Considering this, it is necessary to be able to structure increasingly better training and education plans to be ready to deal with any emergency when it arises and to cope with its consequences. Creating effective learning environments using simulations enable the development of knowledge and skills which can make social and organizational systems resilient [
32]. Of great importance, for this reason, is the knowledge of what might be the specific vulnerabilities of certain groups, in addition to those of the individual, as well as the protective factors capable of promoting resilience, as emerged during the SARS and Ebola epidemics. During these events, communities responded effectively through social cohesion, diligently following basic safety norms [
33] to intervene in a timely manner not only from a medical point of view but also a psychological one [
34,
35]. Various classifications of disasters and related emergencies can be found in the literature [
36,
37]. These studies agree on dividing disasters into natural and man-made disasters. In the present study, three types of emergencies were considered: natural disasters due to climate change, pandemics, and seismic events.
With reference to the issue of climate change, the literature shows that it is, to date, a source of great concern for a large part of the population not only in Europe but also worldwide [
38,
39,
40,
41]. Individuals who have completed a university-level education, as well as those who intend to have children, seem to be the most affected groups in relation to the future challenge posed by climate change [
38]. Furthermore, one study found that the effects of climate change events on women are much more pronounced than those for their male counterparts [
42].
Regarding the pandemic theme in general, it was pointed out that the most important predictor of fear was gender, followed by age and level of education [
43,
44]. In accordance with this, it was observed that more educated and competent, married, and older women reported a greater fear of epidemics at various levels [
44]. These findings were also confirmed by other research showing that there was greater psychological vulnerability in women during the COVID-19 pandemic [
45,
46]. However, it should be emphasized that these findings also showed that men tend to adopt less self-care behavior, displaying a lower level of fear, and this characteristic could be an important factor in their exposure to viruses and the consequences of infection [
47].
Among the natural events which are impossible to estimate in predictive terms are earthquakes. Previous studies emphasized that survivors and subjects belonging to the female gender reported higher scores on the personal impact factor than male subjects and then those who had never experienced such an event [
48,
49,
50,
51], although it has also been observed that experience can positively influence preparedness behavior in the face of such disasters [
51]. Training in the field of seismic phenomena acts as a protective factor for the population’s perception of risk and fear and furthermore increases preparedness levels to respond to such events [
50,
51]. Gender differences in perceptions of reported stress levels for a population after an earthquake event have been observed. In particular, women reported experiencing higher levels of stress compared with the values reported by men [
48]. A further study has highlighted how the elderly population appears to be quite vulnerable due to their sense of attachment to the homes in which they live, and this appears to be an important risk factor capable of causing an underestimation of the actual danger of an earthquake in relation to the safety provisions they receive [
52].
Furthermore, high rates of maladaptive behavior have been reported among earthquake survivors with post-traumatic stress disorder, suggesting a greater severity of the phenomenon among male subjects [
53].
1.1. Deciding in Critical Contexts
The emergency decision-making environment is characterized by considerable complexity due to several variables: limited reaction time, scarcity of information, and unstable and changing contextual circumstances. This complexity is evident both when making decisions in an emergency operational scenario and at an institutional level [
54]. For this reason, “emergency decision making” (EDM) should compel those involved in coping with crises to continuously develop skills and build capacity for maximum optimization of results [
55]. As mentioned in the previous section, complexity helps to better understand the type of approach to be used in studying these phenomena. Complexity theory is an interdisciplinary approach which deals with the study of complex systems (i.e., systems consisting of a multitude of interacting components which generate emergent behaviors that are not easily predictable from the characteristics of the individual components). These systems span a wide range of scientific fields. A key concept in complexity theory is self-organization, through which complex systems can generate structures and patterns of behavior without the need for external control. Complexity theory is based on fundamental principles from systems theory, chaos theory, network theory, and information theory [
56]. In coping with emergencies, which are well described by complexity theory, decision makers must possess excellent problem-solving skills. In this field, the study of “complex problem solving” (CPS) [
26,
57,
58,
59] has developed over the last 30 years. Complex problem solving (CPS) is an area of cognitive science concerned with studying, under ecological and laboratory conditions, decision makers’ approach to solving complex problems [
59,
60,
61]. Complex problem solving, in turn, is closely related to naturalistic decision scenarios. Naturalistic decision making (NDM) is concerned with decision making in real-world contexts and thus is a more ecological field of study than its predecessors, thus studying the day-to-day challenges of decision makers in different domains, including emergency decision making [
62].
This study is based on the theoretical framework of “emergency decision making” (EDM) and “complex problem solving” (CPS) and constitutes the preliminary phase of a broader research project I am conducting at Sapienza University of Rome. This project, which began in 2022 and is currently ongoing, is titled “Decision-Making Strategies of Expert Decision-Makers Regarding Simulated Emergency Scenarios”. It was conceived following my systematic review study on decision-making processes in emergency contexts within institutions, titled “Leading through crisis: A systematic review of institutional decision-makers in emergency contexts” [
54]. In an overview by L. Zhou et al. [
3], the key role of proposing a scientific and reasonable method to analyze the effectiveness of EDM in emergency management was emphasized. However, the authors pointed out that despite numerous reviews of EDM conducted on the topic of unforeseen disasters, rather few have been conducted on natural disasters, neglecting the central aspect of decision-making variables related to the human factor [
3]. This study, in continuity with the field of EDM and CPS studies, aims to address emergency decision-making issues, focusing on human variables and particularly on psychological variables compared to previous studies. It seeks to establish a starting point for further in-depth studies in this field within the Italian context.
In fact, in this research, we have focused on human decision makers. However, in the contemporary world, we must not overlook the preponderant development that the technological world is experiencing with developments in artificial intelligence (AI) [
62]. Only by using a holistic and integrated approach will it be possible to claim to address the issue of emergency decision making with dignity.
1.2. Aim of This Study
The main objective of this research was to identify the scenario chosen most frequently by the participants out of the three proposed, which was suitable for placing the subjects in an emergency context where they were required to make decisions to cope with a problem. The secondary objective, on the other hand, was to explore the possible presence of relationships between the socio-demographic variables of the sample (age, gender, level of education, type of employment, membership of associations working in emergencies, etc.) and the chosen scenario. The scenarios represented three different types of emergencies: climate change, health, and seismic. In particular, the following hypotheses were tested: a contingency relation between gender and the identified emergency scenario (H1); a contingency relation between the type of occupation and the chosen scenario (H2); a contingency relation between the role and the preferred scenario (H3); a contingency relation between the current work activity and the indicated scenario (H4); and a contingency relation between previous experience and the indicated scenario (H5).
2. Methods
An exploratory survey was conducted on a sample of individuals over 18 years old who were healthy in the Italian context, with or without decision-making experience in emergency situations, and who were asked to evaluate and choose one of the three proposed emergency scenarios. Convenience sampling was chosen as the sampling methodology, supplemented by a stratification technique to better represent the components of the target population based on age, gender, education, type and role of employment, geographic origin, affiliation with emergency response organizations, and experience in the emergency field. The criteria I followed for determining the adequacy of the sample size were those of A. L. Comfrey and H. B. Lee [
63], who considered a sample size of 300 subjects to be decent and 500 subjects to be good, in line with E. Guadagnoli and W. F. Velicer [
64], who emphasized the importance of absolute minimum sample sizes rather than subject-to-variable ratios. Subjects affiliated with the Applied Experimental Psychology Laboratory at Sapienza University of Rome were initially invited to participate in order to create a stratified database based on the following characteristics: age, gender, education, type and role of employment, geographic origin, affiliation with emergency response organizations, and experience in the emergency field. Subsequently, those subjects who met the inclusion criteria and thus adequately represented the stratification of the target population based on the selected categories were invited to participate in the study. The research was sponsored through common social networks. Participants completed an online questionnaire via the Qualtrics survey platform. Each respondent was given the freedom to voluntarily choose to participate in the study and began completing the online survey after reading and accepting an informed consent form. Maximum discretion was ensured in the administration and analysis of the responses. The study was approved by the ethics committee of Sapienza University of Rome and was conducted in accordance with the parameters of the Declaration of Helsinki. All participants provided written informed consent before participating in the study. Participants were preliminarily asked to report any neurological or psychiatric disorders, and if they did, then they did not continue the study.
This research was conducted from 1 July 2023 to 31 October 2023 using the Qualtrics XM web platform, on which the following were uploaded: a demographic questionnaire, three scenarios to be read with corresponding questions for each of them, and a final question, in which the subject was asked to choose one of the three proposed scenarios. At the end of implementation of the task on the platform, the link was published via the same platform so that it could be accessed by any type of digital device with an internet connection. In order to carry out the following study, an ad hoc questionnaire was constructed, the first part of which contained a section on informed consent and its acceptance, followed by a demographic form that collected the following data: age, gender of the participant, level of education, marital status, the presence of any situations that could jeopardize the possibility of making decisions, as well as the geographical region of origin, type of occupation, membership of voluntary associations, and finally whether the person had ever made decisions in emergency situations in their private lives or at work (
Appendix A). The scenarios used represented three different types of emergencies: one proposed the state of emergency inherent to climate change, another proposed the state of emergency inherent to health risk, and the last proposed the state of emergency inherent to seismic events.
The scenarios were constructed based on data on natural risks in Italy, which are publicly available and contained on the website of the National Institute of Statistics (ISTAT), an Italian public research institution responsible for data collection at the national level [
65]. The risk categories and respective possible emergencies were identified on the website of the Italian Civil Protection Department, an entity under the direct authority of the Presidency of the Council of Ministers [
66]. By combining statistical data with data on major nationally relevant emergencies in Italy, the three scenarios were constructed by simply describing three of the most pertinent emergency phenomena for the Italian population, supported by existing data (
Appendix B). Response alternatives for dealing with each event were not provided to the participants at this stage. Thus, the participants were not asked during this phase to make decisions but only to evaluate the scenario and choose one of the proposed options. For each scenario, 10 questions were proposed to probe the subject’s degree of agreement expressed on a five-point Likert-type scale (from completely disagree (1) to completely agree (5)) regarding 10 identified dimensions (realism, past realism, future realism, emotions, concern, perceived risk, emergency, catastrophe, immediate choice, and immediate decision) (
Appendix C). Regarding the “realism” dimension, the corresponding question was “Is the scenario read close to reality?” This was intended to probe how close to reality the scenario presented was for the individual. Associated with the “emotions” dimension was the question “How emotionally shaken did you feel by the scenario you had just read?” This was intended to probe to what extent the individual was emotionally shaken after reading the scenario. The dimension of “past realism” was associated with the question “Do you think the scenario can well simulate real-life situations?” This was intended to probe how close to reality the scenario presented was for the individual based on his or her experience. The dimension of “worry” was associated with the question “How worried would you feel if you had to choose an option to deal with the problem?” This was aimed at probing the degree of concern that the scenario could generate in the individual. Associated with the dimension of “future realism” was the question “Do you believe that the scenario can well simulate real situations that might occur?” This was intended to probe how close to reality the scenario presented in the future perspective might be for the individual. The “perceived risk” dimension was associated with the question “How possible are the risks listed in the scenario?” This was intended to probe how possible the risks listed in the scenario were for the individual. The “immediate choice” dimension was associated with the question “Do you believe you can arrive at the solution immediately?” This was intended to probe how ready the individual might be to make an immediate choice to deal with the emergency posed by the scenario. The “emergency” dimension was associated with the question “Do you believe that this scenario can be understood as an emergency condition?” This was intended to probe the extent to which the individual perceived the situation presented in the scenario as an emergency. The “immediate decision” dimension was associated with the question “Do you believe you can make a decision in a short time regarding the scenario?” This was intended to probe how prepared the individual might be to make an immediate decision to cope with the emergency. The “catastrophe” dimension was associated with the question “Do you believe that this scenario can be defined as a catastrophic situation?” This question was aimed at probing the extent to which the individual perceived the situation presented in the scenario as a catastrophe. Finally, participants were asked the final question: “Which of the three scenarios faithfully reproduces an emergency condition in which a subject is called upon to make a decision in order to cope with the event?” For this question, the individual could only choose one of the three alternatives, corresponding to the three emergency scenarios presented (
Appendix D).
2.1. Participants and the Sample’s Characteristics
The final sample included 348 people (
Table 1), with 137 men (39.4%), 207 women (59.5%), 1 non-binary participant, (0.3%) and 3 people of other genders (0.8%). The average age of the participants was 40.3 years (SD = 14.4). All participants had at least 8 years of education; specifically, 34.2% held a bachelor’s degree, 25.9% held a secondary school diploma, 25% held a secondary school license, 9.5% held a master’s or PhD, and 5.5% held a master’s degree (
Table 2). With reference to marital status, 25.9% of the participants declared themselves single and in a relationship, 6.3% were separated, 2.3% were widowed, 22.1% were single but not in a relationship, 39.7% were married or cohabiting, and finally, 3.75 were divorced. The participants were Italian (
Table 3) and came, for the most part, from the Lazio region (34.5%) and the Campania region (26.7%). Regarding the participants’ occupational employment and the relative roles they held, it is possible to see these in the corresponding tables (
Table 4 and
Table 5, respectively).
The largest number of participants came from the public employment sector (27.3%), followed by students (23.9%) and private sector employees (23.3%). The “Clerical or Employee” category was the largest job role category (32.5%) out of the total number of participants. The category “Students, Unemployed, or Occupied” (38.8%) was not considered for the purpose of roles, as only those who had declared themselves to be employed could answer this question. Meanwhile, 39.7% of the 213 working participants stated that their working positions did not involve decision making in the emergency field, while the remaining 21.6% answered in the affirmative (
Table 6). Finally, 67.5% of the total sample stated that they had never made decisions in the past in a work context during emergency situations, against 32.5% who answered in the affirmative (
Table 7).
2.2. Statistical Analysis
The data analyses were conducted using IBM SPSS statistical processing software (version 27). Before conducting the data analyses, all variables were examined for accuracy of data entry and the presence of missing values. Descriptive statistics were carried out on all socio-demographic variables considered in the study: age, gender, level of education, marital status, problems that could impair the ability to make decisions, region of origin, occupation, membership of emergency organizations, whether they were able to make decisions in emergencies based on their work or private life, or whether they had ever made decisions in emergencies, as outlined in the previous section. Subsequently, the frequency distribution was recorded for the questions referred to in the three questionnaires answered by the subjects. Then, to verify the presence of relationships between the sample variables and the choice of scenario made by the subjects, contingency tables were created. Contingency tables are two-way tables in which each cell indicates the unique observed value. They report the joint frequencies of the variables. By using contingency tables and performing specific calculations on them, the dependence or independence between the considered variables will be determined based on the value assumed by Pearson’s chi-squared (χ2) statistic. Where necessary, the Cramér V statistical test was also calculated to test the strength of the relationships between variables that emerged from Pearson’s chi-squares test.
3. Results
The sample response frequencies for the questions in the questionnaire for each scenario presented will be reported below. Specifically, the answers that reported the highest frequencies for each scenario will be illustrated. Regarding the “realism” dimension, for the question “Is the scenario you read close to reality?” 45.7% of the sample with 159 subjects answered “quite agree” for the Ebola epidemic scenario; 43.1% of the sample with 150 subjects answered “quite agree” for the seismic swarm scenario; and 45.4% of the sample with 158 subjects answered “quite agree” for the climate change scenario. Regarding the “emotions” dimension, for the question “How emotionally shaken did you feel by the scenario you had just read?” 48.6% of the sample with 169 subjects answered “fairly agree” for the Ebola epidemic scenario; 44.8% of the sample with 156 subjects answered “fairly agree” for the climate change scenario; and 41.4% of the sample with 144 subjects answered “fairly agree” for the earthquake swarm scenario. With regard to the dimension of “past realism”, for the question “Do you believe that the scenario can well simulate situations that really happened?” 56.3% of the sample with 196 subjects answered “quite agree” for the Ebola epidemic scenario; 51.1% of the sample with 178 subjects answered “quite agree” for the climate change scenario; and 46.3% of the sample with 161 subjects answered “quite agree” for the earthquake swarm scenario. Regarding the dimension of “concern”, for the question “How concerned would you feel if you had to choose an option to deal with the problem?” 45.4% of the sample with 158 subjects answered “fairly agree” for the Ebola epidemic scenario; 41.1% of the sample with 143 subjects answered “fairly agree” for the climate change scenario; and 35.3% of the sample with 123 subjects answered “fairly agree” for the earthquake swarm scenario. With regard to the dimension of “future realism”, for the question “Do you believe that the scenario can well simulate real situations that could happen?” 52.3% of the sample with 182 subjects answered “fairly well” for the Ebola epidemic scenario; 51.7% of the sample with 180 subjects answered “fairly well” for the climate change scenario; and 46.6% of the sample with 162 subjects answered “fairly well” for the earthquake swarm scenario. Regarding the dimension of “perceived risk”, for the question “How likely are the risks listed in the scenario?” 46.0% of the sample with 160 subjects answered “fairly strongly agree” for the Ebola epidemic scenario; 48.9% of the sample with 170 subjects answered “fairly strongly agree” for the climate change scenario; and 44.0% of the sample with 153 subjects answered “fairly strongly agree” for the earthquake swarm scenario. With regard to the “immediate choice” dimension, for the question “Do you think you can reach a solution immediately?” 35.6% of the sample with 124 subjects answered “fairly strongly disagree” for the Ebola epidemic scenario; 31.0% of the sample with 108 subjects answered “fairly strongly disagree” for the climate change scenario; and 34.2% of the sample with 119 subjects answered “fairly strongly disagree” for the earthquake swarm scenario. Regarding the “emergency” dimension, for the question “Do you believe that this scenario can be understood as an emergency condition?” 43.4% of the sample with 151 subjects answered “fairly agree” for the Ebola epidemic scenario; 41.1% of the sample with 143 subjects answered “fairly agree” for the climate change scenario; and 36.5% of the sample with 127 subjects answered “fairly agree” for the earthquake swarm scenario. Concerning the dimension “immediate decision”, for the question “Do you think you can make a decision in a short time regarding the scenario?” 31.0% of the sample with 108 subjects answered “quite disagree” for the Ebola epidemic scenario; 30.7% of the sample with 107 subjects answered “quite disagree” for the climate change scenario; and 34.8% of the sample with 121 subjects answered “quite disagree” for the earthquake swarm scenario. Regarding the “catastrophe” dimension, for the question: “Do you believe that this scenario can be defined as a catastrophic situation?” 39.9% of the sample with 139 subjects answered “fairly agree” for the Ebola epidemic scenario; 36.5% of the sample with 127 subjects answered “fairly agree” for the climate change scenario; and 30.7% of the sample with 107 subjects answered “fairly agree” for the earthquake swarm scenario.
For the final question “Which of the three scenarios faithfully reproduces an emergency condition in which a subject is called upon to make a decision in order to cope with the event?” 43.4% of the sample with 151 subjects chose the “Ebola epidemic” scenario; 33.6% of the sample with 117 subjects chose the “climate change” scenario; and 23.0% of the sample with 80 subjects chose the “earthquake swarm” scenario (
Table 8).
Using contingency tables, the participants’ choices were analyzed in relation to the specific characteristics of the sample. The first contingency table includes gender and the type of scenario chosen as factors as well as the corresponding Pearson’s chi-squared test (
Table 9).
The second contingency table includes the participants’ region of domicile and the type of scenario chosen as factors, as well as the corresponding Pearson’s chi-squared test (
Table 10).
The third contingency table includes the participants’ sectors of employment and the type of scenario chosen as factors, as well as the corresponding Pearson’s chi-squared test (
Table 11).
The fourth contingency table includes as factors the role played by the participants who said they had jobs and the type of scenario chosen, as well as the corresponding Pearson’s chi-squared test (
Table 12).
The fifth contingency table includes as factors the participant’s job position, which may or may not involve decision making in emergency or risk situations, and the type of scenario chosen, as well as THE corresponding Pearson’s chi-squared test (
Table 13).
The sixth contingency table includes as factors the possibility of having decided in a work emergency in the past and the chosen scenario, as well as the corresponding Pearson’s chi-squared test (
Table 14).
4. Discussion
The emergency scenario in written form most frequently chosen by the reference sample, which was able to faithfully reproduce a decision-making condition in an emergency, was one that represented a health emergency in Europe. Specifically, the scenario simulated an Ebola epidemic in the face of which the subject, in the role of an institutional decision maker, was called upon to place him or herself in the position of having to decide to cope with the problem. This scenario was chosen by 43.4% of the total sample but also obtained the highest degree of agreement for each of the 10 dimensions (realism, past realism, future realism, emotions, concern, perceived risk, emergency, catastrophe, immediate choice, and immediate decision) compared with the other two scenarios.
Currently, in the scientific landscape of the Italian context in the field of EDM, there has been no study that evaluated emergency scenarios in written form from a sample drawn from the general population. This could be the first contribution to addressing the theoretical and practical need, highlighted by scholars such as J. Funke et al. (2018) and M.R. Jaradat (2015), to provide tools and methodologies to support the study of decision-making skills in emergencies [
21,
31].
The relationship between demographic characteristics and perceptions of emergencies illustrates how different factors, including gender, occupation type, role, emergency employment status, or experience, are differently related to the choice of the proposed emergency decision-making scenarios. This research confirms the complexity and variability of participants’ evaluation of what is perceived as an emergency or crisis.
The contingency relationship based on the first hypothesis formulated between gender and the emergency scenario chosen showed that participants belonging to the female gender (207 subjects) expressed equal preference for the health emergency scenario (79 subjects) and the climatic emergency scenario (79 subjects) compared with the seismic emergency scenario, which was in the minority (49 subjects). Meanwhile, the participants belonging to the male gender (137 subjects) expressed a majority preference for the health emergency scenario (70 subjects) compared with the seismic emergency (30 subjects) and climatic emergency (37 subjects) scenarios. The analysis thus revealed that women were more sensitive toward the choice of health and climate emergency scenarios in equal measure, while men showed a greater inclination toward the choice of the health emergency scenario. However, no significant relationship emerged in Pearson’s chi-squared (χ2) statistical test.
The contingency relation formulated in the second hypothesis between the type of occupation and scenario chosen show that the health emergency scenario was chosen more by workers in the public sector (47 preferences) and the private sector (35 preferences) compared with students, who chose the climate emergency scenario more often (35 preferences), while those who were not employed (21 preferences) or were freelancers (18 preferences) also chose the health emergency scenario more often. The results show that workers in the public and private sectors were more likely to choose the health emergency scenario than students, who were more likely to choose the climate emergency, but no significant relationship emerged in the Pearson’s chi-squared (χ2) statistical test. This could be explained by the greater exposure and responsibility that workers in the public and private sectors may have with regard to the direct management of health crises, which may also be related to a question of safety regulations in the workplace, while students may be more sensitive to emerging environmental issues related to the activities of student movements, which are often active all over the world and especially in Europe, and their manifesting various issues affecting the planet, including climate change.
The contingency relation according to the third hypothesis formulated between role and preferred scenario shows that the health emergency scenario was chosen most among workers who declared that they belonged to the category of clerk, executive, or manager (47 preferences) or the private sector (35 preferences). Another interesting fact is that only one participant belonging to the executive or manager category chose the climate emergency scenario. In this case as well, no significant relationship emerged between the variables under consideration (role and scenario choice) in the Pearson’s chi-squared (χ2) statistical test. These data can be read in the light of the recent Covid-19 pandemic, which had strong repercussions on working patterns in the white collar and middle management or cadre categories, and the extremely low sensitivity of executives and managers to climate-related emergency issues is because they are more focused on indiscriminately maximizing profits and productivity.
The contingency relation according to the fourth hypothesis shows that among the subjects of the sample who declared themselves to be workers, those who answered “Yes” when asked the question “Does your job position involve making decisions in emergency and/or risk situations?” chose the health emergency scenario in 26 subjects, the seismic emergency scenario in 25 subjects, and the climatic emergency scenario in 24 subjects. Those who answered “No” in the same subgroup of workers chose the health emergency scenario in 74 subjects, the earthquake emergency scenario in 25 subjects, and the climate emergency scenario in 39 subjects. In this case, crossing the experiential and work variable with the scenario choice revealed a low, statistically significant relationship in the Pearson’s chi-squared (χ2) statistical test, with n = 213, χ2 (2) = 8.74, and p = 0.013. To measure the strength of the association between the variables of the chi-squared test, the Cramér’s V statistical test was also conducted, yielding φ = 0.20. Although the association was statistically significant, the variables were only weakly associated. Interestingly, the workers who had decision-making responsibilities in emergency or risk situations tended to distribute their preferences equally among all three scenarios, suggesting greater awareness and sensitivity to various types of crises. In contrast, those without such responsibilities showed a greater bias toward the health scenario, perhaps reflecting a more media-focused perception of emergencies such as pandemics.
The contingency relation based on the fifth hypothesis formulated shows that between previous experience and the scenario indicated, when “Have you ever had to manage and/or decide in emergency situations for work?” was asked, of the 235 subjects who answered “No”, 108 subjects chose the epidemic scenario, and of the 113 subjects who answered “Yes”, 43 subjects chose the epidemic scenario. In this case as well, no significant relationship emerged between the variables under consideration (role and scenario choice) in the Pearson’s chi-squared (χ2) statistical test. These data suggest that those with no previous experience in emergency decision making preferred the epidemic scenario, perhaps influenced by the recent media coverage related to the COVID-19 pandemic, as opposed to those with previous experience in this area.
One of the limitations of this study was the use of a non-probabilistic sampling technique integrated with a probabilistic methodology, such as stratification. Although the sample size was justified in light of the work of Comfrey and Lee (1992) and Guadagnoli and Velicer (1988), it seems appropriate to suggest a future replication of this study using a pure probabilistic sampling methodology, following the guidelines of sampling techniques which consider a subject-to-variable ratio of 20:1, as suggested, for example, by J.W. Osborne and A.B. Costello (2019) [
67]. Another limitation to consider is the lack of validation of the 10 question scale, visible in
Appendix C, which was used to evaluate the scenarios. However, the objective of the study was not to develop a questionnaire or scale as a “tool” and thus become subject to validation and consistency analysis but simply to choose one among the three proposed scenarios, as specified in the objectives. Considering this, I thought about it, and based on the relevant literature, I was highly sceptical about proceeding with a validation study. In fact, Koller et al. (2017) emphasized that content validity is still rarely mentioned in psychological journal studies and systematically analyzed even less often [
68], but it receives particular attention in other disciplines, such as nursing research [
69].
Another limitation is the use of a rather simple statistical methodology. However, it did not seem appropriate to use other statistical methodologies given the small amount of data in relation to the main purpose of the study. The main objective of this research was achieved by the sample’s identification of the most suitable written scenario for the Italian context in simulating an emergency decision-making condition. This scenario will be used in the next phase of research related to the larger research project I am conducting at Sapienza University of Rome, which began in 2022 and is ongoing, titled “Decision-Making Strategies by Expert Decision-Makers Regarding Choices in Simulated Emergency Scenarios”. The next phase of the research will involve administering this scenario to two groups: one consisting of expert decision makers in emergency management and the other consisting of non-experts. Participants will be asked to find a solution to address the emergency and provide an immediate response. Additionally, the decision-making style, emotional intelligence, propensity for maximization, level of indecision, and self-efficacy of the participants will also be evaluated.