Using the MAPS-Global Audit Tool to Assess the Influence of Microscale Built-Environment Attributes Related to Physical Activity and Sedentary Behavior in Spanish Youth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedure and Participants
2.2. Measures
2.3. Data Analysis
3. Results
3.1. Reliability of the Evaluators
3.2. MAPS-Global Microscale Variables and PA Behaviors
3.3. MAPS-Global Microscale Variables and Sedentary Behaviors
4. Discussion
4.1. Reliability of the Evaluators
4.2. Microscale Built-Environment Attributes and PA
4.3. MicroScale Built-Environment Attributes and Sedentary Behavior
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poitras, V.J.; Gray, C.E.; Borghese, M.M.; Carson, V.; Chaput, J.-P.; Janssen, I.; Katzmarzyk, P.T.; Pate, R.R.; Gorber, S.C.; Kho, M.E.; et al. Systematic Review of the Relationships between Objectively Measured Physical Activity and Health Indicators in School-Aged Children and Youth. Appl. Physiol. Nutr. Metab. 2016, 41, S197–S239. [Google Scholar] [CrossRef] [PubMed]
- Carson, V.; Tremblay, M.S.; Spence, J.C.; Timmons, B.W.; Janssen, I. The Canadian Sedentary Behaviour Guidelines for the Early Years (Zero to Four Years of Age) and Screen Time among Children from Kingston, Ontario. Paediatr. Child Health 2013, 18, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global Trends in Insufficient Physical Activity among Adolescents: A Pooled Analysis of 298 Population-Based Surveys with 1·6 Million Participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Crooks, N.; Alston, L.; Nichols, M.; Bolton, K.; Allender, S.; Fraser, P.; Le, H.; Bliss, J.; Rennie, C.; Orellana, L.; et al. Association between the School Physical Activity Environment, Measured and Self-Reported Student Physical Activity and Active Transport Behaviours in Victoria, Australia. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 79. [Google Scholar] [CrossRef] [PubMed]
- Molina-García, J.; García-Massó, X.; Estevan, I.; Queralt, A. Built Environment, Psychosocial Factors and Active Commuting to School in Adolescents: Clustering a Self-Organizing Map Analysis. Int. J. Environ. Res. Public Health 2019, 16, 83. [Google Scholar] [CrossRef]
- Chillón, P.; Martínez-Gómez, D.; Ortega, F.; Pérez-López, I.; Díaz, L.; Veses, A.; Veiga, O.; Marcos, A.; Delgado-Fernández, M. Six-Year Trend in Active Commuting to School in Spanish Adolescents. Int. J. Behav. Med. 2013, 20, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Dygrýn, J.; Mitáš, J.; Gába, A.; Rubín, L.; Frömel, K. Changes in Active Commuting to School in Czech Adolescents in Different Types of Built Environment across a 10-Year Period. Int. J. Environ. Res. Public Health 2015, 12, 12988–12998. [Google Scholar] [CrossRef]
- Sallis, J.; Floyd, M.; Rodríguez, D.; Saelens, B. Role of Built Environments in Physical Activity, Obesity, and Cardiovascular Disease. Circulation 2012, 125, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Owen, N.; Fisher, E. Ecological Models of Health Behavior. In Health Behavior: Theory, Research, and Practice; Jossey-Bass: San Francisco, CA, USA, 2015; pp. 43–64. [Google Scholar]
- Smith, M.; Hosking, J.; Woodward, A.; Witten, K.; MacMillan, A.; Field, A.; Baas, P.; Mackie, H. Systematic Literature Review of Built Environment Effects on Physical Activity and Active Transport—An Update and New Findings on Health Equity. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 158. [Google Scholar] [CrossRef]
- Li, L.; Moosbrugger, M.E. Correlations between Physical Activity Participation and the Environment in Children and Adolescents: A Systematic Review and Meta-Analysis Using Ecological Frameworks. Int. J. Environ. Res. Public Health 2021, 18, 9080. [Google Scholar] [CrossRef]
- Ortegon-Sanchez, A.; McEachan, R.; Albert, A.; Cartwright, C.; Christie, N.; Dhanani, A.; Islam, S.; Ucci, M.; Vaughan, L. Measuring the Built Environment in Studies of Child Health—A Meta-Narrative Review of Associations. Int. J. Environ. Res. Public Health 2021, 18, 10741. [Google Scholar] [CrossRef] [PubMed]
- Brownson, R.; Hoehner, C.; Day, K.; Forsyth, A.; Sallis, J. Measuring the Built Environment for Physical Activity State of the Science. Am. J. Prev. Med. 2009, 36, S99–S123. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.; Slymen, D.; Conway, T.; Frank, L.; Saelens, B.; Cain, K.; Chapman, J. Income Disparities in Perceived Neighborhood Built and Social Environment Attributes. Health Place 2011, 17, 1274–1283. [Google Scholar] [CrossRef]
- Saelens, B.; Handy, S. Built Environment Correlates of Walking: A Review. Med. Sci. Sports Exerc. 2008, 40, S550–S566. [Google Scholar] [CrossRef]
- Ding, D.; Sallis, J.; Kerr, J.; Lee, S.; Rosenberg, D. Neighborhood Environment and Physical Activity among Youth: A Review. Am. J. Prev. Med. 2011, 41, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Dalton, M.; Longacre, M.; Drake, K.; Gibson, L.; Adachi-Mejia, A.; Swain, K.; Xie, H.; Owens, P. Built Environment Predictors of Active Travel to School among Rural Adolescents. Am. J. Prev. Med. 2011, 40, 312–319. [Google Scholar] [CrossRef]
- Molina-García, J.; Campos, S.; García-Massó, X.; Herrador-Colmenero, M.; Gálvez-Fernández, P.; Molina-Soberanes, D.; Queralt, A.; Chillón, P. Different Neighborhood Walkability Indexes for Active Commuting to School Are Necessary for Urban and Rural Children and Adolescents. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 124. [Google Scholar] [CrossRef] [PubMed]
- Molina-García, J.; Queralt, A.; Adams, M.; Conway, T.; Sallis, J. Neighborhood Built Environment and Socio-Economic Status in Relation to Multiple Health Outcomes in Adolescents. Prev. Med. 2017, 105, 88–94. [Google Scholar] [CrossRef]
- Talen, E.; Koschinsky, J. The Walkable Neighborhood: A Literature Review. Int. J. Sustain. Land Use Urban Plan. 2013, 1, 42–63. [Google Scholar] [CrossRef]
- Bahrainy, H.; Khosravi, H. The Impact of Urban Design Features and Qualities on Walkability and Health in Under-Construction Environments: The Case of Hashtgerd New Town in Iran. Cities 2013, 31, 17–28. [Google Scholar] [CrossRef]
- Galan, A.; Ruiz-Apilanez, B.; Garcia-Camacha, I. Evaluating Microscale Walkability: A Comparative Analysis of Street Audits. Urban Des. Int. 2023. [Google Scholar] [CrossRef]
- Boarnet, M.; Forsyth, A.; Day, K.; Oakes, J. The Street Level Built Environment and Physical Activity and Walking: Results of a Predictive Validity Study for the Irvine Minnesota Inventory. Environ. Behav. 2011, 43, 735–775. [Google Scholar] [CrossRef]
- Kurka, J.; Adams, M.; Geremia, C.; Zhu, W.; Cain, K.; Conway, T.; Sallis, J. Comparison of Field and Online Observations for Measuring Land Uses Using the Microscale Audit of Pedestrian Streetscapes (MAPS). J. Transp. Health 2016, 3, 278–286. [Google Scholar] [CrossRef]
- Moudon, A.; Lee, C. Walking and Bicycling: An Evaluation of Environmental Audit Instruments. Am. J. Health Promot. 2003, 18, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Cain, K.; Millstein, R.; Sallis, J.; Conway, T.; Gavand, K.; Frank, L.; Saelens, B.; Geremia, C.; Chapman, J.; Adams, M.; et al. Contribution of Streetscape Audits to Explanation of Physical Activity in Four Age Groups Based on the Microscale Audit of Pedestrian Streetscapes (MAPS). Soc. Sci. Med. 2014, 116, 82–92. [Google Scholar] [CrossRef]
- Sallis, J.; Cain, K.; Conway, T.; Gavand, K.; Millstein, R.; Geremia, C.; Frank, L.; Saelens, B.; Glanz, K.; King, A. Is Your Neighborhood Designed to Support Physical Activity? A Brief Streetscape Audit Tool. Prev. Chronic Dis. 2015, 12, 150098. [Google Scholar] [CrossRef] [PubMed]
- Cain, K.; Geremia, C.; Conway, T.; Frank, L.; Chapman, J.; Fox, E.; Timperio, A.; Veitch, J.; Van Dyck, D.; Verhoeven, H.; et al. Development and Reliability of a Streetscape Observation Instrument for International Use: MAPS-Global. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 19. [Google Scholar] [CrossRef]
- Bauman, A.; Reis, R.; Sallis, J.; Wells, J.; Loos, R.; Martin, B. Lancet Phys Activity Series Workin Correlates of Physical Activity: Why Are Some People Physically Active and Others Not? Lancet 2012, 380, 258–271. [Google Scholar] [CrossRef]
- Vanwolleghem, G.; Ghekiere, A.; Cardon, G.; De Bourdeaudhuij, I.; D’Haese, S.; Geremia, C.; Lenoir, M.; Sallis, J.; Verhoeven, H.; Van Dyck, D. Using an Audit Tool (MAPS Global) to Assess the Characteristics of the Physical Environment Related to Walking for Transport in Youth: Reliability of Belgian Data. Int. J. Health Geogr. 2016, 15, 41. [Google Scholar] [CrossRef]
- Brownson, R.C.; Hoehner, C.M.; Brennan, L.K.; Cook, R.A.; Elliott, M.B.; McMullen, K.M. Reliability of 2 Instruments for Auditing the Environment for Physical Activity. J. Phys. Act. Health 2004, 1, 191–208. [Google Scholar] [CrossRef]
- Kealey, M.; Kruger, J.; Hunter, R.; Ivey, S.; Satariano, W.; Bayles, C.; Ramirez, B.; Bryant, L.; Johnson, C.; Lee, C. Engaging Older Adults to Be More Active Where They Live: Audit Tool Development. Prev. Chronic Dis. 2005, 2, 1–2. [Google Scholar]
- Queralt, A.; Molina-García, J.; Terrón-Pérez, M.; Cerin, E.; Barnett, A.; Timperio, A.; Veitch, J.; Reis, R.; Silva, A.A.P.; Ghekiere, A. Reliability of Streetscape Audits Comparing On-street and Online Observations: MAPS-Global in 5 Countries. Int. J. Health Geogr. 2021, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- Fox, E.; Chapman, J.; Moland, A.; Alfonsin, N.; Frank, L.; Sallis, J.; Conway, T.; Cain, K.; Geremia, C.; Cerin, E.; et al. International Evaluation of the Microscale Audit of Pedestrian Streetscapes (MAPS) Global Instrument: Comparative Assessment between Local and Remote Online Observers. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 84. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Oguma, Y.; Inoue, S.; Breugelmans, R.; Kikuchi, H.; Oka, K.; Okada, S.; Takeda, N.; Cain, K.L.; Sallis, J.F. Inter-Rater Reliability of Streetscape Audits Using Online Observations: Microscale Audit of Pedestrian Streetscapes (MAPS) Global in Japan. Prev. Med. Rep. 2022, 30, 102043. [Google Scholar] [CrossRef] [PubMed]
- Ganzar, L.A.; Burford, K.; Salvo, D.; Spoon, C.; Sallis, J.F.; Hoelscher, D.M. Development, Scoring, and Reliability for the Microscale Audit of Pedestrian Streetscapes for Safe Routes to School (MAPS-SRTS) Instrument. BMC Public Health 2024, 24, 722. [Google Scholar] [CrossRef]
- Sasaki, N.D.; Dalgallo, A.Z.; Leão, A.L.F.; Kanashiro, M. Análise Da Microescala Da Caminhabilidade: Aplicação Do MAPS-Global Em Um Bairro de Baixa Renda de Uma Cidade Média Brasileira. Rev. Morfol. Urbana 2022, 10, 1–18. [Google Scholar] [CrossRef]
- Patch, C.M.; Conway, T.L.; Kerr, J.; Arredondo, E.M.; Levy, S.; Spoon, C.; Butte, K.J.; Sannidhi, D.; Millstein, R.A.; Glorioso, D. Engaging Older Adults as Advocates for Age-Friendly, Walkable Communities: The Senior Change Makers Pilot Study. Transl. Behav. Med. 2021, 11, 1751–1763. [Google Scholar] [CrossRef] [PubMed]
- Millstein, R.A.; Cain, K.L.; Sallis, J.F.; Conway, T.L.; Geremia, C.; Frank, L.D.; Chapman, J.; Van Dyck, D.; Dipzinski, L.R.; Kerr, J.; et al. Development, Scoring, and Reliability of the Microscale Audit of Pedestrian Streetscapes (MAPS). BMC Public Health 2013, 13, 403. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.G.; Loprinzi, P.D.; Moore, R.; Pfeiffer, K.A. Comparison of Accelerometer Cut Points for Predicting Activity Intensity in Youth. Med. Sci. Sports Exerc. 2011, 43, 1360–1368. [Google Scholar] [CrossRef]
- Evenson, K.; Catellier, D.; Gill, K.; Ondrak, K.; McMurray, R. Calibration of Two Objective Measures of Physical Activity for Children. J. Sports Sci. 2008, 26, 1557–1565. [Google Scholar] [CrossRef]
- Norman, G.; Schmid, B.; Sallis, J.; Calfas, K.; Patrick, K. Psychosocial and Environmental Correlates of Adolescent Sedentary Behaviors. Pediatrics 2005, 116, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, D.; Norman, G.; Wagner, N.; Patrick, K.; Calfas, K.; Sallis, J. Reliability and Validity of the Sedentary Behavior Questionnaire (SBQ) for Adults. J. Phys. Act. Health 2010, 7, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.; Koch, G. Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Schielzeth, H.; Dingemanse, N.J.; Nakagawa, S.; Westneat, D.F.; Allegue, H.; Teplitsky, C.; Réale, D.; Dochtermann, N.A.; Garamszegi, L.Z.; Araya-Ajoy, Y.G. Robustness of Linear Mixed-effects Models to Violations of Distributional Assumptions. Methods Ecol. Evol. 2020, 11, 1141–1152. [Google Scholar] [CrossRef]
- Pocock, T.; Moore, A.; Keall, M.; Mandic, S. Physical and Spatial Assessment of School Neighbourhood Built Environments for Active Transport to School in Adolescents from Dunedin (New Zealand). Health Place 2019, 55, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, A.; Santos, M.; Ribeiro, J.; Mota, J. Physical Activity and Active Transport Are Predicted by Adolescents’ Different Built Environment Perceptions. J. Public Health 2012, 20, 5–10. [Google Scholar] [CrossRef]
- Nelson, N.; Woods, C. Neighborhood Perceptions and Active Commuting to School among Adolescent Boys and Girls. J. Phys. Act. Health 2010, 7, 257–266. [Google Scholar] [CrossRef]
- Sallis, J.; Carlson, J.; Ortega, A.; Allison, M.; Geremia, C.; Sotres-Alvarez, D.; Jankowska, M.; Mooney, S.; Chambers, E.; Hanna, D.; et al. Micro-Scale Pedestrian Streetscapes and Physical Activity in Hispanic/Latino Adults: Results from HCHS/SOL. Health Place 2022, 77, 102857. [Google Scholar] [CrossRef]
- Van Kann, D.; Kremers, S.; Gubbels, J.; Bartelink, N.; de Vries, S.; de Vries, N.; Jansen, M. The Association between the Physical Environment of Primary Schools and Active School Transport. Environ. Behav. 2015, 47, 418–435. [Google Scholar] [CrossRef]
- Phillips, C.B.; Engelberg, J.K.; Geremia, C.M.; Zhu, W.; Kurka, J.M.; Cain, K.L.; Sallis, J.F.; Conway, T.L.; Adams, M.A. Online versus In-Person Comparison of Microscale Audit of Pedestrian Streetscapes (MAPS) Assessments: Reliability of Alternate Methods. Int. J. Health Geogr. 2017, 16, 27. [Google Scholar] [CrossRef]
- Bromm, K.N.; Lang, I.-M.; Twardzik, E.E.; Antonakos, C.L.; Dubowitz, T.; Colabianchi, N. Virtual Audits of the Urban Streetscape: Comparing the Inter-Rater Reliability of GigaPan® to Google Street View. Int. J. Health Geogr. 2020, 19, 31. [Google Scholar] [CrossRef] [PubMed]
Subscales | Items Included |
---|---|
Positive destinations and land uses | Restaurants, shops, residential density, institutional services, workship, schools, bicycle shops, public and private recreation |
Negative destinations and land uses | Age-restricted bars, liquor or alcohol stores |
Overall destinations and land use | Positive destinations and land uses—negative destinations and land uses |
Positive streetscape | Transit, traffic calming devices, street amenities (trash bins, benches, bike racks, bike lockers, kiosks, hawkers) |
Positive aesthetics and social | Hardscape, water, softscape, landscaping |
Negative aesthetics and social | Buildings not maintained, graffiti, litter, dog fouling, extent of physical disorder, nearby highway |
Overall aesthetics and social | Positive aesthetics and social—negative aesthetics and social |
Positive segments | Condition of buildings, presence of sidewalks, presence of buffers, presence of bicycle infrastructure, presence of windows, presence of shadows, presence of pedestrian infrastructure, presence of informal paths (shortcut), presence of street vendors or shops, presence of tall buildings |
Negative segments | Non-continuous sidewalks, trip hazards, obstructions, cars blocking walkway, slope, gates, driveways |
Overall segments | Positive segments—negative segments |
Positive crossing | Crossing aids, marked crosswalks, high-visibility striping, different material than road, curb extension, raised crosswalks, protected refuge islands, curb quality, place on a pedestrian overpass, underpass or bridge, waiting areas, bike lane crossing the crossing, bike signals, intersection control |
Negative crossing | Distance of crossing leg |
Overall crossing | Positive crossing—negative crossing |
Pedestrian infrastructure | Trails, ped zones, sidewalk presence and width, buffers, shortcuts, midsegment crossing, pedestrian bridges, air-conditioned place to walk, low lights, overpasses, crosswalks, refuge islands |
Pedestrian design | Open-air markets, trash cans, benches, kiosks, hawkers and shops, setbacks, windows, pedestrian walk signals, push buttons, countdown signals, ramps, crossing aids |
Bike facilities | Bike racks, docking stations, lockers, bike lanes, bike lane quality, signs, bike signals, bike boxes, bike lane crossing the crossing |
Overall microscale positive | Positive destinations and land uses + positive streetscape + positive aesthetics and social + positive segments + positive crossing |
Overall microscale negative | Negative destinations and land uses + negative aesthetics and social + negative segments + negative crossing |
Reliability of On-Street Evaluators (R1–R2) ICC | Reliability of Online and On-Street 1 Evaluators (R2–R3) ICC | Reliability of Online and On-Street 2 Evaluators (R1–R3) ICC | |
---|---|---|---|
Positive destinations and land uses | 0.998 | 0.977 | 0.980 |
Negative destinations and land uses | 0.967 | 0.828 | 0.860 |
Overall destinations and land uses | 0.998 | 0.978 | 0.979 |
Positive streetscape | 0.994 | 0.966 | 0.965 |
Positive aesthetics and social | 0.982 | 0.989 | 1 |
Negative aesthetics and social | 0.877 | 0.380 | 0.267 |
Overall aesthetics and social | 0.898 | 0.642 | 0.613 |
Positive segments | 0.980 | 0.987 | 0.973 |
Negative segments | 1 | 0.915 | 0.915 |
Overall segments | 0.983 | 0.986 | 0.971 |
Positive crossing | 1 | 0.995 | 0.996 |
Negative crossing | 1 | 1 | 1 |
Overall crossing | 1 | 0.995 | 0.996 |
MAPS-Global Scores | MVPA (min/Day) | AC (min/Trip) | ||
---|---|---|---|---|
t | p | t | p | |
Positive destinations and land uses | 0.351 | 0.728 | 3.117 | 0.004 |
Negative destinations and land uses | 0.579 | 0.565 | −0.241 | 0.810 |
Overall destinations and land uses | 0.310 | 0.758 | 3.313 | 0.003 |
Positive streetscape | −1.653 | 0.110 | 1.843 | 0.083 |
Positive aesthetics and social | 0.567 | 0.574 | 1.731 | 0.092 |
Negative aesthetics and social | −0.148 | 0.883 | −0.419 | 0.678 |
Overall aesthetics and social | 0.425 | 0.674 | 1.275 | 0.211 |
Positive segments | 2.359 | 0.022 | −0.607 | 0.546 |
Negative segments | 0.559 | 0.578 | −3.309 | 0.002 |
Overall segments | 1.960 | 0.055 | 0.102 | 0.919 |
Positive crossing | 0.052 | 0.959 | −0.286 | 0.776 |
Negative crossing | −0.088 | 0.930 | 0.100 | 0.921 |
Overall crossing | 0.058 | 0.954 | −0.339 | 0.736 |
Pedestrian infrastructure | 0.984 | 0.330 | −1.068 | 0.291 |
Pedestrian design | 0.009 | 0.993 | 1.152 | 0.258 |
Bike facilities | 0.908 | 0.368 | −0.447 | 0.657 |
Overall microscale positive | 0.275 | 0.785 | 2.981 | 0.006 |
Overall microscale negative | 0.566 | 0.574 | −2.097 | 0.042 |
Grandscore | 0.209 | 0.835 | 3.183 | 0.004 |
MAPS-Global Scores | Sedentary Time (min/Day) | Sedentary Activities (min/School Day) | ||
---|---|---|---|---|
t | p | t | p | |
Positive destinations and land uses | 0.983 | 0.329 | 0.206 | 0.838 |
Negative destinations and land uses | −0.023 | 0.982 | −0.366 | 0.716 |
Overall destinations and land uses | 1.001 | 0.321 | 0.238 | 0.813 |
Positive streetscape | −0.052 | 0.959 | 1.402 | 0.166 |
Positive aesthetics and social | −0.356 | 0.723 | −1.573 | 0.121 |
Negative aesthetics and social | 2.469 | 0.016 | −0.764 | 0.448 |
Overall aesthetics and social | −2.148 | 0.036 | −0.260 | 0.796 |
Positive segments | 0.019 | 0.985 | −1.763 | 0.083 |
Negative segments | −0.526 | 0.600 | −.889 | 0.377 |
Overall segments | 0.435 | 0.665 | −1.411 | 0.163 |
Positive crossing | 0.768 | 0.445 | −1.419 | 0.161 |
Negative crossing | 0.337 | 0.737 | −1.149 | 0.255 |
Overall crossing | 0.764 | 0.448 | −1.319 | 0.192 |
Pedestrian infrastructure | 0.503 | 0.617 | −0.371 | 0.712 |
Pedestrian design | 0.066 | 0.947 | 0.075 | 0.940 |
Bike facilities | 0.296 | 0.768 | −1.953 | 0.055 |
Overall microscale positive | 0.895 | 0.374 | 0.104 | 0.917 |
Overall microscale negative | 1.548 | 0.127 | −1.555 | 0.125 |
Grandscore | 0.728 | 0.469 | 0.270 | 0.788 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terrón-Pérez, M.; Molina-García, J.; Santainés-Borredá, E.; Estevan, I.; Queralt, A. Using the MAPS-Global Audit Tool to Assess the Influence of Microscale Built-Environment Attributes Related to Physical Activity and Sedentary Behavior in Spanish Youth. Safety 2024, 10, 73. https://doi.org/10.3390/safety10030073
Terrón-Pérez M, Molina-García J, Santainés-Borredá E, Estevan I, Queralt A. Using the MAPS-Global Audit Tool to Assess the Influence of Microscale Built-Environment Attributes Related to Physical Activity and Sedentary Behavior in Spanish Youth. Safety. 2024; 10(3):73. https://doi.org/10.3390/safety10030073
Chicago/Turabian StyleTerrón-Pérez, Marta, Javier Molina-García, Elena Santainés-Borredá, Isaac Estevan, and Ana Queralt. 2024. "Using the MAPS-Global Audit Tool to Assess the Influence of Microscale Built-Environment Attributes Related to Physical Activity and Sedentary Behavior in Spanish Youth" Safety 10, no. 3: 73. https://doi.org/10.3390/safety10030073
APA StyleTerrón-Pérez, M., Molina-García, J., Santainés-Borredá, E., Estevan, I., & Queralt, A. (2024). Using the MAPS-Global Audit Tool to Assess the Influence of Microscale Built-Environment Attributes Related to Physical Activity and Sedentary Behavior in Spanish Youth. Safety, 10(3), 73. https://doi.org/10.3390/safety10030073