Acceptance of Digital Discharge Management Interventions Among Patients After Bariatric Surgery: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measures
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Intention to Use Digital Discharge Management Interventions
3.3. Drivers and Barriers of the Intention to Use Digital Discharge Management Interventions
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 30 October 2022).
- Cardoso, L.; Rodrigues, D.; Gomes, L.; Carrilho, F. Short- and long-term mortality after bariatric surgery: A systematic review and meta-analysis. Diabetes Obes. Metab. 2017, 19, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Runkel, N. Adipositas-Therapie im Umbruch. Lege Artis. Das. Mag. Zur. Ärztlichen Weiterbildung 2014, 4, 18–23. [Google Scholar] [CrossRef]
- Egger, M.; Razum, O.; Rieder, A. Globale Gesundheit. In Public Health Kompakt, 3rd ed.; De Gruyter: Berlin, Germany, 2018; pp. 483–506. [Google Scholar]
- Sarwer, D.B.; Polonsky, H.M. The Psychosocial Burden of Obesity. Endocrinol. Metab. Clin. North. Am. 2016, 45, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Guh, D.P.; Zhang, W.; Bansback, N.; Amarsi, Z.; Birmingham, C.L.; Anis, A.H. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health 2009, 9, 88. [Google Scholar] [CrossRef]
- Chavda, V.P.; Ajabiya, J.; Teli, D.; Bojarska, J.; Apostolopoulos, V. Tirzepatide, a New Era of Dual-Targeted Treatment for Diabetes and Obesity: A Mini-Review. Molecules 2022, 27, 4315. [Google Scholar] [CrossRef]
- Jordan, J. Medikamentöse Therapie der Adipositas. In Handbuch Essstörungen und Adipositas; Herpertz, S., de Zwaan, M., Zipfel, S., Eds.; Springer: Berlin, Germany, 2022; pp. 535–541. [Google Scholar]
- Wing, R.R.; Espeland, M.A.; Clark, J.M.; Hazuda, H.P.; Knowler, W.C.; Pownall, H.J.; Unick, J.; Wadden, T.; Wagenknecht, L. Association of Weight Loss Maintenance and Weight Regain on 4-Year Changes in CVD Risk Factors: The Action for Health in Diabetes (Look AHEAD) Clinical Trial. Diabetes Care 2016, 39, 1345–1355. [Google Scholar] [CrossRef]
- Yumuk, V.; Tsigos, C.; Fried, M.; Schindler, K.; Busetto, L.; Micic, D.; Toplak, H. European Guidelines for Obesity Management in Adults. Obes. Facts 2015, 8, 402–424. [Google Scholar] [CrossRef]
- Jensen, M.D.; Ryan, D.H.; Donato, K.A.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. Executive summary: Guidelines (2013) for the management of overweight and obesity in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Obesity Society published by the Obesity Society and American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Based on a systematic review from the The Obesity Expert Panel, 2013. Obesity 2014, 22 (Suppl. S2), S5–S39. [Google Scholar] [CrossRef]
- Welbourn, R.; Hollyman, M.; Kinsman, R.; Dixon, J.; Liem, R.; Ottosson, J.; Ramos, A.; Våge, V.; Al-Sabah, S.; Brown, W.; et al. Bariatric Surgery Worldwide: Baseline Demographic Description and One-Year Outcomes from the Fourth IFSO Global Registry Report 2018. Obes. Surg. 2019, 29, 782–795. [Google Scholar] [CrossRef]
- Jammah, A.A. Endocrine and metabolic complications after bariatric surgery. Saudi J. Gastroenterol. 2015, 21, 269–277. [Google Scholar] [CrossRef]
- Elrazek, A.E.; Elbanna, A.E.; Bilasy, S.E. Medical management of patients after bariatric surgery: Principles and guidelines. World J. Gastrointest. Surg. 2014, 6, 220–228. [Google Scholar] [CrossRef]
- Busetto, L.; Dicker, D.; Azran, C.; Batterham, R.L.; Farpour-Lambert, N.; Fried, M.; Hjelmesæth, J.; Kinzl, J.; Leitner, D.R.; Makaronidis, J.M.; et al. Practical Recommendations of the Obesity Management Task Force of the European Association for the Study of Obesity for the Post-Bariatric Surgery Medical Management. Obes. Facts 2017, 10, 597–632. [Google Scholar] [CrossRef]
- Ballantyne, G.H.; Svahn, J.; Capella, R.F.; Capella, J.F.; Schmidt, H.J.; Wasielewski, A.; Davies, R.J. Predictors of Prolonged Hospital Stay following Open and Laparoscopic Gastric Bypass for Morbid Obesity: Body Mass Index, Length of Surgery, Sleep Apnea, Asthma and the Metabolic Syndrome. Obes. Surg. 2004, 14, 1042–1050. [Google Scholar] [CrossRef]
- Liu, L.M.; Liu, M.T.; Sun, M.J.; Wang, J.N.; Lin, B.L.; Wang, P.; Li, Q.F. Validity and reliability of the Chinese version of the partners at care transitions measure. BMC Health Serv. Res. 2021, 21, 1284. [Google Scholar] [CrossRef]
- Shadmi, E.; Zisberg, A.; Coleman, E.A. Translation and validation of the Care Transition Measure into Hebrew and Arabic. Int. J. Qual. Health Care 2009, 21, 97–102. [Google Scholar] [CrossRef]
- Bakshi, A.B.; Wee, S.L.; Tay, C.; Wong, L.M.; Leong, I.Y.; Merchant, R.A.; Luo, N. Validation of the care transition measure in multi-ethnic South-East Asia in Singapore. BMC Health Serv. Res. 2012, 12, 256. [Google Scholar] [CrossRef]
- Manafo, E.; Petermann, L.; Mason-Lai, P.; Vandall-Walker, V. Patient engagement in Canada: A scoping review of the ‘how’ and ‘what’ of patient engagement in health research. Health Res. Policy Syst. 2018, 16, 5. [Google Scholar] [CrossRef]
- Orozco-Beltrán, D.; Morales, C.; Artola-Menéndez, S.; Brotons, C.; Carrascosa, S.; González, C.; Baro, Ó.; Aliaga, A.; Ferreira de Campos, K.; Villarejo, M.; et al. Effects of a Digital Patient Empowerment and Communication Tool on Metabolic Control in People With Type 2 Diabetes: The DeMpower Multicenter Ambispective Study. JMIR Diabetes 2022, 7, e40377. [Google Scholar] [CrossRef]
- Bassi, G.; Mancinelli, E.; Dell’Arciprete, G.; Rizzi, S.; Gabrielli, S.; Salcuni, S. Efficacy of eHealth Interventions for Adults with Diabetes: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 8982. [Google Scholar] [CrossRef]
- Ebert, D.D.; Cuijpers, P.; Muñoz, R.F.; Baumeister, H. Prevention of Mental Health Disorders Using Internet- and Mobile-Based Interventions: A Narrative Review and Recommendations for Future Research. Front. Psychiatry 2017, 8, 116. [Google Scholar] [CrossRef]
- Cranen, K.; Drossaert, C.H.; Brinkman, E.S.; Braakman-Jansen, A.L.; Ijzerman, M.J.; Vollenbroek-Hutten, M.M. An exploration of chronic pain patients’ perceptions of home telerehabilitation services. Health Expect. 2012, 15, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Van Gemert-Pijnen, J.E.; Nijland, N.; van Limburg, M.; Ossebaard, H.C.; Kelders, S.M.; Eysenbach, G.; Seydel, E.R. A holistic framework to improve the uptake and impact of eHealth technologies. J. Med. Internet Res. 2011, 13, e111. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Patient Safety Action Plan 2021–2030. 2021. Available online: https://www.who.int/teams/integrated-health-services/patient-safety/policy/global-patient-safety-action-plan (accessed on 11 December 2023).
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Philippi, P.; Baumeister, H.; Apolinário-Hagen, J.; Ebert, D.D.; Hennemann, S.; Kott, L.; Lin, J.; Messner, E.-M.; Terhorst, Y. Acceptance towards digital health interventions—Model validation and further development of the Unified Theory of Acceptance and Use of Technology. Internet Interv. 2021, 26, 100459. [Google Scholar] [CrossRef]
- Davis, F.; Davis, F. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319. [Google Scholar] [CrossRef]
- Nurtsch, A.; Teufel, M.; Jahre, L.M.; Esber, A.; Rausch, R.; Tewes, M.; Schöbel, C.; Palm, S.; Schuler, M.; Schadendorf, D.; et al. Drivers and barriers of patients’ acceptance of video consultation in cancer care. Digit. Health 2024, 10, 20552076231222108. [Google Scholar] [CrossRef]
- Huang, L.; Li, V.W.; Yang, T.; Liu, J.; Murphy, J.; Michalak, E.E.; Wang, Z.; Ng, C.; Yatham, L.; Chen, J.; et al. Mobile Health Applications for Depression in China: A Systematic Review. Cureus 2022, 14, e27299. [Google Scholar] [CrossRef]
- Bäuerle, A.; Frewer, A.L.; Rentrop, V.; Schüren, L.C.; Niedergethmann, M.; Lortz, J.; Skoda, E.M.; Teufel, M. Determinants of Acceptance of Weight Management Applications in Overweight and Obese Individuals: Using an Extended Unified Theory of Acceptance and Use of Technology Model. Nutrients 2022, 14, 1968. [Google Scholar] [CrossRef]
- Rentrop, V.; Damerau, M.; Schweda, A.; Steinbach, J.; Schüren, L.C.; Niedergethmann, M.; Skoda, E.M.; Teufel, M.; Bäuerle, A. Predicting Acceptance of e-Mental Health Interventions in Patients with Obesity by Using an Extended Unified Theory of Acceptance Model: Cross-sectional Study. JMIR Form. Res. 2022, 6, e31229. [Google Scholar] [CrossRef]
- Damerau, M.; Teufel, M.; Musche, V.; Dinse, H.; Schweda, A.; Beckord, J.; Steinbach, J.; Schmidt, K.; Skoda, E.M.; Bäuerle, A. Determining Acceptance of e-Mental Health Interventions in Digital Psychodiabetology Using a Quantitative Web-Based Survey: Cross-sectional Study. JMIR Form. Res. 2021, 5, e27436. [Google Scholar] [CrossRef]
- Lin, J.; Faust, B.; Ebert, D.D.; Krämer, L.; Baumeister, H. A Web-Based Acceptance-Facilitating Intervention for Identifying Patients’ Acceptance, Uptake, and Adherence of Internet- and Mobile-Based Pain Interventions: Randomized Controlled Trial. J. Med. Internet Res. 2018, 20, e244. [Google Scholar] [CrossRef] [PubMed]
- Marsall, M.; Engelmann, G.; Skoda, E.M.; Teufel, M.; Bäuerle, A. Measuring Electronic Health Literacy: Development, Validation, and Test of Measurement Invariance of a Revised German Version of the eHealth Literacy Scale. J. Med. Internet Res. 2022, 24, e28252. [Google Scholar] [CrossRef]
- Hennemann, S.; Beutel, M.E.; Zwerenz, R. Drivers and Barriers to Acceptance of Web-Based Aftercare of Patients in Inpatient Routine Care: A Cross-Sectional Survey. J. Med. Internet Res. 2016, 18, e337. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Schröder, J.; Bäuerle, A.; Jahre, L.M.; Skoda, E.M.; Stettner, M.; Kleinschnitz, C.; Teufel, M.; Dinse, H. Acceptance, drivers, and barriers to use eHealth interventions in patients with post-COVID-19 syndrome for management of post-COVID-19 symptoms: A cross-sectional study. Ther. Adv. Neurol. Disord. 2023, 16, 17562864231175730. [Google Scholar] [CrossRef]
- Bhuyan, S.S.; Lu, N.; Chandak, A.; Kim, H.; Wyant, D.; Bhatt, J.; Kedia, S.; Chang, C.F. Use of Mobile Health Applications for Health-Seeking Behavior Among US Adults. J. Med. Syst. 2016, 40, 153. [Google Scholar] [CrossRef]
- Inchusri, T.; Surangsrirat, D.; Kwanmuang, P.; Poomivanichakij, P.; Apiwatgaroon, P.; Ongprakobkul, S.; Kongchu, A.; Klinpikul, A.; Taneeheng, A.; Pruphetkaew, N.; et al. Association of Generation and Group Size With the Usage of a Mobile Health App in Thailand: Secondary Analysis of the ThaiSook Cohort Study. J. Med. Internet Res. 2023, 25, e45374. [Google Scholar] [CrossRef]
- Vaportzis, E.; Clausen, M.G.; Gow, A.J. Older Adults Perceptions of Technology and Barriers to Interacting with Tablet Computers: A Focus Group Study. Front. Psychol. 2017, 8, 1687. [Google Scholar] [CrossRef]
- Chiu, C.-J.; Liu, C.-W. Understanding Older Adult’s Technology Adoption and Withdrawal for Elderly Care and Education: Mixed Method Analysis from National Survey. J. Med. Internet Res. 2017, 19, e374. [Google Scholar] [CrossRef]
- Anderson, M.; Perrin, A. Barriers to Adoption and Attitudes Towards Technology. Available online: https://www.pewresearch.org/internet/2017/05/17/barriers-to-adoption-and-attitudes-towards-technology/ (accessed on 15 November 2023).
- Young, R.; Willis, E.; Cameron, G.; Geana, M. “Willing but Unwilling”: Attitudinal barriers to adoption of home-based health information technology among older adults. Health Inform. J. 2013, 20, 127–135. [Google Scholar] [CrossRef]
- Zapata, B.C.; Fernández-Alemán, J.L.; Idri, A.; Toval, A. Empirical Studies on Usability of mHealth Apps: A Systematic Literature Review. J. Med. Syst. 2015, 39, 1. [Google Scholar] [CrossRef]
- Giao, H.; Nhat Vuong, B.; Tung, D.; Quan, T. A Model of Factors Influencing Behavioral Intention to Use Internet Banking and The Moderating Role of Anxiety: Evidence from Vietnam. WSEAS Trans. Bus. Econ. 2020, 17, 551–561. [Google Scholar] [CrossRef]
- Igbaria, M.; Parasuraman, S. A Path Analytic Study of Individual Characteristics, Computer Anxiety and Attitudes toward Microcomputers. J. Manag. 1989, 15, 373–388. [Google Scholar] [CrossRef]
- Khechine, H.; Lakhal, S. Technology as a Double-Edged Sword: From Behavior Prediction with UTAUT to Students’ Outcomes Considering Personal Characteristics. J. Inf. Technol. Educ. Res. 2018, 17, 063–102. [Google Scholar] [CrossRef]
- Sivakumaran, T.; Lux, A.C. Overcoming Computer Anxiety: A Three-Step Process for Adult Learners. US-China Educ. Rev. B 2011, 1, 155–161. [Google Scholar]
- Jacobs, R.J.; Lou, J.Q.; Ownby, R.L.; Caballero, J. A systematic review of eHealth interventions to improve health literacy. Health Inform. J. 2016, 22, 81–98. [Google Scholar] [CrossRef]
- Collins, S.A.; Currie, L.M.; Bakken, S.; Vawdrey, D.K.; Stone, P.W. Health literacy screening instruments for eHealth applications: A systematic review. J. Biomed. Inf. 2012, 45, 598–607. [Google Scholar] [CrossRef]
- Kokol, P.; Stiglic, G. PRIMER ICT: A new blended learning paradigm for teaching ICT skills to older people. In Proceedings of the 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), Bristol, UK, 27–30 June 2011; pp. 1–5. [Google Scholar]
- Xie, B. Improving older adults’ e-health literacy through computer training using NIH online resources. Libr. Inf. Sci. Res. 2012, 34, 63–71. [Google Scholar] [CrossRef]
- Czaja, S.J.; Sharit, J.; Lee, C.C.; Nair, S.N.; Hernández, M.A.; Arana, N.; Fu, S.H. Factors influencing use of an e-health website in a community sample of older adults. J. Am. Med. Inform. Assoc. 2012, 20, 277–284. [Google Scholar] [CrossRef]
- Woods, L.S.; Duff, J.; Roehrer, E.; Walker, K.; Cummings, E. Patients’ Experiences of Using a Consumer mHealth App for Self-Management of Heart Failure: Mixed-Methods Study. JMIR Hum. Factors 2019, 6, e13009. [Google Scholar] [CrossRef]
- Peters, T. The Role of Motivation in Consumer Experience with Mobile Health (mHealth) Applications. Master’s Thesis, Radboud Universiteit, Nijmegen, The Netherlands, 2022. [Google Scholar]
- Soni, M.; Jain, K.; Sharma, I. Mobile health (mHealth) application loyalty in young consumers. Young Consum. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- James, D.C.S.; Harville, C., 2nd. Barriers and Motivators to Participating in mHealth Research Among African American Men. Am. J. Mens. Health 2017, 11, 1605–1613. [Google Scholar] [CrossRef]
- Faries, M.D. Why We Don’t “Just Do It”:Understanding the Intention-Behavior Gap in Lifestyle Medicine. Am. J. Lifestyle Med. 2016, 10, 322–329. [Google Scholar] [CrossRef]
- Fuchs, H.F.; Broderick, R.C.; Harnsberger, C.R.; Chang, D.C.; Sandler, B.J.; Jacobsen, G.R.; Horgan, S. Benefits of bariatric surgery do not reach obese men. J. Laparoendosc. Adv. Surg. Tech. A 2015, 25, 196–201. [Google Scholar] [CrossRef]
- Conway, J.M.; Lance, C.E. What Reviewers Should Expect from Authors Regarding Common Method Bias in Organizational Research. J. Bus. Psychol. 2010, 25, 325–334. [Google Scholar] [CrossRef]
n (%) | |
Marital status | |
Married | 295 (57.4) |
In a relationship | 82 (16.0) |
Single | 71 (13.8) |
Divorced/separated | 59 (11.5) |
Widowed | 7 (1.4) |
Educational level | |
University education | 75 (14.6) |
Higher education entrance qualification | 120 (23.3) |
Secondary school | 215 (41.8) |
Lower secondary education/no qualification | 104 (20.2) |
Occupational status | |
In education (e.g., school, university) | 8 (1.6) |
Unemployed (e.g., job seeking, occupational disability) | 46 (8.9) |
Certified unfit for work | 17 (3.3) |
Part-time employed | 130 (25.3) |
Full-time employed | 219 (42.6) |
Retired | 56 (10.9) |
Other | 38 (7.4) |
Place of residence (population size) | |
Large city (>100,000 residents) | 203 (39.5) |
Medium-sized city (>20,000 residents) | 138 (26.8) |
Small town (>5000 residents) | 83 (16.1) |
Rural area (<5000 residents) | 90 (17.5) |
BMI after bariatric surgery | |
Normal weight | 45 (8.8) |
Overweight (pre-obese: BMI < 30) | 115 (22.4) |
Obese (class I: BMI of 30 to <35) | 149 (29.0) |
Obese (class II: BMI of 35 to <40) | 91 (17.7) |
Obese (class III: BMI of ≥40) | 114 (22.2) |
BMI before bariatric surgery | |
Overweight (pre-obese: BMI < 30) | 1 (0.2) |
Obese (class I: BMI of 30 to <35) | 1 (0.2) |
Obese (class II: BMI of 35 to <40) | 26 (5.1) |
Obese (class III: BMI of ≥40) | 485 (94.5) |
Missing value | 1 (0.2) |
Bariatric procedure | |
Sleeve gastrectomy | 247 (48.1) |
Roux-en-Y gastric bypass | 202 (39.3) |
One anastomosis gastric bypass OAGB | 44 (8.6) |
Other | 21 (3.1) |
Total | 514 (100.0) |
Predictors | B | β | T | R2 | ∆R2 | p |
(Intercept) | 2.11 | −0.06 | 7.99 | 0.001 | ||
Step 1: Sociodemographic data | 0.031 | 0.031 | ||||
Age | −0.00 | −0.07 | −2.01 | 0.045 | ||
Female gender | −0.05 | −0.08 | −0.68 | 0.494 | ||
Education: university | −0.03 | −0.05 | −0.43 | 0.665 | ||
Education: lower secondary education/ No qualification | 0.04 | 0.07 | 0.68 | 0.499 | ||
Education: secondary school | 0.06 | 0.09 | 1.11 | 0.266 | ||
Step 2: Medical data | 0.051 | 0.020 | ||||
BMI | −0.00 | −0.01 | −0.16 | 0.875 | ||
Time since bariatric operation | −0.00 | −0.05 | −1.33 | 0.183 | ||
Mental illness | 0.03 | 0.06 | 0.87 | 0.387 | ||
Step 3: eHealth data | 0.099 | 0.048 | ||||
eHealth literacy | 0.00 | 0.04 | 1.14 | 0.256 | ||
Digital confidence | −0.05 | −0.07 | −1.96 | 0.050 | ||
Internet anxiety | −0.07 | −0.07 | −1.96 | 0.051 | ||
Digital overload | 0.05 | 0.08 | 2.13 | 0.034 | ||
Step 4: UTAUT predictors | 0.511 | 0.452 | ||||
EE | 0.31 | 0.36 | 8.28 | <0.001 | ||
PE | 0.16 | 0.23 | 5.56 | <0.001 | ||
SI | 0.19 | 0.26 | 6.77 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peters, S.; Marsall, M.; Hasenberg, T.; Jahre, L.M.; Niedergethmann, M.; Teufel, M.; Bäuerle, A. Acceptance of Digital Discharge Management Interventions Among Patients After Bariatric Surgery: A Cross-Sectional Study. Safety 2024, 10, 91. https://doi.org/10.3390/safety10040091
Peters S, Marsall M, Hasenberg T, Jahre LM, Niedergethmann M, Teufel M, Bäuerle A. Acceptance of Digital Discharge Management Interventions Among Patients After Bariatric Surgery: A Cross-Sectional Study. Safety. 2024; 10(4):91. https://doi.org/10.3390/safety10040091
Chicago/Turabian StylePeters, Simone, Matthias Marsall, Till Hasenberg, Lisa Maria Jahre, Marco Niedergethmann, Martin Teufel, and Alexander Bäuerle. 2024. "Acceptance of Digital Discharge Management Interventions Among Patients After Bariatric Surgery: A Cross-Sectional Study" Safety 10, no. 4: 91. https://doi.org/10.3390/safety10040091
APA StylePeters, S., Marsall, M., Hasenberg, T., Jahre, L. M., Niedergethmann, M., Teufel, M., & Bäuerle, A. (2024). Acceptance of Digital Discharge Management Interventions Among Patients After Bariatric Surgery: A Cross-Sectional Study. Safety, 10(4), 91. https://doi.org/10.3390/safety10040091