Virtual Assessment of a Representative Torso Airbag under the Fall from Height Impact Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Finite Element Models
2.2. Simulation Study
2.3. Evaluation Criteria
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Baron, S.L.; Steege, A.L.; Marsh, S.M.; Menéndez, C.C.; Myers, J.R. Nonfatal work-related injuries and illnesses—United States, 2010. CDC Health Disparities Inequalities Rep. USA 2013, 62, 35. [Google Scholar]
- Dembe, A.E. The social consequences of occupational injuries and illnesses. Am. J. Ind. Med. 2001, 40, 403–417. [Google Scholar] [CrossRef]
- Mangharam, J.; Moorin, R.; Straker, L. A comparison of the burden and resultant risk associated with occupational falls from a height and on the same level in Australia. Ergonomics 2016, 59, 1646–1660. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/falls (accessed on 8 May 2023).
- Chan, A.P.; Wong, F.K.; Chan, D.W.; Yam, M.C.; Kwok, A.W.; Lam, E.W.; Cheung, E. Work at height fatalities in the repair, maintenance, alteration, and addition works. J. Constr. Eng. Manag. 2008, 134, 527–535. [Google Scholar] [CrossRef]
- Hu, K.; Rahmandad, H.; Smith-Jackson, T.; Winchester, W. Factors influencing the risk of falls in the construction industry: A review of the evidence. Constr. Manag. Econ. 2011, 29, 397–416. [Google Scholar] [CrossRef]
- Zhang, M.; Fang, D. A cognitive analysis of why Chinese scaffolders do not use safety harnesses in construction. Constr. Manag. Econ. 2013, 31, 207–222. [Google Scholar] [CrossRef]
- BLS. Fatal Occupational Injuries by Event or Exposure. Available online: https://www.bls.gov/charts/census-of-fatal-occupational-injuries/fatal-occupational-injuries-by-event-drilldown.htm (accessed on 28 April 2023).
- HSE. Health and Safety Executive, Work-Related Fatal Injuries in Great Britain. Available online: https://www.hse.gov.uk/statistics/fatals.htm (accessed on 28 April 2023).
- Nadhim, E.A.; Hon, C.; Xia, B.; Stewart, I.; Fang, D. Falls from Height in the Construction Industry: A Critical Review of the Scientific Literature. Int. J. Environ. Res. Public Health 2016, 13, 638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiDomenico, A.T.; Lesch, M.F.; Blair, M.F.; Huang, Y.-H. Reaching on ladders: Do motivation & acclimation affect risk taking? Prof. Saf. 2013, 58, 50–53. [Google Scholar]
- Dong, X.S.; Wang, X.; Largay, J.A.; Platner, J.W.; Stafford, E.; Cain, C.T.; Choi, S.D. Fatal falls in the U.S. residential construction industry. Am. J. Ind. Med. 2014, 57, 992–1000. [Google Scholar] [CrossRef]
- Huang, X.; Hinze, J. Analysis of construction worker fall accidents. J. Constr. Eng. Manag. 2003, 129, 262–271. [Google Scholar] [CrossRef]
- Zlatar, T.; Lago, E.M.G.; Soares, W.D.A.; Baptista, J.d.S.; Barkokébas Junior, B. Falls from height: Analysis of 114 cases. Production 2019, 29, e20180091. [Google Scholar] [CrossRef] [Green Version]
- Bleyer, T.; Bentz, I.; Fähnrich, R. Tödliche Arbeitsunfälle: Absturzunfälle; Bundesanstalt für Arbeitsschutz und Arbeitsmedizin: Dortmund, Germany, 2017. [Google Scholar]
- Newaz, M.T.; Ershadi, M.; Carothers, L.; Jefferies, M.; Davis, P. A review and assessment of technologies for addressing the risk of falling from height on construction sites. Saf. Sci. 2022, 147, 105618. [Google Scholar] [CrossRef]
- Takim, R.; Zulkifli, M.H.; Nawawi, A.H. Integration of automated safety rule checking (ASRC) system for safety planning BIM-based projects in Malaysia. Procedia-Soc. Behav. Sci. 2016, 222, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Camino Lopez, M.A.; Ritzel, D.O.; Fontaneda, I.; Gonzalez Alcantara, O.J. Construction industry accidents in Spain. J. Saf. Res. 2008, 39, 497–507. [Google Scholar] [CrossRef]
- Kaskutas, V.; Dale, A.M.; Lipscomb, H.; Evanoff, B. Fall prevention and safety communication training for foremen: Report of a pilot project designed to improve residential construction safety. J. Saf. Res. 2013, 44, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Pan, W. Virtual reality supported interactive tower crane layout planning for high-rise modular integrated construction. Autom. Constr. 2021, 130, 103854. [Google Scholar] [CrossRef]
- Zhang, S.; Sulankivi, K.; Kiviniemi, M.; Romo, I.; Eastman, C.M.; Teizer, J. BIM-based fall hazard identification and prevention in construction safety planning. Saf. Sci. 2015, 72, 31–45. [Google Scholar] [CrossRef]
- Chi, C.F.; Chang, T.C.; Ting, H.I. Accident patterns and prevention measures for fatal occupational falls in the construction industry. Appl. Ergon. 2005, 36, 391–400. [Google Scholar] [CrossRef]
- Cakan, H.; Kazan, E.; Usmen, M. Investigation of factors contributing to fatal and nonfatal roofer fall accidents. Int. J. Constr. Educ. Res. 2014, 10, 300–317. [Google Scholar] [CrossRef]
- Choo, H.; Lee, B.; Kim, H.; Choi, B. Automated detection of construction work at heights and deployment of safety hooks using IMU with a barometer. Autom. Constr. 2023, 147, 104714. [Google Scholar] [CrossRef]
- Dong, X.S.; Largay, J.A.; Choi, S.D.; Wang, X.; Cain, C.T.; Romano, N. Fatal falls and PFAS use in the construction industry: Findings from the NIOSH FACE reports. Accid. Anal. Prev. 2017, 102, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Turgut, K.; Sarihan, M.E.; Colak, C.; Guven, T.; Gur, A.; Gurbuz, S. Falls from height: A retrospective analysis. World J. Emerg. Med. 2018, 9, 46–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.C.; Ro, Y.S.; Shin, S.D.; Kim, J.Y. Preventive Effects of Safety Helmets on Traumatic Brain Injury after Work-Related Falls. Int. J. Environ. Res. Public Health 2016, 13, 1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köppe, G.J.J.; Gloy, Y.-S.; Gries, T.; Lehnert, M.; Kim, H.-D.; Min, M. Entwicklung Einer Tragbaren Persönlichen Schutzausrüstung Gegen Absturz—“Scaffbag”; BG Bau: Berlin, Germany, 2016. [Google Scholar]
- Minerva Airbag Systems. Available online: https://www.minerva-as.com/opus-2-0/ (accessed on 3 May 2023).
- Aranda Marco, R. Biomechanical Effectiveness Assessment of Motorcyclist Airbags in Realistic Impact Scenarios Using Human Body Models; Ludwig-Maximilian Universität München (LMU): Munich, Germany, 2022. [Google Scholar]
- Serre, T.; Masson, C.; Llari, M.; Canu, B.; Py, M.; Perrin, C. Airbag jacket for motorcyclists: Evaluation of real effectiveness. In Proceedings of the IRCOBI 2019, International Conference on the Biomechanics of Injury, Florence, Italy, 11–13 September 2019; pp. 533–547. [Google Scholar]
- Cherta Ballester, O.; Llari, M.; Honoré, V.; Masson, C.; Arnoux, P.-J. An evaluation methodology for motorcyclists’ wearable airbag protectors based on finite element simulations. Int. J. Crashworthiness 2021, 26, 99–108. [Google Scholar] [CrossRef]
- Fernandes, F.A.; De Sousa, R.A. Finite element analysis of helmeted oblique impacts and head injury evaluation with a commercial road helmet. Struct. Eng. Mech. 2013, 48, 661–679. [Google Scholar] [CrossRef]
- Yu, X.; Logan, I.; de Pedro Sarasola, I.; Dasaratha, A.; Ghajari, M. The protective performance of modern motorcycle helmets under oblique impacts. Ann. Biomed. Eng. 2022, 50, 1674–1688. [Google Scholar] [CrossRef] [PubMed]
- Milne, G.; Deck, C.; Bourdet, N.; Carreira, R.; Allinne, Q.; Gallego, A.; Willinger, R. Bicycle helmet modelling and validation under linear and tangential impacts. Int. J. Crashworthiness 2014, 19, 323–333. [Google Scholar] [CrossRef]
- Posirisuk, P.; Baker, C.; Ghajari, M. Computational prediction of head-ground impact kinematics in e-scooter falls. Accid. Anal. Prev. 2022, 167, 106567. [Google Scholar] [CrossRef]
- Meyer, F.; Deck, C.; Willinger, R. Protection from motorcycle neck–braces using FE modelling. Sports Eng. 2018, 21, 267–276. [Google Scholar] [CrossRef]
- Untaroiu, C.D.; Putnam, J.B.; Schap, J.; Davis, M.L.; Gayzik, F.S. Development and preliminary validation of a 50th percentile pedestrian finite element model. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA, USA, 2–5 August 2015; p. V003T001A004. [Google Scholar]
- Poulard, D.; Kent, R.W.; Kindig, M.; Li, Z.; Subit, D. Thoracic response targets for a computational model: A hierarchical approach to assess the biofidelity of a 50th-percentile occupant male finite element model. J. Mech. Behav. Biomed. Mater. 2015, 45, 45–64. [Google Scholar] [CrossRef]
- Lobdell, T.E.; Kroell, C.K.; Schneider, D.C.; Hering, W.E.; Nahum, A.M. Impact Response of the Human Thorax. In Human Impact Response: Measurement and Simulation; King, W.F., Mertz, H.J., Eds.; Springer: Boston, MA, USA, 1973; pp. 201–245. [Google Scholar] [CrossRef]
- Kroell, C.K.; Schneider, D.C.; Nahum, A.M. Impact tolerance and response of the human thorax II. SAE Trans. 1974, 83, 3724–3762. [Google Scholar] [CrossRef]
- Lau, I.V.; Viano, D.C. The viscous criterion—Bases and applications of an injury severity index for soft tissues. SAE Trans. 1986, 95, 672–691. [Google Scholar] [CrossRef]
- Viano, D.C.; Lau, I.V. A viscous tolerance criterion for soft tissue injury assessment. J. Biomech. 1988, 21, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Xia, P.; Chang, H.-F.; Yu, Y.-M.; Dai, G.-X.; Li, H.-W.; Jiang, Q.-G.; Yin, Z.-Y. Morphologic studies of high fall injuries. Chin. J. Traumatol. 2012, 15, 334–337. [Google Scholar]
- Beeman, S.M.; Kemper, A.R.; Madigan, M.L.; Franck, C.T.; Loftus, S.C. Occupant kinematics in low-speed frontal sled tests: Human volunteers, Hybrid III ATD, and PMHS. Accid. Anal. Prev. 2012, 47, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Yaguchi, M.; Ono, K.; Kubota, M.; Matsuoka, F. Comparison of biofidelic responses to rear impact of the head/neck/torso among human volunteers, PMHS, and dummies. In Proceedings of the 2006 International IRCOBI Conference on the Biomechanics of Impacts, Madrid, Spain, 20–22 September 2006; pp. 20–22. [Google Scholar]
Fall Height (m) | Impact Velocity (m/s) |
---|---|
1 | 4.42 |
2 | 6.26 |
3 | 7.66 |
4 | 8.85 |
5 | 9.89 |
6 | 10.84 |
Fall Height (m) | Deflection (mm) | Viscous Response (m/s) | Max Acc C7 (g) | Max Acc T8 (g) | Max Acc T12 (g) | Number of Rib Fractures |
---|---|---|---|---|---|---|
1 | 37 | 0.51 | 174 | 200 | 196 | 0 |
2 | 46 | 0.87 | 237 | 359 | 373 | 2 |
3 | 50 | 1.1 | 258 | 474 | 534 | 4 |
4 | 55 | 1.46 | 361 | 575 | 694 | 6 |
5 | 57 | 1.72 | 533 | 475 | 603 | 7 |
6 * | 38 * | 1.75 * | 370 * | 2046 ** | 739 * | 6 * |
Fall Height (m) | Deflection (mm) | Viscous Response (m/s) | Max Acc C7 (g) | Max Acc T8 (g) | Max Acc T12 (g) | Number of Rib Fractures |
---|---|---|---|---|---|---|
1 | 27 | 0.16 | 107 | 50 | 46 | 0 |
2 | 33 | 0.25 | 122 | 67 | 53 | 0 |
3 | 39 | 0.4 | 156 | 133 | 100 | 1 |
4 | 48 | 0.87 | 249 | 220 | 206 | 2 |
5 | 49 | 1.15 | 542 | 446 | 393 | 4 |
6 | 50 | 1.48 | 691 | 648 | 612 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranda-Marco, R.; Peldschus, S. Virtual Assessment of a Representative Torso Airbag under the Fall from Height Impact Conditions. Safety 2023, 9, 53. https://doi.org/10.3390/safety9030053
Aranda-Marco R, Peldschus S. Virtual Assessment of a Representative Torso Airbag under the Fall from Height Impact Conditions. Safety. 2023; 9(3):53. https://doi.org/10.3390/safety9030053
Chicago/Turabian StyleAranda-Marco, Raúl, and Steffen Peldschus. 2023. "Virtual Assessment of a Representative Torso Airbag under the Fall from Height Impact Conditions" Safety 9, no. 3: 53. https://doi.org/10.3390/safety9030053
APA StyleAranda-Marco, R., & Peldschus, S. (2023). Virtual Assessment of a Representative Torso Airbag under the Fall from Height Impact Conditions. Safety, 9(3), 53. https://doi.org/10.3390/safety9030053