FE-YOLO: An Efficient Deep Learning Model Based on Feature-Enhanced YOLOv7 for Microalgae Identification and Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Construction and Processing
2.2. FE-YOLO Algorithm
2.2.1. Optimized Network Architecture
2.2.2. CAGS Module
2.2.3. Optimized Loss Function
3. Result and Discussion
3.1. Evaluating Indicator
3.2. Model Training
3.3. Ablation Experiments
3.4. Comparative Experiment
3.5. Microalgae Detection Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wondraczek, L.; Gründler, A.; Reupert, A.; Wondraczek, K.; Schmidt, M.A.; Pohnert, G.; Nolte, S. Biomimetic light dilution using side-emitting optical fiber for enhancing the productivity of microalgae reactors. Sci. Rep. 2019, 9, 9600. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Z.; Chen, C.; Luan, H.; Fang, R.H.; Zhang, L.; Wang, J. Biohybrid microalgae robots: Design, fabrication, materials, and applications. Adv. Mater. 2024, 36, 2303714. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef]
- Qian, P.; Zhao, Z.; Liu, H.; Wang, Y.; Peng, Y.; Hu, S.; Zhang, J.; Deng, Y.; Zeng, Z. Multi-target deep learning for algal detection and classification. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1954–1957. [Google Scholar]
- Samantaray, A.; Yang, B.; Dietz, J.E.; Min, B.C. Algae detection using computer vision and deep learning. arXiv 2018, arXiv:1811.10847. [Google Scholar]
- Cho, S.; Shin, S.; Sim, J.; Lee, J. Development of microfluidic green algae cell counter based on deep learning. J. Korean Soc. Vis. 2021, 19, 41–47. [Google Scholar]
- Deglint, J.L.; Jin, C.; Wong, A. Investigating the automatic classification of algae using the spectral and morphological characteristics via deep residual learning. In Image Analysis and Recognition: Proceedings of the 16th International Conference, ICIAR 2019, Waterloo, ON, Canada, 27–29 August 2019; Proceedings, Part II 16; Springer International Publishing: Cham, Switzerland, 2019; pp. 269–280. [Google Scholar]
- Wang, J.; Dong, J.; Tang, M.; Yao, J.; Li, X.; Kong, D.; Zhao, K. Identification and detection of microplastic particles in marine environment by using improved faster R–CNN model. J. Environ. Manag. 2023, 345, 118802. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Wang, J.; Chen, Y.; Wang, Y. Detection of microalgae objects based on the Improved YOLOv3 model. Environ. Sci. Process. Impacts 2021, 23, 1516–1530. [Google Scholar] [CrossRef] [PubMed]
- Pant, G.; Yadav, D.P.; Gaur, A. ResNeXt convolution neural network topology-based deep learning model for identification and classification of Pediastrum. Algal Res. 2020, 48, 101932. [Google Scholar] [CrossRef]
- Krause, L.M.; Koc, J.; Rosenhahn, B.; Rosenhahn, A. Fully convolutional neural network for detection and counting of diatoms on coatings after short-term field exposure. Environ. Sci. Technol. 2020, 54, 10022–10030. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Wang, J.; Lin, H.; Liu, W. M-YOLO v8s: Classification and Identification of Different Microalgae Species Based on the Improved YOLO v8s Model for Prevention of Harmful Algal Blooms. ACS EST Water 2025, 5, 329–340. [Google Scholar] [CrossRef]
- Zeng, J.; Xyu, T.; Yuan, Q.; Qi, Y. Improved YOLOv7 object detection algorithm. Artif. Intell. Internet Things Smart Agric. 2024, 14, 1330141. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
- Liu, Y.; Qu, Y.; Yang, Y.; Deng, Q.; Luo, Y.; Zhang, X. Algae-based flexible localized oxygen control around Cells: An approach leading to more Biomimetic microphysiological systems. Chem. Eng. J. 2024, 502, 158040. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Wei, H.; Liu, Z.; Zhan, Z.; Ren, Q. Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles. arXiv 2022, arXiv:2206.02424. [Google Scholar]
- Hayashi, K.; Kato, S.; Matsunaga, S. Convolutional neural network-based automatic classification for algal morphogenesis. Cytologia 2018, 83, 301–305. [Google Scholar] [CrossRef]
- Tian, Q.; Wang, Z.; Cui, X. Improved Unet brain tumor image segmentation based on GSConv module and ECA attention mechanism. arXiv 2024, arXiv:2409.13626. [Google Scholar] [CrossRef]
- Yin, X.; Goudriaan, J.A.N.; Lantinga, E.A.; Vos, J.A.N.; Spiertz, H.J. A flexible sigmoid function of determinate growth. Ann. Bot. 2003, 91, 361–371. [Google Scholar] [CrossRef]
- Hoo, Z.H.; Candlish, J.; Teare, D. What is an ROC curve? Emerg. Med. J. 2017, 34, 357–359. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In European Conference on Computer Vision; Springer International Publishing: Cham, Switzerland, 2020; pp. 213–229. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; Kwon, Y.; Michael, K.; Fang, J.; Wong, C.; Yifu, Z.; Montes, D.; et al. ultralytics/yolov5: v6.2-YOLOv5 Classification Models, Apple M1, Reproducibility, ClearML and Deci.AI Integrations; Zenodo: Geneva, Switzerland, 2022. [Google Scholar]
- Jocher, G. Yolov8. GitHub. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 10 November 2024).
Parameter | Configuration |
---|---|
Learning rate Momentum Weight decay Batch size Works Epochs Image size | 0.01 0.937 0.0005 16 8 120 640 × 640 |
AP | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Method | CAGS | SIOU | Chl | Chr | Kar | Pha | Pro | Cha | Dun | P | R | [email protected] | [email protected] | Ds |
YOLOv7 | × | × | 87.9% | 82.8% | 94.9% | 69.4% | 99.4% | 62.3% | 98.8% | 85.2% | 94.2% | 85.1% | 62.4% | 0.0501 s |
Ablation1 | √ | × | 88.2% | 83.6% | 95.2% | 73.5% | 99.4% | 66.7% | 98.7% | 86.4% | 94.6% | 88.9% | 67.8% | 0.0500 s |
FE-YOLO | √ | √ | 92.1% | 98.9% | 98.5% | 99.2% | 90.7% | 84.6% | 99.6% | 94.8% | 96.1% | 94.8% | 69.3% | 0.0455 s |
Method | R | [email protected] | [email protected] | GFLOPS | Parameters |
---|---|---|---|---|---|
Faster RCNN | 85.0% | 84.9% | 41.6% | 207 | 40 M |
DETR | 90.5% | 92.2% | 51.3% | 225 | 41 M |
YOLOv5l | 94.7% | 95.0% | 65.0% | 107.7 | 46.5 M |
YOLOv5x | 93.3% | 93.9% | 65.4% | 203.9 | 86.7 M |
YOLOv6m | 94.0% | 95.6% | 64.8% | 85.8 | 34.9 M |
YOLOv6l | 94.5% | 94.9% | 63.8% | 150.7 | 59.6 M |
YOLOv7 | 94.2% | 93.2% | 56.3% | 103.2 | 36.5 M |
YOLOv8n | 72.7% | 84.8% | 62.4% | 8.1 | 30.0 M |
YOLOv8l | 72.8% | 84.7% | 64.2% | 164.8 | 43.6 M |
FE-YOLO | 96.1% | 94.8% | 69.3% | 98.7 | 26.3 M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, G.; Shi, Y.; Liu, Z.; Wang, Y.; Yao, Z.; Zhou, D.; Zhu, X.; Li, Y. FE-YOLO: An Efficient Deep Learning Model Based on Feature-Enhanced YOLOv7 for Microalgae Identification and Detection. Biomimetics 2025, 10, 62. https://doi.org/10.3390/biomimetics10010062
Ding G, Shi Y, Liu Z, Wang Y, Yao Z, Zhou D, Zhu X, Li Y. FE-YOLO: An Efficient Deep Learning Model Based on Feature-Enhanced YOLOv7 for Microalgae Identification and Detection. Biomimetics. 2025; 10(1):62. https://doi.org/10.3390/biomimetics10010062
Chicago/Turabian StyleDing, Gege, Yuhang Shi, Zhenquan Liu, Yanjuan Wang, Zhixuan Yao, Dan Zhou, Xuexiu Zhu, and Yiqin Li. 2025. "FE-YOLO: An Efficient Deep Learning Model Based on Feature-Enhanced YOLOv7 for Microalgae Identification and Detection" Biomimetics 10, no. 1: 62. https://doi.org/10.3390/biomimetics10010062
APA StyleDing, G., Shi, Y., Liu, Z., Wang, Y., Yao, Z., Zhou, D., Zhu, X., & Li, Y. (2025). FE-YOLO: An Efficient Deep Learning Model Based on Feature-Enhanced YOLOv7 for Microalgae Identification and Detection. Biomimetics, 10(1), 62. https://doi.org/10.3390/biomimetics10010062