Energy Absorption Characteristics of Polygonal Bio-Inspired Honeycomb Column Thin-Walled Structure under Quasi-Static Uniaxial Compression Loading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Design and Loading Method
2.1.1. Tensile Test
2.1.2. Specimen Parameters and Numbering
2.2. Finite Element Models
2.2.1. Modeling Process
2.2.2. Uniaxial Compression Test Models
2.3. Image Acquisition System
3. Results and Discussion
3.1. Experimental Phenomena
3.2. Typical Impact Force-Displacement Response Curves
3.3. Energy Absorption Indexes
3.4. Effect of Section Angle Number on EA in the Crushing Process
3.5. Effect of Hollow Column Position on EA
4. Conclusions
- The bionic structure of the beetle elytra greatly enhances the energy absorption performance of the honeycomb structure. The design and installation location of BHTS hollow columns have a significant influence on the mechanical behavior of honeycomb structures.
- The initial peak crushing force, mean crushing force, and energy absorption of BHTS were greatly improved with the increase of section angle number (triangle, rectangle, and hexagon). The hexagonal structure has the best energy absorption indexes among the three structures, as described above.
- The finite element simulation results were in good agreement with the experimental results. This research method could provide an important reference for material designing, manufacturing, and modeling based on BHTS.
- More cell elements and larger sizes should be added to the subsequent design to make the test results obtained by convergence more accurate.
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Baroutaji, A.; Sajjia, M.; Olabi, A.G. On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments. Thin-Walled Struct. 2017, 118, 137–163. [Google Scholar] [CrossRef] [Green Version]
- Cwi, A.; Ce, B. A review of the crashworthiness performance of energy absorbing composite structure within the context of materials, manufacturing and maintenance for sustainability. Compos. Struct. 2020, 257, 113081. [Google Scholar]
- Zhang, Y.; He, N.; Song, X.; Chen, T.; Chen, H. On impacting mechanical behaviors of side fractal structures. Thin-Walled Struct. 2020, 146, 106490. [Google Scholar] [CrossRef]
- Gao, Q.; Liao, W.H.; Huang, C. Theoretical predictions of dynamic responses of cylindrical sandwich filled with auxetic structures under impact loading. Aerosp. Sci. Technol. 2020, 107, 106270. [Google Scholar] [CrossRef]
- Alkoles, O.M.S.; Mahdi, E.; Hamouda, A.M.S.; Sahari, B.B. Ellipticity Ratio Effects in the Energy Absorption of Axially Crushed Composite Tubes. Appl. Compos. Mater. 2003, 10, 339–363. [Google Scholar] [CrossRef]
- Czaplicki, M.J.; Robertson, R.E.; Thornton, P.H. Comparison of bevel and tulip triggered pultruded tubes for energy absorption. Compos. Sci. Technol. 1991, 40, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Reuter, C.; Sauerland, K.-H.; Tröster, T. Experimental and numerical crushing analysis of circular CFRP tubes under axial impact loading. Compos. Struct. 2017, 174, 33–44. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, L.; Wang, Y.; Wang, C. Crushing analysis and multiobjective crashworthiness optimization of foam-filled ellipse tubes under oblique impact loading. Thin-Walled Struct. 2016, 100, 105–112. [Google Scholar] [CrossRef]
- Zhang, X.W.; Su, H.; Yu, T.X. Energy Absorption of An Axially Crushed Square Tube With A Buckling Initiator. Int. J. Impact Eng. 2009, 36, 402–417. [Google Scholar] [CrossRef]
- Xing, B.F.; Hu, D.Y.; Sun, Y.X.; Yang, J.L.; Yu, T.X. Effects of hinges and deployment angle on the energy absorption characteristics of a single cell in a deployable energy absorber. Thin-Walled Struct. 2015, 94, 107–119. [Google Scholar] [CrossRef]
- Ali, M.; Ohioma, E.; Kraft, F.; Alam, K. Theoretical, numerical, and experimental study of dynamic axial crushing of thin walled pentagon and cross-shape tubes. Thin-Walled Struct. 2015, 94, 253–272. [Google Scholar] [CrossRef]
- Song, X.; Sun, G.; Li, G.; Gao, W.; Li, Q. Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models. Struct. Multidiscip. Optim. 2013, 47, 221–231. [Google Scholar] [CrossRef]
- Li, G.; Xu, F.; Sun, G.; Li, Q. A comparative study on thin-walled structures with functionally graded thickness (FGT) and tapered tubes withstanding oblique impact loading. Int. J. Impact Eng. 2015, 77, 68–83. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Hui, D. Mechanical behaviors of inclined cell honeycomb structure subjected to compression. Compos. Part B Eng. 2016, 110, 307–314. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, T.; Tizani, W. Experimental and numerical analysis of dynamic compressive response of Nomex honeycombs. Compos. Part B 2018, 148, 27–39. [Google Scholar] [CrossRef]
- Guangyong, S.; Tangying, L.; Jianguang, F.; Steve, P.G.; Qing, L. Configurational optimization of multi-cell topologies for multiple oblique loads. Struct. Multidiscip. Optim. 2018, 57, 469–488. [Google Scholar]
- Wang, Z.; Liu, J.; Yao, S. On folding mechanics of multi-cell thin-walled square tubes. Compos. Part B 2018, 132, 17–27. [Google Scholar] [CrossRef]
- Sun, G.; Pang, T.; Fang, J.; Li, G.; Li, Q. Parameterization of Criss-Cross Configurations for Multiobjective Crashworthiness Optimization. Int. J. Mech. Sci. 2017, 124–125, 145–157. [Google Scholar] [CrossRef]
- Wu, S.; Zheng, G.; Sun, G.; Liu, Q.; Li, G.; Li, Q. On design of multi-cell thin-wall structures for crashworthiness. Int. J. Impact Eng. 2016, 88, 102–117. [Google Scholar] [CrossRef]
- Hu, D.; Wang, Y.; Song, B.; Dang, L.; Zhang, Z. Energy-absorption characteristics of a bionic honeycomb tubular nested structure inspired by bamboo under axial crushing. Compos. Part B 2019, 162, 21–32. [Google Scholar] [CrossRef]
- Xiang, J.; Du, J. Energy absorption characteristics of bio-inspired honeycomb structure under axial impact loading. Mater. Sci. Eng. A 2017, 696, 283–289. [Google Scholar] [CrossRef]
- Hao, P.; Du, J. Energy absorption characteristics of bio-inspired honeycomb column thin-walled structure under impact loading. J. Mech. Behav. Biomed. Mater. 2018, 79, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Gibson, I.; Rosen, D.W.; Stucker, B. Development of Additive Manufacturing Technology; Springer: New York, NY, USA, 2010. [Google Scholar]
- Dizon, J.; Espera, A.H.; Chen, Q.; Advincula, R.C. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 2018, 20, 44–67. [Google Scholar] [CrossRef]
- Ahangar, P.; Cooke, M.E.; Weber, M.H.; Rosenzweig, D.H. Current Biomedical Applications of 3D Printing and Additive Manufacturing. Appl. Sci. 2019, 9, 1713. [Google Scholar] [CrossRef] [Green Version]
- Genovese, K.; Leeflang, S.; Zadpoor, A.A. Microscopic full-field three-dimensional strain measurement during the mechanical testing of additively manufactured porous biomaterials. J. Mech. Behav. Biomed. Mater. 2017, 69, 327–341. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. Additive manufacturing applications in medical cases: A literature based review. Alex. J. Med. 2017, 54, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Sun, Q.; Liu, Y. Energy Absorption Characteristics of Bio-Inspired Honeycomb Column Thin-Walled Structure under Low Strain Rate Uniaxial Compression Loading. Energies 2022, 15, 6957. [Google Scholar] [CrossRef]
- Ngoc, S.H.; Pham, T.P.; Tran, T.T.; Hong, H.; Guoxing, L. Mechanical properties and energy absorption of bio-inspired hierarchical circular honeycomb. Compos. Part B Eng. 2022, 236, 109818. [Google Scholar]
- Tiryakioglu, M. Si particle size and aspect ratio distributions in an Al-7%Si-0.6%Mg alloy during solution treatment. Mater. Sci. Eng. A 2008, 473, 1–6. [Google Scholar] [CrossRef]
- Laurencon, M.; Resseguier, T.D.; Loison, D.; Baillargeat, J.; Ngnekou, J.; Nadot, Y. Effects of additive manufacturing on the dynamic response of AlSi10Mg to laser shock loading. Mater. Sci. Eng. 2019, 748, 407–417. [Google Scholar] [CrossRef]
- Yin, H.; Huang, X.; Scarpa, F.; Wen, G.; Chen, Y.; Zhang, C. In-plane crashworthiness of bio-inspired hierarchical honeycombs. Compos. Struct. 2018, 192, 516–527. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Zhu, L.; Fang, H.; Liu, W.; Mao, Y. Experimental testing and numerical simulations of ship impact on axially loaded reinforced concrete piers. Int. J. Impact Eng. 2018, 125, 246–262. [Google Scholar] [CrossRef]
- Wang, H.; Yang, B.; Chen, K.; Elchalakani, M. Parametric analysis and simplified approach for steel-framed subassemblies with reverse channel connection under falling-debris impact. Eng. Struct. 2020, 225, 111263. [Google Scholar] [CrossRef]
- Gunes, R.; Arslan, K. Development of numerical realistic model for predicting low-velocity impact response of aluminium honeycomb sandwich structures. J. Sandw. Struct. Mater. 2016, 18, 1. [Google Scholar] [CrossRef]
- Xie, S.; Jing, K.; Zhou, H.; Liu, X. Mechanical properties of Nomex honeycomb sandwich panels under dynamic impact. Compos. Struct. 2020, 235, 111814. [Google Scholar] [CrossRef]
- Available online: http://lsdyna.ru/wp-content/uploads/2018/10/LS-DYNA-KEYWORD-USERS-MANUAL-VOL1.pdf (accessed on 31 October 2022).
- Ahmed, N.; Pu, X.; Zafar, N. Dynamic axial crushing of bitubular tubes with curvy polygonal inner-tube sections. Int. J. Comput. Mater. Sci. Eng. 2017, 06, 1750024. [Google Scholar] [CrossRef]
- Tran, T.N.; Ton, T. Lateral crushing behavior and theoretical prediction of thin-walled rectangular and square tubes. Compos. Struct. 2016, 154, 374–384. [Google Scholar] [CrossRef]
- Jhd, A.; Yjw, C.; Fnj, A.; Hlfb, C. Crushing behaviors of buckling-induced metallic meta-lattice structures. Def. Technol. 2021, 18, 10. [Google Scholar]
- Ryzińska, G.; David, M.; Prusty, G.; Tarasiuk, J.; Wroński, S. Effect of fibre architecture on the specific energy absorption in carbon epoxy composite tubes under progressive crushing. Compos. Struct. 2019, 227, 111292. [Google Scholar] [CrossRef]
- Hamid, W.L.H.W.A.; Aminanda, Y.; Dawood, M.S.I.S. Experimental Investigation on the Energy Absorption Capability of Foam-Filled Nomex Honeycomb Structure. Appl. Mech. Mater. 2013, 2622, 393. [Google Scholar]
- Philipp, B. CircStat: A MATLAB toolbox for circular statistics. J. Stat. Softw. 2009, 31, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Zhang, W.; Wei, Y. Mean out-of-plane dynamic plateau stresses of hexagonal honeycomb cores under impact loadings. Compos. Struct. 2010, 92, 2609–2621. [Google Scholar]
- Jin, L.; Yu, W.; Li, D.; Du, X. Numerical and theoretical investigation on the size effect of concrete compressive strength considering the maximum aggregate size. Int. J. Mech. Sci. 2021, 192, 106130. [Google Scholar] [CrossRef]
Specimen Label | Cell Side Length | Cell Wall Thickness (mm) | Column Diameter (mm) | Column Height (mm) |
---|---|---|---|---|
BHTS–S–T | 6.0 | 0.5 | / | 20.0 |
BHTS–Ⅰ–T | 6.0 | 0.5 | 0.5 | 20.0 |
BHTS–Ⅱ–T | 6.0 | 0.5 | 0.5 | 20.0 |
BHTS–S–R | 6.0 | 0.5 | / | 20.0 |
BHTS–Ⅰ–R | 6.0 | 0.5 | 0.5 | 20.0 |
BHTS–Ⅱ–R | 6.0 | 0.5 | 0.5 | 20.0 |
BHTS–S–H | 6.0 | 0.5 | / | 20.0 |
BHTS–Ⅰ–H | 6.0 | 0.5 | 0.5 | 20.0 |
BHTS–Ⅱ–H | 6.0 | 0.5 | 0.5 | 20.0 |
Density | Young’s Modulus | Poisson’s Ratio | Initial Yield Strength |
---|---|---|---|
2670 kg/m3 | 69 ± 5 GPa | 0.3 | 220 ± 10 MPa |
Type | Group Number|Panel | |||||
---|---|---|---|---|---|---|
Specimen | 1 | BHTS–S–T1 | 4 | BHTS–S–R1 | 7 | BHTS–S–H1 |
FEM | FEM–BHTS–S–T | FEM-BHTS–S–R | FEM-BHTS–S–H | |||
Specimen | 2 | BHTS–Ⅰ–T1 | 5 | BHTS–Ⅰ–R1 | 8 | BHTS–Ⅰ–H1 |
FEM | FEM-BHTS–Ⅰ–T | FEM-BHTS–Ⅰ–R | FEM-BHTS–Ⅰ–H | |||
Specimen | 3 | BHTS–Ⅱ–T1 | 6 | BHTS–Ⅱ–R1 | 9 | BHTS–Ⅱ–H1 |
FEM | FEM–BHTS–Ⅱ–T | FEM-BHTS–Ⅱ–R | FEM-BHTS–Ⅱ–H |
Group | Panel | Specimen | Mass | PCF | MCF | CFE | EA | SEA | Average Value | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number | PCF | MCF | CFE | EA | SEA | ||||||||
(g) | (kN) | (kN) | (%) | (J) | (J/g) | (kN) | (kN) | (%) | (J) | (J/g) | |||
1 | 1 | BHTS–S–T | 1.38 | 1.66 | 2.21 | 133.29 | 25.28 | 18.32 | 1.64 | 2.16 | 131.87 | 24.96 | 17.90 |
2 | 1.41 | 1.61 | 2.10 | 130.44 | 24.65 | 17.48 | |||||||
2 | 1 | BHTS–Ⅰ–T | 1.78 | 7.91 | 2.43 | 30.64 | 44.41 | 24.95 | 7.82 | 2.41 | 30.84 | 44.26 | 25.08 |
2 | 1.75 | 7.72 | 2.39 | 31.04 | 44.10 | 25.20 | |||||||
3 | 1 | BHTS–II–T | 1.60 | 5.04 | 2.08 | 41.19 | 34.43 | 21.52 | 5.14 | 2.03 | 39.54 | 33.70 | 21.00 |
2 | 1.61 | 5.23 | 1.98 | 37.88 | 32.97 | 20.48 | |||||||
4 | 1 | BHTS–S–R | 1.89 | 2.86 | 1.79 | 62.50 | 27.01 | 14.29 | 2.88 | 1.79 | 61.96 | 26.78 | 14.21 |
2 | 1.88 | 2.89 | 1.78 | 61.41 | 26.55 | 14.12 | |||||||
5 | 1 | BHTS–Ⅰ–R | 2.43 | 9.96 | 2.91 | 29.30 | 52.50 | 21.60 | 10.13 | 2.91 | 28.76 | 53.34 | 21.90 |
2 | 2.44 | 10.30 | 2.91 | 28.25 | 54.17 | 22.20 | |||||||
6 | 1 | BHTS–II–R | 2.22 | 7.30 | 3.58 | 48.93 | 55.93 | 25.19 | 7.21 | 3.52 | 48.72 | 55.65 | 25.30 |
2 | 2.18 | 7.12 | 3.45 | 48.50 | 55.37 | 25.40 | |||||||
7 | 1 | BHTS–S–H | 3.02 | 3.20 | 3.13 | 97.81 | 44.29 | 14.67 | 3.18 | 3.11 | 97.96 | 44.13 | 14.74 |
2 | 2.97 | 3.15 | 3.09 | 98.10 | 43.96 | 14.80 | |||||||
8 | 1 | BHTS–Ⅰ–H | 3.85 | 15.30 | 4.19 | 27.39 | 77.89 | 20.23 | 15.28 | 4.14 | 27.10 | 76.63 | 19.83 |
2 | 3.88 | 15.26 | 4.09 | 26.81 | 75.37 | 19.43 | |||||||
9 | 1 | BHTS–II–H | 3.63 | 12.13 | 4.19 | 34.50 | 71.84 | 19.79 | 12.19 | 4.24 | 34.78 | 73.17 | 20.08 |
2 | 3.66 | 12.24 | 4.29 | 35.06 | 74.50 | 20.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Xia, H.; Liu, Y. Energy Absorption Characteristics of Polygonal Bio-Inspired Honeycomb Column Thin-Walled Structure under Quasi-Static Uniaxial Compression Loading. Biomimetics 2022, 7, 201. https://doi.org/10.3390/biomimetics7040201
Wang S, Xia H, Liu Y. Energy Absorption Characteristics of Polygonal Bio-Inspired Honeycomb Column Thin-Walled Structure under Quasi-Static Uniaxial Compression Loading. Biomimetics. 2022; 7(4):201. https://doi.org/10.3390/biomimetics7040201
Chicago/Turabian StyleWang, Shijie, Hongxiang Xia, and Yancheng Liu. 2022. "Energy Absorption Characteristics of Polygonal Bio-Inspired Honeycomb Column Thin-Walled Structure under Quasi-Static Uniaxial Compression Loading" Biomimetics 7, no. 4: 201. https://doi.org/10.3390/biomimetics7040201
APA StyleWang, S., Xia, H., & Liu, Y. (2022). Energy Absorption Characteristics of Polygonal Bio-Inspired Honeycomb Column Thin-Walled Structure under Quasi-Static Uniaxial Compression Loading. Biomimetics, 7(4), 201. https://doi.org/10.3390/biomimetics7040201