Drug-Eluting Stents: Technical and Clinical Progress
Abstract
:1. Introduction
2. Stent Design and Outcomes
2.1. Stent Scaffold
2.2. Stent Cells Design
2.3. Bifurcation Design
2.4. Overexpansion Abilities
3. Polymers and Coating
3.1. Durable Polymers
3.2. Bioresorbable Polymers and Polymer-Free Stents
3.3. Eluted Drugs
3.4. Drug Elution Time
4. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Grüntzig, A. Transluminal Dilatation of Coronary-Artery Stenosis. Lancet 1978, 311, 263. [Google Scholar] [CrossRef]
- Grüntzig, A.R.; Senning, Å.; Siegenthaler, W.E. Nonoperative Dilatation of Coronary-Artery Stenosis. N. Engl. J. Med. 1979, 301, 61–68. [Google Scholar] [CrossRef]
- Carrié, D.; Elbaz, M.; Andrieu, M.; Cantié, P.; Fourcade, J.; Puel, J. Ten-Year Clinical and Angiographic Follow-up of Coronary Wallstent. Am. J. Cardiol. 2000, 85, 95–98. [Google Scholar] [CrossRef]
- Serruys, P.W.; Strauss, B.H.; Beatt, K.J.; Bertrand, M.E.; Puel, J.; Rickards, A.F.; Meier, B.; Goy, J.-J.; Vogt, P.; Kappenberger, L.; et al. Angiographic Follow-up after Placement of a Self-Expanding Coronary-Artery Stent. N. Engl. J. Med. 1991, 324, 13–17. [Google Scholar] [CrossRef]
- Moliterno, D.J. Healing Achilles—Sirolimus versus Paclitaxel. N. Engl. J. Med. 2005, 353, 724–727. [Google Scholar] [CrossRef]
- HILL, R. Drug-Eluting Stents: An Early Systematic Review to Inform Policy. Eur. Heart J. 2004, 25, 902–919. [Google Scholar] [CrossRef]
- Nusca, A.; Viscusi, M.M.; Piccirillo, F.; De Filippis, A.; Nenna, A.; Spadaccio, C.; Nappi, F.; Chello, C.; Mangiacapra, F.; Grigioni, F.; et al. In Stent Neo-Atherosclerosis: Pathophysiology, Clinical Implications, Prevention, and Therapeutic Approaches. Life 2022, 12, 393. [Google Scholar] [CrossRef]
- Komiyama, H. Neoatherosclerosis: Coronary Stents Seal Atherosclerotic Lesions but Result in Making a New Problem of Atherosclerosis. World J. Cardiol. 2015, 7, 776. [Google Scholar] [CrossRef]
- Sahebjalal, M.; Curzen, N. Twelve Months Dual Antiplatelet Therapy after Drug-Eluting Stents—Too Long, Too Short or Just Right? Interv. Cardiol. Rev. 2015, 10, 136. [Google Scholar] [CrossRef]
- Becker, R.C.; Helmy, T. Are at Least 12 Months of Dual Antiplatelet Therapy Needed for All Patients With Drug-Eluting Stents? Circulation 2015, 131, 2010–2019. [Google Scholar] [CrossRef] [Green Version]
- Madhavan, M.V.; Kirtane, A.J.; Redfors, B.; Généreux, P.; Ben-Yehuda, O.; Palmerini, T.; Benedetto, U.; Biondi-Zoccai, G.; Smits, P.C.; von Birgelen, C.; et al. Stent-Related Adverse Events >1 Year after Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2020, 75, 590–604. [Google Scholar] [CrossRef] [PubMed]
- Moussa, I.D.; Mohananey, D.; Saucedo, J.; Stone, G.W.; Yeh, R.W.; Kennedy, K.F.; Waksman, R.; Teirstein, P.; Moses, J.W.; Simonton, C. Trends and Outcomes of Restenosis After Coronary Stent Implantation in the United States. J. Am. Coll. Cardiol. 2020, 76, 1521–1531. [Google Scholar] [CrossRef] [PubMed]
- Kheiri, B.; Osman, M.; Abdalla, A.; Ahmed, S.; Bachuwa, G.; Hassan, M. The Short- and Long-Term Outcomes of Percutaneous Intervention with Drug-Eluting Stent vs Bare-Metal Stent in Saphenous Vein Graft Disease: An Updated Meta-Analysis of All Randomized Clinical Trials. Clin. Cardiol. 2018, 41, 685–692. [Google Scholar] [CrossRef]
- Giustino, G.; Colombo, A.; Camaj, A.; Yasumura, K.; Mehran, R.; Stone, G.W.; Kini, A.; Sharma, S.K. Coronary In-Stent Restenosis. J. Am. Coll. Cardiol. 2022, 80, 348–372. [Google Scholar] [CrossRef]
- Yanqin, F.; Xiang, L.; Ruijie, Y. The Surface Modifications Methods for Constructing Polymer-Coated Stents. Int. J. Polym. Sci. 2018, 2018, 3891686. [Google Scholar] [CrossRef]
- Lu, P.; Lu, S.; Li, Y.; Deng, M.; Wang, Z.; Mao, X. A Comparison of the Main Outcomes from BP-BES and DP-DES at Five Years of Follow-up: A Systematic Review and Meta-Analysis. Sci. Rep. 2017, 7, 14997. [Google Scholar] [CrossRef]
- Gallinoro, E.; Almendarez, M.; Alvarez-Velasco, R.; Barbato, E.; Avanzas, P. Bioresorbable Stents: Is the Game Over? Int. J. Cardiol. 2022, 361, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Su, Y.; Qin, Y.-X.; Zheng, Y.; Wang, Y.; Zhu, D. Evolution of Metallic Cardiovascular Stent Materials: A Comparative Study among Stainless Steel, Magnesium and Zinc. Biomaterials 2020, 230, 119641. [Google Scholar] [CrossRef]
- Köster, R.; Vieluf, D.; Kiehn, M.; Sommerauer, M.; Kähler, J.; Baldus, S.; Meinertz, T.; Hamm, C.W. Nickel and Molybdenum Contact Allergies in Patients with Coronary In-Stent Restenosis. Lancet 2000, 356, 1895–1897. [Google Scholar] [CrossRef]
- Kastrati, A.; Mehilli, J.; Dirschinger, J.; Dotzer, F.; Schühlen, H.; Neumann, F.-J.; Fleckenstein, M.; Pfafferott, C.; Seyfarth, M.; Schühlen, A. Intracoronary Stenting and Angiographic Results. Circulation 2001, 103, 2816–2821. [Google Scholar] [CrossRef] [Green Version]
- Pache, J.Ü.; Kastrati, A.; Mehilli, J.; Schühlen, H.; Dotzer, F.; Hausleiter, J.Ö.; Fleckenstein, M.; Neumann, F.-J.; Sattelberger, U.; Schmitt, C.; et al. Intracoronary Stenting and Angiographic Results: Strut Thickness Effect on Restenosis Outcome (ISAR-STEREO-2) Trial. J. Am. Coll. Cardiol. 2003, 41, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, H.; Panoulas, V.F.; Sato, K.; Miyazaki, T.; Naganuma, T.; Sticchi, A.; Figini, F.; Latib, A.; Chieffo, A.; Carlino, M.; et al. Impact of Strut Width in Periprocedural Myocardial Infarction. JACC Cardiovasc. Interv. 2015, 8, 900–909. [Google Scholar] [CrossRef]
- Poncin, P.; Proft, J. Stent Tubing: Understanding the Desired Attributes. In Proceedings of the Medical Device Materials: Proceedings from the Materials & Processes for Medical Devices Conference, Anaheim, CA, USA, 8–10 September 2003; pp. 253–259. [Google Scholar]
- Hermawan, H.; Ramdan, D.P.; Djuansjah, J.R. Metals for Biomedical Applications. In Biomedical Engineering—From Theory to Applications; InTech: London, UK, 2011. [Google Scholar]
- Poncin, P.; Millet, C.; Chevy, J.; Proft, J.L. Comparing and Optimizing Co-Cr Tubing for Stent Applications. In Proceedings of the Medical Device Materials II: Proceedings from the Materials & Processes for Medical Devices Conference, St. Paul, MN, USA, 25–27 August 2004; pp. 279–283. [Google Scholar]
- Milleret, V.; Ziogas, A.; Buzzi, S.; Heuberger, R.; Zucker, A.; Ehrbar, M. Effect of Oxide Layer Modification of CoCr Stent Alloys on Blood Activation and Endothelial Behavior. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 103, 629–640. [Google Scholar] [CrossRef]
- Allocco, D.J.; Jacoski, M.V.; Huibregtse, B.; Mickley, T.; Dawkins, K.D. Platinum Chromium Stent Series—The TAXUSTM ElementTM (IONTM), PROMUS ElementTM and OMEGATM Stents. Interv. Cardiol. Rev. 2011, 6, 134. [Google Scholar] [CrossRef]
- Leone, A.; Simonetti, F.; Avvedimento, M.; Angellotti, D.; Immobile Molaro, M.; Franzone, A.; Esposito, G.; Piccolo, R. Ultrathin Struts Drug-Eluting Stents: A State-of-the-Art Review. J. Pers. Med. 2022, 12, 1378. [Google Scholar] [CrossRef]
- Bernard Chevalier Stent Strut Thickness: Have We Reached the Minimum? Card. Interv. Today 2018, 12, 66–67.
- Park, K.W.; Kang, S.-H.; Kang, H.-J.; Koo, B.-K.; Park, B.-E.; Cha, K.S.; Rhew, J.Y.; Jeon, H.-K.; Shin, E.-S.; Oh, J.H.; et al. A Randomized Comparison of Platinum Chromium-Based Everolimus-Eluting Stents Versus Cobalt Chromium-Based Zotarolimus-Eluting Stents in All-Comers Receiving Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2014, 63, 2805–2816. [Google Scholar] [CrossRef]
- Iqbal, J.; Gunn, J.; Serruys, P.W. Coronary Stents: Historical Development, Current Status and Future Directions. Br. Med. Bull. 2013, 106, 193–211. [Google Scholar] [CrossRef]
- Nicolas, J.; Pivato, C.A.; Chiarito, M.; Beerkens, F.; Cao, D.; Mehran, R. Evolution of Drug-Eluting Coronary Stents: A Back-and-Forth Journey from the Bench to Bedside. Cardiovasc. Res. 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Schmidt, T.; Abbott, J. Coronary Stents: History, Design, and Construction. J. Clin. Med. 2018, 7, 126. [Google Scholar] [CrossRef]
- Aoki, J.; Kozuma, K.; Awata, M.; Nanasato, M.; Shiode, N.; Tanabe, K.; Yamaguchi, J.; Kusano, H.; Nie, H.; Kimura, T. Three-Year Clinical Outcomes of Everolimus-Eluting Stents From the Post-Marketing Surveillance Study of Cobalt-Chromium Everolimus-Eluting Stent (XIENCE V/PROMUS) in Japan. Circ. J. 2016, 80, 906–912. [Google Scholar] [CrossRef] [Green Version]
- Roy, T.; Chanda, A. Computational Modelling and Analysis of Latest Commercially Available Coronary Stents During Deployment. Procedia Mater. Sci. 2014, 5, 2310–2319. [Google Scholar] [CrossRef]
- Sangiorgi, G.; Melzi, G.; Agostoni, P.; Cola, C.; Clementi, F.; Romitelli, P.; Virmani, R.; Colombo, A. Engineering Aspects of Stents Design and Their Translation into Clinical Practice. Ann. Ist. Super. Sanita 2007, 43, 89–100. [Google Scholar]
- McQueen, A.; Escuer, J.; Schmidt, A.F.; Aggarwal, A.; Kennedy, S.; McCormick, C.; Oldroyd, K.; McGinty, S. An Intricate Interplay between Stent Drug Dose and Release Rate Dictates Arterial Restenosis. J. Control. Release 2022, 349, 992–1008. [Google Scholar] [CrossRef]
- Garg, S.; Serruys, P.W. Coronary Stents: Current Status. J. Am. Coll. Cardiol. 2010, 56, S1–S42. [Google Scholar] [CrossRef]
- Hassan, S.; Ali, M.N.; Ghafoor, B. Evolutionary Perspective of Drug Eluting Stents: From Thick Polymer to Polymer Free Approach. J. Cardiothorac. Surg. 2022, 17, 65. [Google Scholar] [CrossRef]
- Garg, S.; Serruys, P.W. Coronary Stents: Looking Forward. J. Am. Coll. Cardiol. 2010, 56, S43–S78. [Google Scholar] [CrossRef]
- Resolute Onyx DES Technical Specifications. Available online: https://asiapac.medtronic.com/content/dam/medtronic-com/products/coronary/stents/resolute-onyx/documents/resolute-onyx-des-technical-specifications-us.pdf?bypassIM=true (accessed on 1 June 2021).
- Buiten, R.A.; Ploumen, E.H.; Zocca, P.; Doggen, C.J.M.; Jessurun, G.A.J.; Schotborgh, C.E.; Roguin, A.; Danse, P.W.; Benit, E.; Aminian, A.; et al. Thin Composite-Wire-Strut Zotarolimus-Eluting Stents Versus Ultrathin-Strut Sirolimus-Eluting Stents in BIONYX at 2 Years. JACC Cardiovasc. Interv. 2020, 13, 1100–1109. [Google Scholar] [CrossRef]
- Bravo Baptista, S. The Third Generation of Drug-Eluting Stents: Reassuring Data While We Wait for the next One. Rev. Port. Cardiol. 2021, 40, 77–80. [Google Scholar] [CrossRef]
- Tittelbach, M.; Diener, T. Orsiro—The First Hybrid Drug-Eluting Stent, Opening Up a New Class of Drug-Eluting Stents for Superior Patient Outcomes. Interv. Cardiol. Rev. 2011, 6, 142. [Google Scholar] [CrossRef]
- Itoh, T.; Otake, H.; Kimura, T.; Tsukiyama, Y.; Kikuchi, T.; Okubo, M.; Hayashi, T.; Okamura, T.; Kuramitsu, S.; Morita, T.; et al. A Serial Optical Frequency-Domain Imaging Study of Early and Late Vascular Responses to Bioresorbable-Polymer Sirolimus-Eluting Stents for the Treatment of Acute Myocardial Infarction and Stable Coronary Artery Disease Patients: Results of the MECHANISM-U. Cardiovasc. Interv. Ther. 2022, 37, 281–292. [Google Scholar] [CrossRef]
- BioFreedomTM Drug Coated Coronary Stent System Technical Specification. Biosensors Interventional Technologies Pte Ltd. Available online: https://pdf.medicalexpo.com/pdf/biosensors-international/biofreedom/75768-121795.html (accessed on 1 January 2013).
- CRE8TM AmphilimusTM Eluting Coronary System on Rx Balloon Catheter Alvimedica Technical Sheet. Available online: https://www.vingmed.se/wp-content/uploads/2013/10/CRE8-Technical-Data-Sheet.pdf (accessed on 1 June 2013).
- Serruys, P.W.; Onuma, Y.; Garg, S.; Vranckx, P.; De Bruyne, B.; Morice, M.-C.; Colombo, A.; Macaya, C.; Richardt, G.; Fajadet, J.; et al. 5-Year Clinical Outcomes of the ARTS II (Arterial Revascularization Therapies Study II) of the Sirolimus-Eluting Stent in the Treatment of Patients With Multivessel De Novo Coronary Artery Lesions. J. Am. Coll. Cardiol. 2010, 55, 1093–1101. [Google Scholar] [CrossRef] [Green Version]
- Gwon, H.-C. Understanding the Coronary Bifurcation Stenting. Korean Circ. J. 2018, 48, 481. [Google Scholar] [CrossRef]
- Nakamura, S.; Hall, P.; Maiello, L.; Colombo, A. Techniques for Palmaz-Schatz Stent Deployment in Lesions with a Large Side Branch. Cathet. Cardiovasc. Diagn. 1995, 34, 353–361. [Google Scholar] [CrossRef]
- Raphael, C.E.; O’Kane, P.D. Contemporary Approaches to Bifurcation Stenting. JRSM Cardiovasc. Dis. 2021, 10, 204800402199219. [Google Scholar] [CrossRef]
- Öner, A.; Rosam, P.; Borowski, F.; Grabow, N.; Siewert, S.; Schmidt, W.; Schmitz, K.-P.; Stiehm, M. Side-Branch Expansion Capacity of Contemporary DES Platforms. Eur. J. Med. Res. 2021, 26, 121. [Google Scholar] [CrossRef]
- Ng, J.; Foin, N.; Ang, H.Y.; Fam, J.M.; Sen, S.; Nijjer, S.; Petraco, R.; Di Mario, C.; Davies, J.; Wong, P. Over-Expansion Capacity and Stent Design Model: An Update with Contemporary DES Platforms. Int. J. Cardiol. 2016, 221, 171–179. [Google Scholar] [CrossRef]
- Gil, R.J.; Bil, J.; Kern, A.; Pawłowski, T. First-in-Man Study of Dedicated Bifurcation Cobalt-Chromium Sirolimus-Eluting Stent BiOSS LIM C®—Three-Month Results. Kardiol. Pol. 2018, 76, 464–470. [Google Scholar] [CrossRef]
- Kidawa, M.; Chiżyński, K.; Kacprzak, M.; Ledakowicz-Polak, A.; Zielińska, M. Self-Expanding STENTYS Stents in Daily Routine Use. Kardiol. Pol. 2017, 75, 554–563. [Google Scholar] [CrossRef]
- Généreux, P.; Kumsars, I.; Lesiak, M.; Kini, A.; Fontos, G.; Slagboom, T.; Ungi, I.; Metzger, D.C.; Wykrzykowska, J.J.; Stella, P.R.; et al. A Randomized Trial of a Dedicated Bifurcation Stent Versus Provisional Stenting in the Treatment of Coronary Bifurcation Lesions. J. Am. Coll. Cardiol. 2015, 65, 533–543. [Google Scholar] [CrossRef]
- Cook, S.; Wenaweser, P.; Togni, M.; Billinger, M.; Morger, C.; Seiler, C.; Vogel, R.; Hess, O.; Meier, B.; Windecker, S. Incomplete Stent Apposition and Very Late Stent Thrombosis After Drug-Eluting Stent Implantation. Circulation 2007, 115, 2426–2434. [Google Scholar] [CrossRef]
- Ye, Y.; Qian, H.; Yang, M.; Zhu, X.; Gan, T.; Zhang, S.; Zeng, Y. Over-Expansion of Drug-Eluting Stents in Patients with Left Main Coronary Artery Disease: An in Vivo Study. J. Int. Med. Res. 2017, 45, 1406–1416. [Google Scholar] [CrossRef] [Green Version]
- Gasior, P.; Lu, S.; Ng, C.K.J.; Toong, W.Y.D.; Wong, E.H.P.; Foin, N.; Kedhi, E.; Wojakowski, W.; Ang, H.Y. Comparison of Overexpansion Capabilities and Thrombogenicity at the Side Branch Ostia after Implantation of Four Different Drug Eluting Stents. Sci. Rep. 2020, 10, 20791. [Google Scholar] [CrossRef]
- Abbott Vascular. XIENCE Skypoint Everolimus Eluting Coronary Stent Systems (XIENCE Skypoint EECSS). Available online: https://vascular.eifu.abbott/en/detail-screen.html (accessed on 26 July 2022).
- Medtronic. Resolute Onyx Zotarolimus-Eluting Coronary Stent System. Available online: https://asiapac.medtronic.com/content/dam/medtronic-com/products/coronary/stents/resolute-onyx/documents/resolute-onyx-xlv-brochure-ml-2017-12.pdf (accessed on 1 December 2017).
- Gherbesi, E.; Danzi, G.B. The Ultimaster Coronary Stent System: 5-Year Worldwide Experience. Future Cardiol. 2020, 16, 251–261. [Google Scholar] [CrossRef]
- BALTON. ALEX—Sirolimus Eluting Cobalt-Chromium Coronary Stent. Available online: https://balton.pl/images/QR_pages/Cardiovascular_catalogue.pdf (accessed on 1 March 2022).
- SYNERGYTM & SYNERGY MEGATRONTM EES PtCr Coronary Stent System. Available online: https://www.bostonscientific.com/en-EU/products/stents-coronary/synergy-stent-system/megatron/overexpansion.html?fbclid=IwAR30UJbHAKPLR0Gh1QgSuvtRkZ3eHwNJ3iwukbTsTVHREhxBtkZQ4XQ2CGg (accessed on 25 January 2023).
- Byrne, R.A.; Stone, G.W.; Ormiston, J.; Kastrati, A. Coronary Balloon Angioplasty, Stents, and Scaffolds. Lancet 2017, 390, 781–792. [Google Scholar] [CrossRef]
- Weiss, A.J.; Lorente-Ros, M.; Correa, A.; Barman, N.; Tamis-Holland, J.E. Recent Advances in Stent Technology: Do They Reduce Cardiovascular Events? Curr. Atheroscler. Rep. 2022, 24, 731–744. [Google Scholar] [CrossRef]
- Cherian, A.M.; Nair, S.V.; Maniyal, V.; Menon, D. Surface Engineering at the Nanoscale: A Way Forward to Improve Coronary Stent Efficacy. APL Bioeng. 2021, 5, 021508. [Google Scholar] [CrossRef]
- Hong, S.-J.; Hong, M.-K. Drug-Eluting Stents for the Treatment of Coronary Artery Disease: A Review of Recent Advances. Expert Opin. Drug Deliv. 2022, 19, 269–280. [Google Scholar] [CrossRef]
- Scoutaris, N.; Ross, S.; Douroumis, D. Current trends on medical and pharmaceutical applications of inkjet printing technology. Pharm Res. 2016, 33, 1799–1816. [Google Scholar] [CrossRef]
- Scoutaris, N.; Chai, F.; Maurel, B.; Sobocinski, J.; Zhao, M.; Moffat, J.G.; Craig, D.Q.; Martel, B.; Blanchemain, N.; Douroumis, D. Development and biological evaluation of inkjet printed drug coatings on intravascular stent. Mol Pharm. 2016, 13, 125–133. [Google Scholar] [CrossRef]
- Polimeni, A.; Sorrentino, S.; Spaccarotella, C.; Mongiardo, A.; Sabatino, J.; De Rosa, S.; Gori, T.; Indolfi, C. Stent Thrombosis After Percutaneous Coronary Intervention. Cardiol. Clin. 2020, 38, 639–647. [Google Scholar] [CrossRef]
- Gil, R.J.; Bil, J.; Legutko, J.; Pawłowski, T.; Gil, K.E.; Dudek, D.; Costa, R.A. Comparative Assessment of Three Drug Eluting Stents with Different Platforms but with the Same Biodegradable Polymer and the Drug Based on Quantitative Coronary Angiography and Optical Coherence Tomography at 12-Month Follow-Up. Int. J. Cardiovasc. Imaging 2018, 34, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Lhermusier, T.; Ohayon, P.; Boudou, N.; Bouisset, F.; Campelo-Parada, F.; Roncalli, J.; Elbaz, M.; Carrié, D. Re-Endothelialisation after Synergy Stent and Absorb Bioresorbable Vascular Scaffold Implantation in Acute Myocardial Infarction: COVER-AMI Study. Trials 2019, 20, 210. [Google Scholar] [CrossRef]
- Suwannasom, P.; Athiksakul, S.; Thonghong, T.; Lertsuwunseri, V.; Chaipromprasit, J.; Srimahachota, S.; Udayachalerm, W.; Kuanprasert, S.; Buddhari, W. Clinical Outcomes of an Ultrathin-Strut Sirolimus-Eluting Stent in All-Comers Population: Thailand Orsiro Registry. BMC Cardiovasc. Disord. 2021, 21, 501. [Google Scholar] [CrossRef]
- Chisari, A.; Pistritto, A.; Piccolo, R.; La Manna, A.; Danzi, G. The Ultimaster Biodegradable-Polymer Sirolimus-Eluting Stent: An Updated Review of Clinical Evidence. Int. J. Mol. Sci. 2016, 17, 1490. [Google Scholar] [CrossRef]
- Menown, I.B.A.; Mamas, M.A.; Cotton, J.M.; Hildick-Smith, D.; Eberli, F.R.; Leibundgut, G.; Tresukosol, D.; Macaya, C.; Copt, S.; Slama, S.S.; et al. Thin Strut CoCr Biodegradable Polymer Biolimus A9-Eluting Stents versus Thicker Strut Stainless Steel Biodegradable Polymer Biolimus A9-Eluting Stents: Two-Year Clinical Outcomes. J. Interv. Cardiol. 2021, 2021, 1–7. [Google Scholar] [CrossRef]
- Todd Neale New-Generation DES Better than Older Stents Over 10 Years, Regardless of Polymer Type. Available online: https://www.tctmd.com/news/new-generation-des-better-older-stents-over-10-years-regardless-polymer-type (accessed on 12 November 2018).
- de Abreu-Silva, E.O.; Costa, R.A.; Abizaid, A.; Ramondo, A.; Brenot, P.; Benamer, H.; Desideri, A.; Berland, J.; Almeida, B.O.; Digne, F.; et al. Long-Term Clinical and Angiographic Follow-up of the New Non-Polymeric Paclitaxel-Eluting Stent for the Treatment of De Novo Coronary Lesions: Outcomes of the PAX-B Study. Rev. Bras. Cardiol. Invasiva 2012, 20, 146–154. [Google Scholar] [CrossRef]
- Tan, S.; Nogic, J.; Thein, P.; Nerlekar, N.; Cameron, J.; Nasis, A.; West, N.; Brown, A. TCTAP A-100 Polymer-Free Versus Biodegradable Polymer Drug-Eluting Stents for the Treatment of Coronary Artery Disease: A Meta-Analysis of Randomized Trials. J. Am. Coll. Cardiol. 2018, 71, S56. [Google Scholar] [CrossRef]
- Nogic, J.; Thein, P.; Mirzaee, S.; Comella, A.; Soon, K.; Cameron, J.D.; West, N.E.J.; Brown, A.J. Biodegradable-Polymer Versus Polymer-Free Drug-Eluting Stents for the Treatment of Coronary Artery Disease. Cardiovasc. Revasc. Med. 2019, 20, 865–870. [Google Scholar] [CrossRef]
- Gao, K.; Sun, Y.; Yang, M.; Han, L.; Chen, L.; Hu, W.; Chen, P.; Li, X. Efficacy and Safety of Polymer-Free Stent versus Polymer-Permanent Drug-Eluting Stent in Patients with Acute Coronary Syndrome: A Meta-Analysis of Randomized Control Trials. BMC Cardiovasc. Disord. 2017, 17, 194. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.J.; Way, J.A.H.; Kritharides, L.; Brieger, D. Polymer-Free versus Durable Polymer Drug-Eluting Stents in Patients with Coronary Artery Disease: A Meta-Analysis. Ann. Med. Surg. 2019, 38, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zeng, Y.; Zhu, X.; Miao, L.; Liang, X.; Duan, J.; Li, H.; Tian, X.; Pang, L.; Wei, Y.; et al. Significant Difference between Sirolimus and Paclitaxel Nanoparticles in Anti-Proliferation Effect in Normoxia and Hypoxia: The Basis of Better Selection of Atherosclerosis Treatment. Bioact. Mater. 2021, 6, 880–889. [Google Scholar] [CrossRef]
- Bangalore, S.; Kumar, S.; Fusaro, M.; Amoroso, N.; Attubato, M.J.; Feit, F.; Bhatt, D.L.; Slater, J. Short- and Long-Term Outcomes With Drug-Eluting and Bare-Metal Coronary Stents. Circulation 2012, 125, 2873–2891. [Google Scholar] [CrossRef] [PubMed]
- Schömig, A.; Dibra, A.; Windecker, S.; Mehilli, J.; Suárez de Lezo, J.; Kaiser, C.; Park, S.-J.; Goy, J.-J.; Lee, J.-H.; Di Lorenzo, E.; et al. A Meta-Analysis of 16 Randomized Trials of Sirolimus-Eluting Stents Versus Paclitaxel-Eluting Stents in Patients With Coronary Artery Disease. J. Am. Coll. Cardiol. 2007, 50, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Stettler, C.; Wandel, S.; Allemann, S.; Kastrati, A.; Morice, M.C.; Schömig, A.; Pfisterer, M.E.; Stone, G.W.; Leon, M.B.; de Lezo, J.S.; et al. Outcomes Associated with Drug-Eluting and Bare-Metal Stents: A Collaborative Network Meta-Analysis. Lancet 2007, 370, 937–948. [Google Scholar] [CrossRef] [PubMed]
- Ostojic, M.; Sagic, D.; Jung, R.; Zhang, Y.-L.; Nedeljkovic, M.; Mangovski, L.; Stojkovic, S.; Debeljacki, D.; Colic, M.; Beleslin, B.; et al. The Pharmacokinetics of Biolimus A9 after Elution from the Nobori Stent in Patients with Coronary Artery Disease: The NOBORI PK Study. Catheter. Cardiovasc. Interv. 2008, 72, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Hyun, D.Y.; Cho, K.H.; Kim, J.H.; Jeong, M.H. Comparison of Long-Term Clinical Outcomes among Zotarolimus-, Everolimus-, and Biolimus-Eluting Stents in Acute Myocardial Infarction Patients with Renal Impairment. Cardiol. J. 2021. [Google Scholar] [CrossRef]
- Tada, T.; Byrne, R.A.; Cassese, S.; King, L.; Schulz, S.; Mehilli, J.; Schömig, A.; Kastrati, A. Comparative Efficacy of 2 Zotarolimus-Eluting Stent Generations: Resolute versus Endeavor Stents in Patients with Coronary Artery Disease. Am. Heart J. 2013, 165, 80–86. [Google Scholar] [CrossRef]
- Bozsak, F.; Gonzalez-Rodriguez, D.; Sternberger, Z.; Belitz, P.; Bewley, T.; Chomaz, J.-M.; Barakat, A.I. Optimization of Drug Delivery by Drug-Eluting Stents. PLoS ONE 2015, 10, e0130182. [Google Scholar] [CrossRef]
- Xu, B.; Gao, R.; Yang, Y.; Cao, X.; Qin, L.; Li, Y.; Li, Z.; Li, X.; Lin, H.; Guo, Y.; et al. Biodegradable Polymer-Based Sirolimus-Eluting Stents With Differing Elution and Absorption Kinetics. J. Am. Coll. Cardiol. 2016, 67, 2249–2258. [Google Scholar] [CrossRef]
- Habib, A.; Finn, A.V. Antiproliferative Drugs for Restenosis Prevention. Interv. Cardiol. Clin. 2016, 5, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Valgimigli, M.; Frigoli, E.; Heg, D.; Tijssen, J.; Jüni, P.; Vranckx, P.; Ozaki, Y.; Morice, M.-C.; Chevalier, B.; Onuma, Y.; et al. Dual Antiplatelet Therapy after PCI in Patients at High Bleeding Risk. N. Engl. J. Med. 2021, 385, 1643–1655. [Google Scholar] [CrossRef] [PubMed]
Type. | Stent Platform Name (Manufacturer) | Stent Platform Material | Strut Thickness (µm) | Polymer/Coating | Polymer Thickness (µm) |
---|---|---|---|---|---|
DES 1st | Cypher (Cordis) [37,38] | SS | 140 | PEVA, PBMA | 12.6 |
Taxus (Boston Scientific) [37,38] | SS | 132 | SIBS | 16 | |
DES 2nd | Xience V (Abbot) [37,38] | Co-Cr | 81 | PVDF-HFP, PBMA | 7.6 |
Endeavor Sprint (Medtronic) [37,38] | Co-Cr | 91 | Phosphorylcholine | 4.1 | |
Resolute (Medtronic) [38,39] | Co-Cr | 91 | Biolinx polymer | 4.1 | |
Promus (Boston Scientific) [38,39] | Pt-Cr | 81 | PVDF-HFP | 6 | |
Resolute Onyx DES (Medtronic) [40,41] | Shell: Co Core: Pt-Ir | 81 | Biolinx polymer | 5.6 | |
BP-DES 3rd | Synergy (Boston Scientific) [39,42] | Pt-Cr | 74 | PLGA | 4 |
Orsiro (Biotronik) [42,43] | Co-Cr | 61 | PROBIO, PLLA | 7.4 | |
Ultimaster (Terumo) [42,44] | Co-Cr | 80 | PLCL | <15 | |
Biomatrix (Biosensors) [39] | SS | 112 | PA | 10 | |
Alex Plus (Balton) [45] | Co-Cr | 70 | PLGA | <10 | |
Polymer-free 3rd | BioFreedom (Biosensors) [39,42,46] | SS | 112 | No, microabrasion | - |
CRE 8 EVO (Alvimedica) [39,42,47] | Co-Cr | 70–80 | No | - |
Durable/Bioresorbable | Stent (Manufacturer) | Drug (Dosage) | Drug Release (%) Time | Polymer/ Coating | Polymer Biodegradation (months) | Polymer Distribution |
---|---|---|---|---|---|---|
Durable | Xience V (Abbot) [37] | Everolimus (1 μg/mm2) | 80% 340 days 100% 4 months | PVDH-HFP, PBMA | N/A | Conformal |
Endeavor Sprint (Medtronic) [37] | Zotarolimus (10 μg/mm2) | 95% 14 days | Phospho- Rylcholine | N/A | Conformal | |
Resolute Family (Medtronic) [38,39] | Zotarolimus (10 μg/mm2) | 85% 60 days 100% 6 months | Biolinx polymer | N/A | Conformal | |
Promus Family (Boston Scientific) [38,39] | Everolimus (1 μg/mm2) | 80% 30 days 87% 90 days | PVDF-HPF | N/A | Conformal | |
Xience Family (Abbot) [70] | Everolimus (1 μg/mm2) | 100% 4 months | PBMA, PVDF-HPF | N/A | Conformal | |
Bioresorbable | Synergy (Boston Scientific) [39] | Everolimus (LD-56 μg/20 mm2 SD-113 μg/20 mm2) | 50% 60 days 100% 120 days | PLGA | 3 | Abluminal |
Ultimaster (Terumo) [71] | Sirolimus A9 (3.9 μg/mm2) | 100% 3–4 months | PLCL | 3–4 | Abluminal | |
BioMatrix (Biosensors) [39] | Biolimus A9 (15.6 μg/mm2) | 45% 30 days | PA | 6–9 | Abluminal | |
Orsiro (Biotronik) [38,43] | Sirolimus (1.4 μg/mm2) | 50% 30 days 80% 3 months | PROBIO PLLA | >12 | Conformal | |
Alex (Balton) [45] | Sirolimus (1.0 μg/mm2) | 100% 8 weeks | PLGA | 2 | Conformal | |
Polymer free | Cre 8 (Alvimedica) [39,42,47] | Sirolimus (0.9 μg/mm2) | 100% 3 months | N/A | N/A | N/A |
BioFreedom (Biosensors) [39,42,46] | Biolimus (15.6 μg/mm2) | 100% 1 month | N/A | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koźlik, M.; Harpula, J.; Chuchra, P.J.; Nowak, M.; Wojakowski, W.; Gąsior, P. Drug-Eluting Stents: Technical and Clinical Progress. Biomimetics 2023, 8, 72. https://doi.org/10.3390/biomimetics8010072
Koźlik M, Harpula J, Chuchra PJ, Nowak M, Wojakowski W, Gąsior P. Drug-Eluting Stents: Technical and Clinical Progress. Biomimetics. 2023; 8(1):72. https://doi.org/10.3390/biomimetics8010072
Chicago/Turabian StyleKoźlik, Maciej, Jan Harpula, Piotr J. Chuchra, Magdalena Nowak, Wojciech Wojakowski, and Paweł Gąsior. 2023. "Drug-Eluting Stents: Technical and Clinical Progress" Biomimetics 8, no. 1: 72. https://doi.org/10.3390/biomimetics8010072
APA StyleKoźlik, M., Harpula, J., Chuchra, P. J., Nowak, M., Wojakowski, W., & Gąsior, P. (2023). Drug-Eluting Stents: Technical and Clinical Progress. Biomimetics, 8(1), 72. https://doi.org/10.3390/biomimetics8010072