Metal–Organic Frameworks (MOFs) and Their Composites as Emerging Biomaterials for Osteoarthritis Treatment
Abstract
:1. Introduction
Prevalence, Pathogenesis, and Treatment Gaps of OA
2. MOFs for OA Treatment
2.1. MOFs with Intrinsic Bioactivity for OA Treatment
2.2. MOFs with Acquired Bioactivity for OA Treatment
2.3. MOF Composite Materials with Potential for OA Treatment
3. Factors to Consider When Designing an Ideal Composite for OA Treatment—Prospects and Potential Pitfalls
3.1. Biocompatibility and Cytotoxicity/Safety Assessment
3.2. Ability to Induce Tissue Regeneration
3.3. Ability to Reduce Inflammation
3.4. Stability and Release Rate of Composite in Different Media
3.5. Injectability
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yaghi, O.M.; Li, H. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. J. Am. Chem. Soc. 1995, 117, 10401–10402. [Google Scholar] [CrossRef]
- Yaghi, O.M.; Li, G.; Li, H. Selective Binding and Removal of Guests in a Microporous Metal–Organic Framework. Nature 1995, 378, 703–706. [Google Scholar] [CrossRef]
- Beyer, S.; Schürmann, R.; Feldmann, I.; Blocki, A.; Bald, I.; Schneider, R.J.; Emmerling, F. Maintaining Stable Zeolitic Imidazolate Framework (ZIF) Templates during Polyelectrolyte Multilayer Coating. Colloids Interface Sci. Commun. 2018, 22, 14–17. [Google Scholar] [CrossRef]
- Akhmetova, I.; Beyer, S.; Schutjajew, K.; Tichter, T.; Wilke, M.; Prinz, C.; Martins, I.C.B.; Al-Sabbagh, D.; Roth, C.; Emmerling, F. Cadmium Benzylphosphonates—The Close Relationship between Structure and Properties. CrystEngComm 2019, 21, 5958–5964. [Google Scholar] [CrossRef]
- Lin, R.; Li, X.; Krajnc, A.; Li, Z.; Li, M.; Wang, W.; Zhuang, L.; Smart, S.; Zhu, Z.; Appadoo, D.; et al. Mechanochemically Synthesised Flexible Electrodes Based on Bimetallic Metal–Organic Framework Glasses for the Oxygen Evolution Reaction. Angew. Chem. 2022, 134, e202112880. [Google Scholar] [CrossRef]
- Banerjee, S.; Lollar, C.T.; Xiao, Z.; Fang, Y.; Zhou, H.C. Biomedical Integration of Metal–Organic Frameworks. Trends Chem. 2020, 2, 467–479. [Google Scholar] [CrossRef]
- Shyngys, M.; Ren, J.; Liang, X.; Miao, J.; Blocki, A.; Beyer, S. Metal-Organic Framework (MOF) Based Biomaterials for Tissue Engineering and Regenerative Medicine. Front. Bioeng. Biotechnol. 2021, 9, 603608. [Google Scholar] [CrossRef]
- Fardjahromi, M.A.; Nazari, H.; Tafti, S.M.A.; Razmjou, A.; Mukhopadhyay, S.; Warkiani, M.E. Metal-Organic Framework-Based Nanomaterials for Bone Tissue Engineering and Wound Healing. Mater. Chem. 2022, 23, 100670. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.; Tang, Y.; Shen, H.; Li, J.; Yi, Z.; Ke, Q.; Xu, H. Copper-Based Metal–Organic Framework as a Controllable Nitric Oxide-Releasing Vehicle for Enhanced Diabetic Wound Healing. ACS Appl. Mater. Interfaces 2020, 12, 18319–18331. [Google Scholar] [CrossRef]
- Liang, K.; Ricco, R.; Doherty, C.M.; Styles, M.J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A.J.; Doonan, C.J.; et al. Biomimetic Mineralization of Metal-Organic Frameworks as Protective Coatings for Biomacromolecules. Nat. Commun. 2015, 6, 7240. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Hou, J.; Deng, Z.; Wang, T.; Beyer, S.; Buzanich, A.G.; Richardson, J.J.; Rawal, A.; Seidel, R.; Zulkifli, M.Y.; et al. Improving the Acidic Stability of Zeolitic Imidazolate Frameworks by Biofunctional Molecules. Chem 2019, 5, 1597–1608. [Google Scholar] [CrossRef]
- Maranescu, B.; Visa, A. Applications of Metal-Organic Frameworks as Drug Delivery Systems. Int. J. Mol. Sci. 2022, 23, 4458. [Google Scholar] [CrossRef]
- Vassaki, M.; Lazarou, S.; Turhanen, P.; Choquesillo-Lazarte, D.; Demadis, K. Drug-Inclusive Inorganic–Organic Hybrid Systems for the Controlled Release of the Osteoporosis Drug Zoledronate. Molecules 2022, 27, 6212. [Google Scholar] [CrossRef]
- Koh, R.H.; Jin, Y.; Kim, J.; Hwang, N.S. Inflammation-Modulating Hydrogels for Osteoarthritis Cartilage Tissue Engineering. Cells. 2020, 9, 419. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Tsao, C.T.; Kyomoto, M.; Zhang, M. Injectable Natural Polymer Hydrogels for Treatment of Knee Osteoarthritis. Adv. Healthc. Mater. 2021, 11, 2101479. [Google Scholar] [CrossRef]
- Cui, A.; Li, H.; Wang, D.; Zhong, J.; Chen, Y.; Lu, H. Global, Regional Prevalence, Incidence and Risk Factors of Knee Osteoarthritis in Population-Based Studies. EClinicalMedicine 2020, 29, 100587. [Google Scholar] [CrossRef]
- Pascual-Garrido, C.; Rodriguez-Fontan, F.; Aisenbrey, E.A.; Payne, K.A.; Chahla, J.; Goodrich, L.R.; Bryant, S.J. Current and Novel Injectable Hydrogels to Treat Focal Chondral Lesions: Properties and Applicability. J. Orthop. Res. 2018, 36, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Ma, Y.; Yao, X.; Zhou, W.; Wang, X.; Li, C.; Lin, J.; He, Q.; Leptihn, S.; Ouyang, H. Advanced Hydrogels for the Repair of Cartilage Defects and Regeneration. Bioact. Mater. 2021, 6, 998–1011. [Google Scholar] [CrossRef]
- He, Z.; Wang, B.; Hu, C.; Zhao, J. An Overview of Hydrogel-Based Intra-Articular Drug Delivery for the Treatment of Osteoarthritis. Colloids Surf. B Biointerfaces 2017, 154, 33–39. [Google Scholar] [CrossRef]
- Assunção, M.; Wong, C.W.; Richardson, J.J.; Tsang, R.; Beyer, S.; Raghunath, M.; Blocki, A. Macromolecular Dextran Sulfate Facilitates Extracellular Matrix Deposition by Electrostatic Interaction Independent from a Macromolecular Crowding Effect. Mater. Sci. Eng. C 2020, 106, 110280. [Google Scholar] [CrossRef]
- Assunção, M.; Dehghan-Baniani, D.; Yiu, C.H.K.; Spaeter, T.; Beyer, S.; Blocki, A. Cell-Derived Extracellular Matrix for Tissue Engineering and Regenerative Medicine. Front. Bioeng. Biotechnol. 2020, 8, 602009. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, J.P.; Kanjilal, D.; Teitelbaum, M.; Lin, S.S.; Cottrell, J.A. Zinc as a Therapeutic Agent in Bone Regeneration. Materials 2020, 13, 2211. [Google Scholar] [CrossRef] [PubMed]
- Beyer, S.; Prinz, C.; Schürmann, R.; Feldmann, I.; Zimathies, A.; Blocki, A.M.; Bald, I.; Schneider, R.J.; Emmerling, F. Ultra-Sonication of ZIF-67 Crystals Results in ZIF-67 Nano-Flakes. ChemistrySelect 2016, 1, 5905–5908. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, X.; Zhu, Y.; Han, Y.; Shen, J.; Bao, B.; Gao, T.; Lin, J.; Huang, T.; Xu, J.; et al. Tunable and Controlled Release of Cobalt Ions from Metal–Organic Framework Hydrogel Nanocomposites Enhances Bone Regeneration. Appl. Mater. Interfaces 2021, 13, 59051–59066. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Chen, G. A Fluorescent Zn(II)-Organic Framework for Selective Detection of Pb 2+ and a Protective Effect in Osteoarthritis Treatment by Reducing ROS Accumulation and Apoptosis in Chondrocytes. J. Coord. Chem. 2020, 73, 393–403. [Google Scholar] [CrossRef]
- Cai, Z.; Qian, J.; Zhao, Y.; Cheng, Y. Microporous MOF with Open Metal Sites for CO2 Fixation and Protective Effect on Osteoarthritis by Regulating the Activation of PI3K/AKT Pathway. J. Solid State Chem. 2020, 283, 121169. [Google Scholar] [CrossRef]
- Li, Z.; Peng, Y.; Pang, X.; Tang, B. Potential Therapeutic Effects of Mg/HCOOH Metal Organic Framework on Relieving Osteoarthritis. ChemMedChem 2020, 15, 13–16. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Li, S.; Wang, K.; Ma, F.; Tang, B. Potential Application Development of Sr/HCOOH Metal Organic Framework in Osteoarthritis. Microporous Mesoporous Mater. 2020, 294, 109835. [Google Scholar] [CrossRef]
- Jiang, W.; Liang, S.; Jiang, X.; Ma, Y.; Wu, Y. Treatment Activity of Co(II) Complexes on Osteoarthritis Induced by Anterior Ligament Reconstruction by Inhibiting the Nf-Κb Signaling Pathway. J. Clust. Sci. 2021, 33, 1773–1779. [Google Scholar] [CrossRef]
- Buzanich, A.G.; Kulow, A.; Kabelitz, A.; Grunewald, C.; Seidel, R.; Chapartegui-Arias, A.; Radtke, M.; Reinholz, U.; Emmerling, F.; Beyer, S. Observation of Early ZIF-8 Crystallization Stages with X-ray Absorption Spectroscopy. Soft Matter 2021, 17, 331–334. [Google Scholar] [CrossRef]
- Xue, S.; Zhou, X.; Sang, W.; Wang, C.; Lu, H.; Xu, Y.; Zhong, Y.; Zhu, L.; He, C.; Ma, J. Cartilage-Targeting Peptide-Modified Dual-Drug Delivery Nanoplatform with NIR Laser Response for Osteoarthritis Therapy. Bioact. Mater. 2021, 6, 2372–2389. [Google Scholar] [CrossRef]
- Xiong, F.; Qin, Z.; Chen, H.; Lan, Q.; Wang, Z.; Lan, N.; Yang, Y.; Zheng, L.; Zhao, J.; Kai, D. PH-Responsive and Hyaluronic Acid-Functionalized Metal–Organic Frameworks for Therapy of Osteoarthritis. J. Nanobiotechnology 2020, 18, 139. [Google Scholar] [CrossRef]
- Chen, J.; Pan, S.; Zhou, J.; Seidel, R.; Beyer, S.; Lin, Z.; Richardson, J.J.; Caruso, F. Metal–Phenolic Networks as Tunable Buffering Systems. Chem. Mater. 2021, 33, 2557–2566. [Google Scholar] [CrossRef]
- Lin, G.; Richardson, J.J.; Ahmed, H.; Besford, Q.A.; Christofferson, A.J.; Beyer, S.; Lin, Z.; Rezk, A.R.; Savioli, M.; Zhou, J.; et al. Programmable Phototaxis of Metal-Phenolic Microswimmers. Adv. Mater. 2021, 33, 2006177. [Google Scholar] [CrossRef]
- Chapartegui-Arias, A.; Raysyan, A.; Belenguer, A.M.; Jaeger, C.; Tchipilov, T.; Prinz, C.; Abad, C.; Beyer, S.; Schneider, R.J.; Emmerling, F. Tailored Mobility in a Zeolite Imidazolate Framework (ZIF) Antibody Conjugate**. Chem. Eur. J. 2021, 27, 9414–9421. [Google Scholar] [CrossRef]
- Li, Z.; Peng, Y.; Xia, X.; Cao, Z.; Deng, Y.; Tang, B. Sr/PTA Metal Organic Framework as A Drug Delivery System for Osteoarthritis Treatment. Sci. Rep. 2019, 9, 17570. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhao, S.; Wang, H.; Peng, Y.; Tan, Z.; Tang, B. Functional Groups Influence and Mechanism Research of UiO-66-Type Metal-Organic Frameworks for Ketoprofen Delivery. Colloids Surf. B Biointerfaces 2019, 178, 1–7. [Google Scholar] [CrossRef]
- Braga, S.S.; Paz, F.A.A. The Emerging Role of Cyclodextrin Metal–Organic Frameworks in Ostheotherapeutics. Appl. Sci. 2022, 12, 1574. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, H.; Chen, J.; Zhang, Y.; Mo, Q.; Zhang, P.; Wang, M.; Liu, H.; Bao, X.; Sun, Y.; et al. Silk-Based Hydrogel Incorporated with Metal-Organic Framework Nanozymes for Enhanced Osteochondral Regeneration. Bioact. Mater. 2023, 20, 221–242. [Google Scholar] [CrossRef]
- Yang, H.; Hu, Y.; Kang, M.; Ding, H.; Gong, Y.; Yin, X.; Sun, R.; Qin, Y.; Wei, Y.; Huang, D. Gelatin-Glucosamine Hydrochloride/Crosslinked-Cyclodextrin Metal-Organic Frameworks@IBU Composite Hydrogel Long-Term Sustained Drug Delivery System for Osteoarthritis Treatment. Biomed. Mater. 2022, 17, 035003. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, D.; Ji, N.; Lee, S.; Wang, G.; Zheng, Y.; Zhang, X.; Yang, L.; Qin, Z.; Yang, Y. Bioinspired Design of Sericin/Chitosan/Ag@MOF/GO Hydrogels for Efficiently Combating Resistant Bacteria, Rapid Hemostasis, and Wound Healing. Polymers 2021, 13, 2812. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huo, Y.; Li, M.; Qin, C.; Liu, H. Synthesis of Metal–Organic-Frameworks on Polydopamine Modified Cellulose Nanofibril Hydrogels: Constructing Versatile Vehicles for Hydrophobic Drug Delivery. Cellulose 2022, 29, 379–393. [Google Scholar] [CrossRef]
- Jiang, Y.; Pan, X.; Yao, M.; Han, L.; Zhang, X.; Jia, Z.; Weng, J.; Chen, W.; Fang, L.; Wang, X.; et al. Bioinspired Adhesive and Tumor Microenvironment Responsive NanoMOFs Assembled 3D-Printed Scaffold for Anti-Tumor Therapy and Bone Regeneration. Nano Today 2021, 39, 101182. [Google Scholar] [CrossRef]
- Cunha, J.E.; Barbosa, G.M.; de Castro, P.A.T.S.; Luiz, B.L.F.; Silva, A.C.A.; Russo, T.L.; Vasilceac, F.A.; Cunha, T.M.; Cunha, F.Q.; Salvini, T.F. Knee Osteoarthritis Induces Atrophy and Neuromuscular Junction Remodeling in the Quadriceps and Tibialis Anterior Muscles of Rats. Sci. Rep. 2019, 9, 6366. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Wang, X.; Yue, O.; Hou, M.; Zhang, H.; Beyer, S.; Blocki, A.M.; Wang, Q.; Gong, G.; Liu, X.; et al. Skin-Inspired Gelatin-Based Flexible Bio-Electronic Hydrogel for Wound Healing Promotion and Motion Sensing. Biomaterials 2021, 276, 121026. [Google Scholar] [CrossRef]
- Farooqi, A.R.; Zimmermann, J.; Bader, R.; van Rienen, U. Computational Study on Electromechanics of Electroactive Hydrogels for Cartilage-Tissue Repair. Comput. Methods Programs Biomed. 2020, 197, 105739. [Google Scholar] [CrossRef]
- IARC Monographs on the Evaluation of Carcinigenic Risks to Human, 2-Methylimidazole; International Agency for Research on Cancer: Lyon, France, 2013.
- Deneff, J.I.; Butler, K.S.; Kotula, P.G.; Rue, B.E.; Sava Gallis, D.F. Expanding the ZIFs Repertoire for Biological Applications with the Targeted Synthesis of ZIF-20 Nanoparticles. ACS Appl. Mater. Interfaces 2021, 13, 27295–27304. [Google Scholar] [CrossRef]
- Beyer, S.; Koch, M.; Lee, Y.; Jung, F.; Blocki, A. An In Vitro Model of Angiogenesis during Wound Healing Provides Insights into the Complex Role of Cells and Factors in the Inflammatory and Proliferation Phase. Int. J. Mol. Sci. 2018, 19, 2913. [Google Scholar] [CrossRef] [Green Version]
- Beyer, S.; Blocki, A.; Cheung, M.C.Y.; Wan, Z.H.Y.; Mehrjou, B.; Kamm, R.D. Lectin Staining of Microvascular Glycocalyx in Microfluidic Cancer Cell Extravasation Assays. Life 2021, 11, 179. [Google Scholar] [CrossRef]
- Asadniaye Fardjahromi, M.; Razmjou, A.; Vesey, G.; Ejeian, F.; Banerjee, B.; Chandra Mukhopadhyay, S.; Ebrahimi Warkiani, M. Mussel Inspired ZIF8 Microcarriers: A New Approach for Large-Scale Production of Stem Cells. RSC Adv. 2020, 10, 20118–20128. [Google Scholar] [CrossRef]
- Wuttke, S.; Zimpel, A.; Bein, T.; Braig, S.; Stoiber, K.; Vollmar, A.; Müller, D.; Haastert-Talini, K.; Schaeske, J.; Stiesch, M.; et al. Validating Metal-Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications. Adv. Healthc. Mater. 2017, 6, 1600818. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yan, J.; Wen, N.; Xiong, H.; Cai, S.; He, Q.; Hu, Y.; Peng, D.; Liu, Z.; Liu, Y. Metal-Organic Frameworks for Stimuli-Responsive Drug Delivery. Biomaterials 2020, 230, 119619. [Google Scholar] [CrossRef]
- Chapartegui-Arias, A.; Villajos, J.A.; Myxa, A.; Beyer, S.; Falkenhagen, J.; Schneider, R.J.; Emmerling, F. Covalently Fluorophore-Functionalized ZIF-8 Colloidal Particles as a Sensing Platform for Endocrine-Disrupting Chemicals Such as Phthalates Plasticizers. ACS Omega 2019, 4, 17090–17097. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, H.-L.; Tsang, C.-Y.; Beyer, S. Metal–Organic Frameworks (MOFs) and Their Composites as Emerging Biomaterials for Osteoarthritis Treatment. Biomimetics 2023, 8, 97. https://doi.org/10.3390/biomimetics8010097
Wong H-L, Tsang C-Y, Beyer S. Metal–Organic Frameworks (MOFs) and Their Composites as Emerging Biomaterials for Osteoarthritis Treatment. Biomimetics. 2023; 8(1):97. https://doi.org/10.3390/biomimetics8010097
Chicago/Turabian StyleWong, Hoi-Lam, Chung-Yin Tsang, and Sebastian Beyer. 2023. "Metal–Organic Frameworks (MOFs) and Their Composites as Emerging Biomaterials for Osteoarthritis Treatment" Biomimetics 8, no. 1: 97. https://doi.org/10.3390/biomimetics8010097
APA StyleWong, H. -L., Tsang, C. -Y., & Beyer, S. (2023). Metal–Organic Frameworks (MOFs) and Their Composites as Emerging Biomaterials for Osteoarthritis Treatment. Biomimetics, 8(1), 97. https://doi.org/10.3390/biomimetics8010097