Preparation of Iron-Based Sulfides and Their Applications in Biomedical Fields
Abstract
:1. Introduction
2. Structure and Properties of Iron-Based Sulfides
2.1. Structure of Iron-Based Sulfides
2.2. Properties of Iron-Based Sulfides
3. Synthetic Methods of Iron-Based Sulfides
3.1. Molecular Crystal Synthesis
3.2. Biosynthesis
4. Biomedical Applications Based on Electron Transport Mechanism
4.1. Antibacterial Field
4.2. Tumor Treatment
4.3. Bio-Sensing
4.4. Neurodegenerative Diseases
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qi, C.; Lin, J.; Fu, L.H.; Huang, P. Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem. Soc. Rev. 2018, 47, 357–403. [Google Scholar] [CrossRef] [PubMed]
- Fenton, O.S.; Olafson, K.N.; Pillai, P.S.; Mitchell, M.J.; Langer, R. Advances in biomaterials for drug delivery. Adv. Mater. 2018, 30, e1705328. [Google Scholar] [CrossRef] [PubMed]
- Guttenplan, A.P.M.; Tahmasebi Birgani, Z.; Giselbrecht, S.; Truckenmuller, R.K.; Habibovic, P. Chips for biomaterials and biomaterials for chips: Recent advances at the interface between microfabrication and biomaterials research. Adv. Healthc. Mater. 2021, 10, e2100371. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Y.; Nie, G. Multifunctional biomolecule nanostructures for cancer therapy. Nat. Rev. Mater. 2021, 6, 766–783. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Fan, W.; Cheng, W.X.; Gu, Y.; Chen, Y.; Zhou, W.; Yu, X.F.; Chen, M.; Zhu, M.; Fan, K.; et al. Red emissive carbon dot superoxide dismutase nanozyme for bioimaging and ameliorating acute lung injury. Adv. Funct. 2023, 2213856. [Google Scholar] [CrossRef]
- Colby, A.H.; Kirsch, J.; Patwa, A.N.; Liu, R.; Hollister, B.; McCulloch, W.; Burdette, J.E.; Pearce, C.J.; Oberliels, N.H.; Colson, Y.L.; et al. Radiolabeled biodistribution of expansile nanoparticles: Intraperitoneal administration results in tumor specific accumulation. ACS Nano 2023, 17, 2212–2221. [Google Scholar] [CrossRef]
- Gu, N.; Zhang, Z.; Li, Y. Adaptive iron-based magnetic nanomaterials of high performance for biomedical applications. Nano Res. 2021, 15, 1–17. [Google Scholar] [CrossRef]
- Ye, D.; Li, M.; Xie, Y.; Chen, B.; Han, Y.; Liu, S.; Wei, Q.H.; Gu, N. Optical imaging and high-accuracy quantification of intracellular iron contents. Small 2021, 17, e2005474. [Google Scholar] [CrossRef]
- Li, M.; Li, J.; Chen, J.; Liu, Y.; Cheng, X.; Yang, F.; Gu, N. Platelet membrane biomimetic magnetic nanocarriers for targeted delivery and in situ generation of nitric oxide in early ischemic stroke. ACS Nano 2020, 14, 2024–2035. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Gu, N. In vitro biological effects of magnetic nanoparticles. Chin. Sci. Bull. 2012, 57, 3972–3978. [Google Scholar] [CrossRef]
- Dong, H.; Du, W.; Dong, J.; Che, R.; Kong, F.; Cheng, W.; Ma, M.; Gu, N.; Zhang, Y. Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat. Commun. 2022, 13, 5365. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, R.; Wang, Z.; Hao, X.; Zhang, C.; Zhao, H.; Li, W.; Wang, S.; Dong, Y.; Huang, Z.; et al. Carbon-free crystal-like Fe1-xS as an anode for potassium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 55218–55226. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Luo, Y.; Hu, Y.; Liang, K.; He, G.; Chen, Q.; Wang, Q.; Chen, H. Photothermo-promoted nanocatalysis combined with H2S-mediated respiration inhibition for efficient cancer therapy. Adv. Funct. 2020, 31, 2007991. [Google Scholar] [CrossRef]
- Xiao, Y.; Hwang, J.-Y.; Belharouak, I.; Sun, Y.-K. Na storage capability investigation of a carbon nanotube-encapsulated Fe1–xS composite. ACS Energy Lett. 2017, 2, 364–372. [Google Scholar] [CrossRef]
- Sun, Y.; Danish, M.; Ali, M.; Shan, A.; Li, M.; Lyu, Y.; Qiu, Z.; Sui, Q.; Zang, X.; Lyu, S. Trichloroethene degradation by nanoscale CaO2 activated with Fe(II)/FeS: The role of FeS and the synergistic activation mechanism of Fe(II)/FeS. Chem. Eng. J. 2020, 394, 124830. [Google Scholar] [CrossRef]
- Brumovsky, M.; Filip, J.; Malina, O.; Oborna, J.; Sracek, O.; Reichenauer, T.G.; Andryskova, P.; Zboril, R. Core-shell Fe/FeS nanoparticles with controlled shell thickness for enhanced trichloroethylene removal. ACS Appl. Mater. Interfaces 2020, 12, 35424–35434. [Google Scholar] [CrossRef]
- Lai, X.; Zhang, H.; Wang, Y.; Wang, X.; Zhang, X.; Lin, J.; Huang, F. Observation of superconductivity in tetragonal FeS. J. Am. Chem. Soc. 2015, 137, 10148–10151. [Google Scholar] [CrossRef]
- Wu, L.; Dzade, N.Y.; Gao, L.; Scanlon, D.O.; Ozturk, Z.; Hollingsworth, N.; Weckhuysen, B.M.; Hensen, E.J.; de Leeuw, N.H.; Hofmann, J.P. Enhanced photoresponse of FeS2 films: The role of marcasite-pyrite phase junctions. Adv. Mater. 2016, 28, 9602–9607. [Google Scholar] [CrossRef]
- Kitchaev, D.A.; Ceder, G. Evaluating structure selection in the hydrothermal growth of FeS2 pyrite and marcasite. Nat. Commun. 2016, 7, 13799. [Google Scholar] [CrossRef]
- Sun, W.; Liu, S.; Li, Y.; Wang, D.; Guo, Q.; Hong, X.; Xie, K.; Ma, Z.; Zheng, C.; Xiong, S. Monodispersed FeS2 electrocatalyst anchored to nitrogen-doped carbon host for lithium-sulfur batteries. Adv. Funct. 2022, 32, 2205471. [Google Scholar] [CrossRef]
- Preiner, M.; Igarashi, K.; Muchowska, K.B.; Yu, M.; Varma, S.J.; Kleinermanns, K.; Nobu, M.K.; Kamagata, Y.; Tuysuz, H.; Moran, J.; et al. A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nat. Ecol. Evol. 2020, 4, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Gao, J.; Cao, C.; Yin, G.; Jiang, Z.; Ge, M.; Xiao, X.; Lee, W.-K.; Wang, J. Insights into enhanced sodium ion storage mechanism in Fe3S4: The coupling of surface chemistry, microstructural regulation and 3D electronic transport. Nano Energy 2019, 62, 384–392. [Google Scholar] [CrossRef]
- Wang, R.; Wu, X.; Tian, Z.; Hu, T.; Cai, C.; Wu, G.; Jiang, G.; Liu, B. Sustained release of hydrogen sulfide from anisotropic ferrofluid hydrogel for the repair of spinal cord injury. Bioact. Mater. 2023, 23, 118–128. [Google Scholar] [CrossRef]
- Sun, Y.; Ding, S.; Xia, B.; Duan, J.; Antonietti, M.; Chen, S. Biomimetic FeMo(Se, Te) as joint electron pool promoting nitrogen electrofixation. Angew Chem. Int. Ed. Engl. 2022, 61, e202115198. [Google Scholar]
- Pang, K.; Xu, X.; Wei, Y.; Ying, T.; Li, W.; Yang, J.; Li, X.; Jiang, Y.; Zhang, G.; Tian, W. Integrating ferromagnetism and ferroelectricity in an iron chalcogenide monolayer: A first-principles study. Nanoscale 2022, 14, 14231–14239. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.W.; McCabe, J.W.; Russell, D.H.; Barondeau, D.P. Molecular mechanism of ISC iron-sulfur cluster biogenesis revealed by high-resolution native mass spectrometry. J. Am. Chem. Soc. 2020, 142, 6018–6029. [Google Scholar] [CrossRef]
- Zhang, B.; Bandyopadhyay, S.; Shakamuri, P.; Naik, S.G.; Huynh, B.H.; Couturier, J.; Rouhier, N.; Johnson, M.K. Monothiol glutaredoxins can bind linear [Fe3S4]+ and [Fe4S4]2+ clusters in addition to [Fe2S2]2+ clusters: Spectroscopic characterization and functional implications. J. Am. Chem. Soc. 2013, 135, 15153–15164. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, B.; Zhen Ou, J.; Xu, K.; Yang, C.; Li, Y.; Zhang, H. Engineering two-dimensional metal oxides and chalcogenides for enhanced electro- and photocatalysis. Sci. Bull. 2021, 66, 1228–1252. [Google Scholar] [CrossRef]
- Turcheniuk, K.; Singhal, V.; Yushin, G. Ten years left to redesign lithium-ion batteries. Nature 2018, 559, 467–470. [Google Scholar] [CrossRef]
- Moslemi, H.; Gharabaghi, M. A review on electrochemical behavior of pyrite in the froth flotation process. J. Ind. Eng. Chem. 2017, 47, 1–18. [Google Scholar] [CrossRef]
- Choi, H.; Seo, J.Y.; Uhm, Y.R.; Sun, G.M.; Kim, C.S. Crystalline structure and magnetic properties of pyrite FeS. AIP Adv. 2021, 11, 015131. [Google Scholar] [CrossRef]
- Chandrawat, G.S.; Singh, J.; Tripathi, J.; Sharma, A.; Gupta, M.; Sathe, V.; Tripathi, S. Synthesis and structural characterization of FeS2 nanoparticles using rietveld refinement. AIP Conf. Proc. 2019, 2100, 020023. [Google Scholar]
- Yu, W.J.; Liu, C.; Zhang, L.; Hou, P.X.; Li, F.; Zhang, B.; Cheng, H.M. Synthesis and electrochemical lithium storage behavior of carbon nanotubes filled with iron sulfide nanoparticles. Adv. Sci. 2016, 3, 1600113. [Google Scholar] [CrossRef] [PubMed]
- Özdeniz, A.H.; Kelebek, S. A study of self-heating characteristics of a pyrrhotite-rich sulphide ore stockpile. Int. J. Min. Sci. Technol. 2013, 23, 381–386. [Google Scholar] [CrossRef]
- Tang, X.; Chen, Y. A review of flotation and selective separation of pyrrhotite: A perspective from crystal structures. Int. J. Min. Sci. Technol. 2022, 32, 847–863. [Google Scholar] [CrossRef]
- Schmøkel, M.S.; Bjerg, L.; Cenedese, S.; Jørgensen, M.R.V.; Chen, Y.-S.; Overgaard, J.; Iversen, B.B. Atomic properties and chemical bonding in the pyrite and marcasite polymorphs of FeS2: A combined experimental and theoretical electron density study. Chem. Sci. 2014, 5, 1408–1421. [Google Scholar] [CrossRef]
- Dzade, N.Y.; de Leeuw, N.H. Periodic DFT+U investigation of the bulk and surface properties of marcasite FeS. Phys. Chem. Chem. Phys. 2017, 19, 27478–27488. [Google Scholar] [CrossRef]
- Bone, S.E.; Bargar, J.R.; Sposito, G. Mackinawite (FeS) reduces mercury(II) under sulfidic conditions. Environ. Sci. Technol. 2014, 48, 10681–10689. [Google Scholar] [CrossRef]
- Dzade, N.Y.; Roldan, A.; de Leeuw, N.H. A DFT-D2 study of the adsorption and dissociation of water on cleanand oxygen-covered {001} and {011} surfaces of mackinawite (FeS). J. Phys. Chem. C 2016, 120, 21441–21450. [Google Scholar] [CrossRef]
- Honarmand Ebrahimi, K.; Ciofi-Baffoni, S.; Hagedoorn, P.L.; Nicolet, Y.; Le Brun, N.E.; Hagen, W.R.; Armstrong, F.A. Iron-sulfur clusters as inhibitors and catalysts of viral replication. Nat. Chem. 2022, 14, 253–266. [Google Scholar] [CrossRef]
- Gourdoupis, S.; Nasta, V.; Calderone, V.; Ciofi-Baffoni, S.; Banci, L. IBA57 recruits ISCA2 to form a [2Fe-2S] cluster-mediated complex. J. Am. Chem. Soc. 2018, 140, 14401–14412. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Imlay, J.A. A conserved motif liganding the [4Fe-4S] cluster in [4Fe-4S] fumarases prevents irreversible inactivation of the enzyme during hydrogen peroxide stress. Redox Biol. 2019, 26, 101296. [Google Scholar] [CrossRef]
- Zhang, B.; Arcinas, A.J.; Radle, M.I.; Silakov, A.; Booker, S.J.; Krebs, C. First step in catalysis of the radical S-sdenosylmethionine methylthiotransferase miaB yields an intermediate with a [3Fe-4S]0-like auxiliary cluster. J. Am. Chem. Soc. 2020, 142, 1911–1924. [Google Scholar] [CrossRef] [PubMed]
- DeRosha, D.E.; Chilkuri, V.G.; Van Stappen, C.; Bill, E.; Mercado, B.Q.; DeBeer, S.; Neese, F.; Holland, P.L. Planar three-coordinate iron sulfide in a synthetic [4Fe-3S] cluster with biomimetic reactivity. Nat. Chem. 2019, 11, 1019–1025. [Google Scholar] [CrossRef]
- Chica, B.; Ruzicka, J.; Pellows, L.M.; Kallas, H.; Kisgeropoulos, E.; Vansuch, G.E.; Mulder, D.W.; Brown, K.A.; Svedruzic, D.; Peters, J.W.; et al. Dissecting electronic-structural transitions in the nitrogenase MoFe protein P-cluster during reduction. J. Am. Chem. Soc. 2022, 144, 5708–5712. [Google Scholar] [CrossRef] [PubMed]
- Caserta, G.; Zuccarello, L.; Barbosa, C.; Silveira, C.M.; Moe, E.; Katz, S.; Hildebrandt, P.; Zebger, I.; Todorovic, S. Unusual structures and unknown roles of FeS clusters in metalloenzymes seen from a resonance Raman spectroscopic perspective. Coordin. Chem. Rev. 2022, 452, 214287. [Google Scholar] [CrossRef]
- Holm, R.H.; Lo, W. Structural conversions of synthetic and protein-bound iron-sulfur clusters. Chem. Rev. 2016, 116, 13685–13713. [Google Scholar] [CrossRef] [PubMed]
- Srour, B.; Gervason, S.; Hoock, M.H.; Monfort, B.; Want, K.; Larkem, D.; Trabelsi, N.; Landrot, G.; Zitolo, A.; Fonda, E.; et al. Iron insertion at the assembly site of the ISCU scaffold protein is a conserved process initiating Fe-S cluster biosynthesis. J. Am. Chem. Soc. 2022, 144, 17496–17515. [Google Scholar] [CrossRef]
- Shen, J.; Xu, X.; Liu, J.; Wang, Z.; Zuo, S.; Liu, Z.; Zhang, D.; Liu, J.; Zhu, M. Unraveling the catalytic activity of Fe-based compounds toward Li2Sx in Li-S chemical system from d-p bands. Adv. Energy Mater. 2021, 11, 2100673. [Google Scholar] [CrossRef]
- Wang, J.; Dai, X.; Wang, H.; Liu, H.; Rabeah, J.; Bruckner, A.; Shi, F.; Gong, M.; Yang, X. Dihydroxyacetone valorization with high atom efficiency via controlling radical oxidation pathways over natural mineral-inspired catalyst. Nat. Commun. 2021, 12, 6840. [Google Scholar] [CrossRef]
- Yan, Q.; Zhang, J.; Xing, M. Cocatalytic Fenton reaction for pollutant control. Cell Rep. Phys. Sci. 2020, 1, 100149. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, F.; Li, X.; Niu, G.; Yang, Y.; Li, H.; Jiang, Y. Tumor microenvironment-responsive fenton nanocatalysts for intensified anticancer treatment. J. Nanobiotechnol. 2022, 20, 69. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Huang, K.; Chang, H.; Liang, Y.; Zhao, J.; Yang, S.; Liu, F. A polydopamine coated nanoscale FeS theranostic platform for the elimination of drug-resistant bacteria via photothermal-enhanced Fenton reaction. Acta Biomater. 2022, 150, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Jarocha, L.E.; Zollitsch, T.; Konowalczyk, M.; Henbest, K.B.; Richert, S.; Golesworthy, M.J.; Schmidt, J.; Dejean, V.; Sowood, D.J.C.; et al. Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature 2021, 594, 535–540. [Google Scholar] [CrossRef]
- Meyerstein, D. Re-examining Fenton and Fenton-like reactions. Nat. Rev. Chem. 2021, 5, 595–597. [Google Scholar] [CrossRef]
- Thomas, N.; Dionysiou, D.D.; Pillai, S.C. Heterogeneous Fenton catalysts: A review of recent advances. J. Hazard. Mater. 2021, 404, 124082. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, H.; Zhang, M.; Zhao, P.; Song, R.; Gong, T.; Liu, Y.; He, X.; Zhao, K.; Bu, W. Amorphous Fe-Based Nanoagents for Self-Enhanced Chemodynamic Therapy by Re-Establishing Tumor Acidosis. Adv. Funct. Mater. 2019, 30, 1908365. [Google Scholar] [CrossRef]
- Ranji-Burachaloo, H.; Gurr, P.A.; Dunstan, D.E.; Qiao, G.G. Cancer Treatment through Nanoparticle-Facilitated Fenton Reaction. ACS Nano 2018, 12, 11819–11837. [Google Scholar] [CrossRef]
- Xiao, S.; Lu, Y.; Feng, M.; Dong, M.; Cao, Z.; Zhang, X.; Chen, Y.; Liu, J. Multifunctional FeS2 theranostic nanoparticles for photothermal-enhanced chemodynamic/photodynamic cancer therapy and photoacoustic imaging. Chem. Eng. J. 2020, 396, 125294. [Google Scholar] [CrossRef]
- Cai, Y.; Fan, J.; Liu, Z. Enhanced degradation of tetracycline over FeS-based Fenton-like process: Autocatalytic decomposition of H2O2 and reduction of Fe(III). J. Hazard. 2022, 436, 129092. [Google Scholar] [CrossRef]
- Tang, Z.; Zhao, P.; Wang, H.; Liu, Y.; Bu, W. Biomedicine meets Fenton chemistry. Chem. Rev. 2021, 121, 1981–2019. [Google Scholar] [CrossRef]
- Yu, W.; Wen, Q.; Yang, J.; Xiao, K.; Zhu, Y.; Tao, S.; Liang, S.; Hu, S.; Wu, Q.; Hou, H.; et al. Novel insights into extracellular polymeric substance degradation, hydrophilic/hydrophobic characteristics, and dewaterability of waste activated sludge pretreated by hydroxylamine enhanced Fenton oxidation. ACS EST Eng. 2020, 1, 385–392. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, R.; Xi, Y.; Zhu, J.; Zhu, G.; He, H. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review. Appl. Catal. B 2019, 255, 117739. [Google Scholar] [CrossRef]
- Yang, K.; Yang, G.; Chen, L.; Cheng, L.; Wang, L.; Ge, C.; Liu, Z. FeS nanoplates as a multifunctional nano-theranostic for magnetic resonance imaging guided photothermal therapy. Biomaterials 2015, 38, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Yin, H.; Yang, C.; Dou, Y.; Liu, Z.; Zhang, P.; Yu, H.; Huang, Y.; Feng, J.; Hao, J.; et al. A magnetic protein biocompass. Nat. Mater. 2016, 15, 217–226. [Google Scholar] [CrossRef]
- Xue, L.; Hu, T.; Guo, Z.; Yang, C.; Wang, Z.; Qin, S.; Yang, P.; Xie, C.; Xu, J.; Li, N.; et al. A novel biomimetic magnetosensor based on magneto-optically involved conformational variation of MagR/Cry4 complex. Adv. Electron. Mater. 2020, 6, 1901168. [Google Scholar] [CrossRef]
- Zhou, Y.; Tong, T.; Wei, M.; Zhang, P.; Fei, F.; Zhou, X.; Guo, Z.; Zhang, J.; Xu, H.; Zhang, L.; et al. Towards magnetism in pigeon MagR: Iron- and iron-sulfur binding work indispensably and synergistically. Zool. Res. 2023, 44, 142–152. [Google Scholar] [CrossRef]
- Li, N.; Xue, L.; Mai, X.; Wang, P.; Zhu, C.; Han, X.; Xie, Y.; Wang, B.; Ge, Y.; Zhang, Y.; et al. Transfection of clMagR/clCry4 imparts MR-T2 imaging contrast properties to living organisms (E. coli) in the presence of Fe3+ by endogenous formation of iron oxide nanoparticles. Front. Mol. Biosci. 2023, 10, 1119356. [Google Scholar] [CrossRef]
- Jin, Q.; Liu, J.; Zhu, W.; Dong, Z.; Liu, Z.; Cheng, L. Albumin-assisted synthesis of ultrasmall FeS2 nanodots for imaging-guided photothermal enhanced photodynamic therapy. ACS Appl. Mater. Interfaces 2018, 10, 332–340. [Google Scholar] [CrossRef]
- Meng, Z.; Wei, F.; Ma, W.; Yu, N.; Wei, P.; Wang, Z.; Tang, Y.; Chen, Z.; Wang, H.; Zhu, M. Design and synthesis of “All-in-One” multifunctional FeS2 nanoparticles for magnetic resonance and near-infrared imaging guided photothermal therapy of tumors. Adv. Funct. Mater. 2016, 26, 8231–8242. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, H.; Liu, Y.; Ni, D.; Zhang, H.; Zhang, J.; Yao, Z.; He, M.; Shi, J.; Bu, W. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Adv. Mater. 2017, 29, 1701683. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, Z.; Wang, S.; Zhao, C.; Xu, J.; Gao, S.; Yang, M.; Sheng, F.; Gao, S.; Hou, Y. Biodegradable ferrous sulfide-based nanocomposites for tumor theranostics through specific intratumoral acidosis-induced metabolic symbiosis disruption. J. Am. Chem. Soc. 2022, 144, 19884–19895. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Xiang, C.; Xu, Y.; Chen, S.; Zeng, W.; Liu, K.; Jin, X.; Zhou, X.; Zhang, B. Albumin-constrained large-scale synthesis of renal clearable ferrous sulfide quantum dots for T1-Weighted MR imaging and phototheranostics of tumors. Biomaterials 2020, 255, 120186. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Xu, H.; Qu, J.; Ohulchanskyy, T.Y. Hemoglobin nanocrystals for drugs free, synergistic theranostics of colon tumor. Small 2023, 19, e2205165. [Google Scholar] [CrossRef] [PubMed]
- Samad, L.; Cabán-Acevedo, M.; Shearer, M.J.; Park, K.; Hamers, R.J.; Jin, S. Direct chemical vapor deposition synthesis of phase-pure iron pyrite (FeS2) thin films. Chem. Mater. 2015, 27, 3108–3114. [Google Scholar] [CrossRef]
- Shigekawa, K.; Nakayama, K.; Kuno, M.; Phan, G.N.; Owada, K.; Sugawara, K.; Takahashi, T.; Sato, T. Dichotomy of superconductivity between monolayer FeS and FeSe. Proc. Natl. Acad. Sci. USA 2019, 116, 24470–24474. [Google Scholar] [CrossRef]
- Mutlu, Z.; Debnath, B.; Su, S.; Li, C.; Ozkan, M.; Bozhilov, K.N.; Lake, R.K.; Ozkan, C.S. Chemical vapor deposition and phase stability of pyrite on SiO. J. Mater. Chem. C 2018, 6, 4753–4759. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, H.; Xu, J.; Wang, Y.; Dai, S.; Xu, T.; Liu, S.; Zhang, S.; Wang, X.; Li, X. Rational synthesis of marcacite FeS2 hollow microspheres for high-rate and long-life sodium ion battery anode. J. Alloys Compd. 2020, 825, 154173. [Google Scholar] [CrossRef]
- Gao, W.; Razavi, R.; Fakhri, A. Preparation and development of FeS2 quantum dots on SiO2 nanostructures immobilized in biopolymers and synthetic polymers as nanoparticles and nanofibers catalyst for antibiotic degradation. Inter. J. Biol. Macromol. 2018, 114, 357–362. [Google Scholar] [CrossRef]
- Chen, K.; Cao, K.; Xing, C.; Hu, Y.; Liu, J.; He, Y.; Wang, J.; Li, A.; Qin, H. In-situ TEM study of the lithiation and delithiation of FeS nanosheets. J. Alloys Compd. 2016, 688, 946–952. [Google Scholar] [CrossRef]
- Zhu, C.; Wen, Y.; van Aken, P.A.; Maier, J.; Yu, Y. High lithium storage performance of FeS nanodots in porous graphitic carbon nanowires. Adv. Funct. Mater. 2015, 25, 2335–2342. [Google Scholar] [CrossRef]
- Li, J.; Zheng, J.; Wu, C.; Zhang, H.; Jin, T.; Wang, F.; Li, Q.; Shangguan, E. Facile synthesis of Fe3S4 microspheres as advanced anode materials for alkaline iron-based rechargeable batteries. J. Alloys Compd. 2021, 874, 159873. [Google Scholar] [CrossRef]
- Pan, F.; Liu, Z.; Deng, B.; Dong, Y.; Zhu, X.; Huang, C.; Shi, Z.; Lu, W. Magnetic Fe3S4 LTMCs micro-flowers@wax gourd aerogel-derived carbon hybrids as efficient and sustainable electromagnetic absorber. Carbon 2021, 179, 554–565. [Google Scholar] [CrossRef]
- Thomas, M.P.; Ullah, A.; Pham, R.H.; Djieutedjeu, H.; Selegue, J.P.; Guiton, B.S. Morphology control in the hydrothermal synthesis of FeS nanoplatelets. Cryst. Growth Des. 2020, 20, 5728–5735. [Google Scholar] [CrossRef]
- Zhao, T.; Elzatahry, A.; Li, X.; Zhao, D. Single-micelle-directed synthesis of mesoporous materials. Nat. Rev. Mater. 2019, 4, 775–791. [Google Scholar] [CrossRef]
- Zhao, C.; Shao, X.; Zhu, Z.; Zhao, C.; Qian, X. One-pot hydrothermal synthesis of RGO/FeS composite on Fe foil for high performance supercapacitors. Electrochim. Acta 2017, 246, 497–506. [Google Scholar] [CrossRef]
- Balakrishnan, B.; Balasingam, S.K.; Sivalingam Nallathambi, K.; Ramadoss, A.; Kundu, M.; Bak, J.S.; Cho, I.H.; Kandasamy, P.; Jun, Y.; Kim, H.-J. Facile synthesis of pristine FeS2 microflowers and hybrid rGO-FeS2 microsphere electrode materials for high performance symmetric capacitors. J. Ind. Eng. Chem. 2019, 71, 191–200. [Google Scholar] [CrossRef]
- Guo, S.P.; Li, J.C.; Xiao, J.R.; Xue, H.G. Fe3S4 Nanoparticles wrapped in an rGO matrix for promising energy storage: Outstanding cyclic and rate performance. ACS Appl. Mater. Interfaces 2017, 9, 37694–37701. [Google Scholar] [CrossRef]
- Huo, Y.; Xiu, S.J.; Meng, L.Y.; Quan, B. Solvothermal synthesis and applications of micro/nano carbons: A review. Chem. Eng. J. 2023, 451, 138572. [Google Scholar] [CrossRef]
- Cao, Z.; Song, H.; Cao, B.; Ma, J.; Chen, X.; Zhou, J.; Ma, Z. Sheet-on-sheet chrysanthemum-like C/FeS microspheres synthesized by one-step solvothermal method for high-performance sodium-ion batteries. J. Power Sources 2017, 364, 208–214. [Google Scholar] [CrossRef]
- Voronina, N.; Yashiro, H.; Myung, S.-T. Marcasite iron sulfide as a high-capacity electrode material for sodium storage. J. Mater. Chem. A 2018, 6, 17111–17119. [Google Scholar] [CrossRef]
- Venkateshalu, S.; Kumar, P.; Kollu, P.; Jeong, S.; Grace, A. Solvothermal synthesis and electrochemical properties of phase pure pyrite FeS2 for supercapacitor applications. Electrochim. Acta 2018, 290, 378–389. [Google Scholar] [CrossRef]
- Dewald, G.F.; Liaqat, Z.; Lange, M.A.; Tremel, W.; Zeier, W.G. Influence of iron sulfide nanoparticle sizes in solid-state batteries. Angew Chem. Int. Ed. Engl. 2021, 60, 17952–17956. [Google Scholar] [CrossRef]
- Liu, W.; Jin, L.; Xu, J.; Liu, J.; Li, Y.; Zhou, P.; Wang, C.; Dahlgren, R.A.; Wang, X. Insight into pH dependent Cr(VI) removal with magnetic Fe3S. Chem. Eng. J. 2019, 359, 564–571. [Google Scholar] [CrossRef]
- Tian, L.J.; Min, Y.; Li, W.W.; Chen, J.J.; Zhou, N.Q.; Zhu, T.T.; Li, D.B.; Ma, J.Y.; An, P.F.; Zheng, L.R.; et al. Substrate metabolism-driven assembly of high-quality CdSxSe1-x quantum dots in escherichia coli: Molecular mechanisms and bioimaging application. ACS Nano 2019, 13, 5841–5851. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Hu, W.; Liu, Y.; Xie, Y.; Zhou, H.; Wang, X.; Chen, J.; Zhang, Y. Mechanism of efficient remediation of U(VI) using biogenic CMC-FeS complex produced by sulfate-reducing bacteria. J. Hazard Mater. 2021, 420, 126645. [Google Scholar] [CrossRef]
- Yang, H.; Gong, L.; Wang, H.; Dong, C.; Wang, J.; Qi, K.; Liu, H.; Guo, X.; Xia, B.Y. Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution. Nat. Commun. 2020, 11, 5075. [Google Scholar] [CrossRef]
- Deng, X.; Dohmae, N.; Kaksonen, A.H.; Okamoto, A. Biogenic iron sulfide nanoparticles to enable extracellular electron uptake in sulfate-reducing bacteria. Angew Chem. Int. Ed. Engl. 2020, 59, 5995–5999. [Google Scholar] [CrossRef]
- Zheng, J.; Conrad, M. The metabolic underpinnings of ferroptosis. Cell Metab. 2020, 32, 920–937. [Google Scholar] [CrossRef]
- Liu, J.; Song, X.; Kuang, F.; Zhang, Q.; Xie, Y.; Kang, R.; Kroemer, G.; Tang, D. NUPR1 is a critical repressor of ferroptosis. Nat. Commun. 2021, 12, 647. [Google Scholar] [CrossRef]
- Shi, Z.; Naowarojna, N.; Pan, Z.; Zou, Y. Multifaceted mechanisms mediating cystine starvation-induced ferroptosis. Nat. Commun. 2021, 12, 4792. [Google Scholar] [CrossRef]
- Shen, Z.; Song, J.; Yung, B.C.; Zhou, Z.; Wu, A.; Chen, X. Emerging strategies of cancer therapy based on ferroptosis. Adv. Mater. 2018, 30, e1704007. [Google Scholar] [CrossRef]
- Ryan, S.K.; Zelic, M.; Han, Y.; Teeple, E.; Chen, L.; Sadeghi, M.; Shankara, S.; Guo, L.; Li, C.; Pontarelli, F.; et al. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration. Nat. Neurosci. 2023, 26, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Mumtaz, S.; Li, C.H.; Hussain, I.; Rotello, V.M. Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev. 2019, 48, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Xu, Z.; Qiu, Z.; Liu, Q.; Huang, Y.; Li, D.; Shen, X.; Fan, K.; Xi, J.; Gu, Y.; Tang, Y.; et al. Converting organosulfur compounds to inorganic polysulfides against resistant bacterial infections. Nat. Commun. 2018, 9, 3713. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Ma, R.; Huang, Y.; Chen, L.; Xu, Z.; Li, D.; Meng, X.; Fan, K.; Xi, J.; Yan, X.; et al. Nano-decocted ferrous polysulfide coordinates ferroptosis-like death in bacteria for anti-infection therapy. Nano Today 2020, 35, 100981. [Google Scholar] [CrossRef]
- Fang, L.; Ma, R.; Gao, X.J.; Chen, L.; Liu, Y.; Huo, Y.; Wei, T.; Wang, X.; Wang, Q.; Wang, H.; et al. Metastable iron sulfides gram-dependently counteract resistant gardnerella vaginalis for bacterial vaginosis treatment. Adv. Sci. 2022, 9, e2104341. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Li, W.; Wang, Y.; Cheng, S.; Wang, X.; Zhu, L.; Zhang, Y.; Gao, L.; Jiang, L. Rapid capture and killing of bacteria by lyophilized nFeS-Hydrogel for improved healing of infected wounds. Biomater. Adv. 2023, 144, 213207. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, Q.; Dukhovlinova, E.; Chen, G.; Ahn, S.; Wang, C.; Ogunnaike, E.A.; Ligler, F.S.; Dotti, G.; Gu, Z. Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells. Adv. Mater. 2019, 31, e1900192. [Google Scholar] [CrossRef]
- Qin, X.; Wu, C.; Niu, D.; Qin, L.; Wang, X.; Wang, Q.; Li, Y. Peroxisome inspired hybrid enzyme nanogels for chemodynamic and photodynamic therapy. Nat. Commun. 2021, 12, 5243. [Google Scholar] [CrossRef] [PubMed]
- Zafonte, R.D.; Wang, L.; Arbelaez, C.A.; Dennison, R.; Teng, Y.D. Medical gas therapy for tissue, organ, and CNS protection: A systematic review of effects, mechanisms, and challenges. Adv. Sci. 2022, 9, e2104136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Fang, Y.; He, Y.; Yin, H.; Guan, X.; Pu, Y.; Zhou, B.; Yue, W.; Ren, W.; Du, D.; et al. Extravascular gelation shrinkage-derived internal stress enables tumor starvation therapy with suppressed metastasis and recurrence. Nat. Commun. 2019, 10, 5380. [Google Scholar] [CrossRef] [PubMed]
- Ning, S.; Zheng, Y.; Qiao, K.; Li, G.; Bai, Q.; Xu, S. Laser-triggered combination therapy by iron sulfide-doxorubicin@functionalized nanozymes for breast cancer therapy. J. Nanobiotechnol. 2021, 19, 344. [Google Scholar] [CrossRef]
- Meng, X.; Li, D.; Chen, L.; He, H.; Wang, Q.; Hong, C.; He, J.; Gao, X.; Yang, Y.; Jiang, B.; et al. High-performance self-cascade pyrite nanozymes for apoptosis-ferroptosis synergistic tumor therapy. ACS Nano 2021, 15, 5735–5751. [Google Scholar] [CrossRef]
- Duan, Y.; Li, Q.; He, P.; Li, Y.; Song, J.; Wang, J.; Liu, J.; Zhou, J.; Chen, F.; Huang, Z.; et al. Ultrathin FeS nanosheets with high chemodynamic activity for sensitive colorimetric detection of H2O2 and glutathione. Chin. Chem. Lett. 2022, 33, 3217–3220. [Google Scholar] [CrossRef]
- Song, C.; Ding, W.; Zhao, W.; Liu, H.; Wang, J.; Yao, Y.; Yao, C. High peroxidase-like activity realized by facile synthesis of FeS2 nanoparticles for sensitive colorimetric detection of H2O2 and glutathione. Biosens. Bioelectron. 2020, 151, 111983. [Google Scholar] [CrossRef]
- Huang, X.; Xia, F.; Nan, Z. Fabrication of FeS2/SiO2 double mesoporous hollow spheres as an artificial peroxidase and rapid determination of H2O2 and glutathione. ACS Appl. Mater. Interfaces 2020, 12, 46539–46548. [Google Scholar] [CrossRef]
- Tian, R.; Abarientos, A.; Hong, J.; Hashemi, S.H.; Yan, R.; Drager, N.; Leng, K.; Nalls, M.A.; Singleton, A.B.; Xu, K.; et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat. Neurosci. 2021, 24, 1020–1034. [Google Scholar] [CrossRef]
- Xia, M.; Liang, S.; Li, S.; Ji, M.; Chen, B.; Zhang, M.; Dong, C.; Chen, B.; Gong, W.; Wen, G.; et al. Iatrogenic iron promotes neurodegeneration and activates self-protection of neural cells against exogenous iron attacks. Function 2021, 2, zqab003. [Google Scholar] [CrossRef]
- Doll, S.; Freitas, F.P.; Shah, R.; Aldrovandi, M.; da Silva, M.C.; Ingold, I.; Goya Grocin, A.; Xavier da Silva, T.N.; Panzilius, E.; Scheel, C.H.; et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 2019, 575, 693–698. [Google Scholar] [CrossRef]
- Chen, D.; Chu, B.; Yang, X.; Liu, Z.; Jin, Y.; Kon, N.; Rabadan, R.; Jiang, X.; Stockwell, B.R.; Gu, W. iPLA2beta-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX. Nat. Commun. 2021, 12, 3644. [Google Scholar]
- Stockwell, B.R. A powerful cell-protection system prevents cell death by ferroptosis. Nature 2019, 575, 597–598. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.R.; Forouhar, F.; Seibt, T.; Saneto, R.; Wigby, K.; Friedman, J.; Xia, X.; Shchepinov, M.S.; Ramesh, S.K.; Conrad, M.; et al. Characterization of a patient-derived variant of GPX4 for precision therapy. Nat. Chem. Biol. 2022, 18, 91. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.F.; Hu, P.S.; Wang, Y.Y.; Tan, Y.T.; Yu, K.; Liao, K.; Wu, Q.N.; Li, T.; Meng, Q.; Lin, J.Z.; et al. Phosphorylated NFS1 weakens oxaliplatin-based chemosensitivity of colorectal cancer by preventing PANoptosis. Signal Transduct. Target. Ther. 2022, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Zhou, Y.; Li, Y.; Xia, J.; Chen, Y.; Chen, S.; Wang, X.; Sun, W.; Wang, T.; Ren, X.; et al. Identification of Frataxin as a regulator of ferroptosis. Redox Biol. 2020, 32, 101483. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Wang, T.; Li, Y.; Zhou, Y.; Wang, X.; Yu, X.; Ren, X.; An, Y.; Wu, Y.; Sun, W.; et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic. Biol. Med. 2019, 131, 356–369. [Google Scholar] [CrossRef]
- Gerber, J.; Muhlenhoff, U.; Lill, R. An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu. EMBO Rep. 2003, 4, 906–911. [Google Scholar] [CrossRef]
- Gervason, S.; Larkem, D.; Mansour, A.B.; Botzanowski, T.; Muller, C.S.; Pecqueur, L.; Le Pavec, G.; Delaunay-Moisan, A.; Brun, O.; Agramunt, J.; et al. Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin. Nat. Commun. 2019, 10, 3566. [Google Scholar] [CrossRef]
- Fox, N.G.; Yu, X.; Feng, X.; Bailey, H.J.; Martelli, A.; Nabhan, J.F.; Strain-Damerell, C.; Bulawa, C.; Yue, W.W.; Han, S. Structure of the human frataxin-bound iron-sulfur cluster assembly complex provides insight into its activation mechanism. Nat. Commun. 2019, 10, 2210. [Google Scholar] [CrossRef]
- Tong, W.H.; Rouault, T.A. Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis. Cell Metab. 2006, 3, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Z.; Nitta, T.; Hiratsuka, Y.; Morishima, K. In situ integrated microrobots driven by artificial muscles built from biomolecular motors. Sci. Robot. 2022, 7, eaba8212. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Zhang, H.; Guo, B. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nanomicro Lett. 2021, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, X.; Zhang, W.; Ma, D.; Li, F.; Jia, R.; Shi, M.; Wang, Y.; Ma, G.; Wei, W. Shielding ferritin with a biomineralized shell enables efficient modulation of tumor microenvironment and targeted delivery of diverse therapeutic agents. Adv. Mater. 2022, 34, e2107150. [Google Scholar] [CrossRef]
Minerals | Main Component | Crystallographic System | Reference |
---|---|---|---|
Pyrite | FeS2 | Cubic system | [30] |
Pyrrhotite | Fe1-xS | Hexagonal or monoclinic system | [35] |
Marcasite | FeS2 | Orthogonal system | [36] |
Mackinawite | FeS | Tetragonal system | [38,39] |
Name | R1 (mM−1 S−1) | R2 (mM−1 S−1) | Morphology | Reference |
---|---|---|---|---|
FeS2 | / | 85.36 | Nanodots | [69] |
/ | 31.836 | Nanoparticles | [70] | |
1 | 18.14 | Nanocrystals | [71] | |
FeS | / | 209.8 | Nanoplates | [64] |
/ | 40.159 | Nanoparticles | [72] | |
5.35 | / | Quantum dots | [73] | |
Fe1-xS | / | 36.09 | Nanocrystals | [74] |
Name | Laser | Photothermal Conversion Efficiency | Weight Extinction Coefficient (L g−1 cm−1) | Tumor Type | Reference |
---|---|---|---|---|---|
BSO-FeS2 | 808 nm | 49.5% | / | 4T1 cells | [59] |
FeS2@BSA-Ce6 | 808 nm | / | / | 4T1 cells | [69] |
FeS2-350 | 915 nm | 33.1% | / | 7721 cells | [70] |
FeS2-PEG | 808 nm | 28.6% | / | 4T1 cells | [71] |
FeS@BSA | 660 nm | 30.04% | / | 4T1 cells | [73] |
FeS-PEG | 808 nm | / | 15.5 | 4T1 cells | [64] |
FeS-PEG-CAI | 1064 nm | 56.51% | / | 4T1 cells | [72] |
Fe1-xS-PVP | 808 nm | 24% | / | PAN-02 cells | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Sun, J. Preparation of Iron-Based Sulfides and Their Applications in Biomedical Fields. Biomimetics 2023, 8, 177. https://doi.org/10.3390/biomimetics8020177
Duan Y, Sun J. Preparation of Iron-Based Sulfides and Their Applications in Biomedical Fields. Biomimetics. 2023; 8(2):177. https://doi.org/10.3390/biomimetics8020177
Chicago/Turabian StyleDuan, Yefan, and Jianfei Sun. 2023. "Preparation of Iron-Based Sulfides and Their Applications in Biomedical Fields" Biomimetics 8, no. 2: 177. https://doi.org/10.3390/biomimetics8020177
APA StyleDuan, Y., & Sun, J. (2023). Preparation of Iron-Based Sulfides and Their Applications in Biomedical Fields. Biomimetics, 8(2), 177. https://doi.org/10.3390/biomimetics8020177