Research Progress on New Environmentally Friendly Antifouling Coatings in Marine Settings: A Review
Abstract
:1. Introduction
2. Attachment and Fouling Mechanism of Marine Organisms
3. New Environmentally Friendly Antifouling Coating
3.1. Fouling Release Antifouling Coating
3.2. Natural Antifouling Agent
3.2.1. Marine-Derived Natural Antifouling Agent
3.2.2. Terrestrial-Derived Natural Antifouling Agent
3.2.3. Synthetic Natural Antifouling Agent
3.3. Micro/Nanostructured Antifouling Materials
3.4. Hydrogel Antifouling Material
3.5. Photocatalytic Antifouling Materials
3.6. Slippery Liquid-Infused Porous Surfaces
4. Mechanism of Action of Antimicrobial Peptides and Preparation of Modified Surfaces
4.1. Source and Mechanism of Action of Antimicrobial Peptides
4.2. Preparation of Antimicrobial-Peptide-Modified Surfaces
5. Conclusions and Prospects
- (1)
- The currently developed antifouling coatings have difficulty covering the problems of stability, toxicity and cost of use, which seriously hinders the promotion of their use in the marine field. In the future, the research and application of marine antifouling coatings will develop in the directions of efficient, broad-spectrum, non-toxic, non-polluting and degradable.
- (2)
- Several antifouling coatings reviewed in this paper are derived from natural inspiration, such as natural antifouling agents, micro/nanostructured antifouling materials, liquid-infused smooth porous antifouling materials and hydrogel antifouling coatings, which have the advantages of antifouling performance while remaining non-toxic and ecologically harmless, etc. However, these antifouling coatings still generally have the disadvantages of high costs and poor stability. Therefore, it is necessary to conduct in-depth research on the antifouling mechanism of plants and animals to develop efficient, broad-spectrum, non-polluting antifouling coatings.
- (3)
- The marine environment is complex, and the living environment of each fouling organism is different, so it is not possible to achieve the expected antifouling effect by only relying on coatings with a single antifouling mechanism. Therefore, the future trend is to develop antifouling coatings with synergistic strategies.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.R.; Duan, Y.Y.; Cui, M.; Huang, R.L.; Su, R.X.; Qi, W.; He, Z.M. Biomimetic surface coatings for marine antifouling: Natural antifoulants, synthetic polymers and surface microtopography. Sci. Total Environ. 2021, 766, 144469. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.C.; Liu, P.; Chen, S.W.; Liu, X.T.; Yu, Y.W.; Li, T.W.; Wan, Y.; Tang, N.; Liu, Y.X.; Gu, Y.X. Bioinspired marine antifouling coatings: Antifouling mechanisms, design strategies and application feasibility studies. Eur. Polym. J. 2023, 190, 111997. [Google Scholar] [CrossRef]
- He, X.Y.; Tian, F.; Bai, X.Q.; Yuan, C.Q.; Wang, C.; Neville, A. Biomimetic lubricant-infused titania nanoparticle surfaces via layer-by-layer deposition to control biofouling. Appl. Surf. Sci. 2020, 515, 146064. [Google Scholar] [CrossRef]
- Su, X.; Yang, M.; Hao, D.Z.; Guo, X.L.; Jiang, L. Marine antifouling coatings with surface topographies triggered by phase segregation. J. Colloid Interface Sci. 2021, 598, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.Q.; Yu, L.Z.; Mou, J.G.; Wu, D.H.; Xu, M.S.; Zhou, P.J.; Ren, Y. Research strategies to develop environmentally friendly marine antifouling coatings. Mar. Drugs 2020, 18, 371. [Google Scholar] [CrossRef]
- Van Kerk, G.D.; Luijten, J.G.A. Investigations on organo-tin compounds. III. The biocidal properties of organo-tin compounds. J. Chem. Technol. Biotechnol. 1954, 4, 314–319. [Google Scholar] [CrossRef]
- Illuminati, S.; Annibaldi, A.; Truzzi, C.; Tercier-Waeber, M.L.; Noel, S.; Braungardt, C.B.; Achterberg, E.P.; Howell, K.A.; Turner, D.; Marini, M.; et al. In-situ trace metal (Cd, Pb, Cu) speciation along the Po River plume (Northern Adriatic Sea) using submersible systems. Mar. Chem. 2019, 212, 47–63. [Google Scholar] [CrossRef]
- Viana, J.L.M.; Diniz, M.D.S.; Santos, S.; Verbinnen, R.T.; Almeida, M.A.P.; Franco, T. Antifouling biocides as a continuous threat to the aquatic environment: Sources, temporal trends and ecological risk assessment in an impacted region of Brazil. Sci. Total Environ. 2020, 730, 139026. [Google Scholar] [CrossRef]
- Silverman, H.G.; Roberto, F.F. Understanding marine mussel adhesion. Mar. Biotechnol. 2007, 9, 661–681. [Google Scholar] [CrossRef]
- Jain, A.; Bhosle, N.B. Biochemical composition of the marine conditioning film: Implications for bacterial adhesion. Biofouling 2009, 25, 13–19. [Google Scholar] [CrossRef]
- Lee, W.; Ahn, C.H.; Hong, S.; Kim, S.; Lee, S.; Baek, Y.; Yoon, J. Evaluation of surface properties of reverse osmosis membranes on the initial biofouling stages under no filtration condition. J. Membr. Sci. 2010, 351, 112–122. [Google Scholar] [CrossRef]
- Abarzua, S.; Jakubowski, S. Biotechnological investigation for the prevention of biofouling. I. Biological and biochemical principles for the prevention of biofouling. Mar. Ecol. Prog. Ser. 1995, 123, 301–312. [Google Scholar] [CrossRef]
- Amara, I.; Miled, W.; Slama, R.B.; Ladhari, N. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ. Toxicol. Pharmacol. 2018, 57, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Dafforn, K.A.; Lewis, J.A.; Johnston, E.L. Antifouling strategies: History and regulation, ecological impacts and mitigation. Mar. Pollut. Bull. 2011, 62, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Castro, Í.B.; Iannacone, J.; Santos, S.; Fillmann, G. TBT is still a matter of concern in Peru. Chemosphere 2018, 205, 253–259. [Google Scholar] [CrossRef]
- Baier, R.E. Influence of the initial surface condition of materials on bioadhesion. In Proceedings of the Third International Congress on Marine Corrosion and Fouling, Gaithersburg, MD, USA, 2–6 October 1972; Northwestern University Press: Evanston, IL, USA, 1973; pp. 633–639. [Google Scholar]
- Baier, R.E.; Depalma, V.A. The relation of the internal surface of grafts to thrombosis. Manag. Arter. Occlusive Dis. 1971, 18, 1–47. [Google Scholar]
- Brady, R.F.; Singer, I.L. Mechanical factors favoring release from fouling release coatings. Biofouling 2000, 15, 73–81. [Google Scholar] [CrossRef]
- Rahaman, M.S.; Thĕrien-Aubin, H.; Ben-Sasson, M.; Ober, C.K.; Nielsen, M.; Elimelech, M. Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes. J. Mater. Chem. B 2014, 2, 1724–1732. [Google Scholar] [CrossRef]
- Sankar, G.G.; Sathya, S.; Murthy, P.S.; Das, A.; Pandiyan, R.; Venugopalan, V.B.; Doble, M. Polydimethyl siloxane nanocomposites: Their antifouling efficacy invitro and in marine conditions. Int. Biodeterior. Biodegrad. 2015, 104, 307–314. [Google Scholar] [CrossRef]
- Selim, M.S.; Shenashen, M.A.; El-Safty, S.A.; Higazy, S.A.; Selim, M.M.; Isago, H.; Elmarakbi, A. Recent progress in marine foul-release polymeric nanocomposite coatings. Prog. Mater Sci. 2017, 87, 1–32. [Google Scholar] [CrossRef]
- Khalifa, H.; El-Safty, S.A.; Reda, A.; Shenashen, M.A.; Selim, M.M.; Elmarakbi, A.; Metawa, H.A. Theoretical and experimental sets of choice anode/cathode architectonics for high-performance full-scale lib built-up models. Nano-Micro Lett. 2019, 11, 84. [Google Scholar] [CrossRef] [PubMed]
- Azzam, A.M.; Shenashen, M.A.; Selim, M.M.; Yamaguchi, H.; El-Sewify, I.M.; Kawada, S.; Alhamid, A.A.; El-Safty, S.A. Nanospherical inorganic α-Fe core-organic shell necklaces for the removal of arsenic (V) and chromium (VI) from aqueous solution. J. Phys. Chem. Solids 2017, 109, 78–88. [Google Scholar] [CrossRef]
- Nurioglu, A.G.; Esteves, A.C.C. Non-toxic, non-biocide-release antifouling coatings based on molecular structure design for marine applications. J. Mater. Chem. B 2015, 3, 6547–6570. [Google Scholar] [CrossRef] [PubMed]
- Padmavathi, A.R.; Murthy, P.S.; Das, A.; Rao, T.S. Enhanced antifouling property of polydimethylsiloxane-CuO nanocomposite in marine environment. Mater. Lett. 2021, 301, 130342. [Google Scholar] [CrossRef]
- Liu, C.; Yan, B.H.; Sun, J.W.; Dong, X.C.; Zheng, J.Y.; Duan, J.Z.; Hou, B.R. Cu@C core-shell nanoparticles modified polydimethylsiloxane-based coatings with improved static antifouling performance. Prog. Org. Coat. 2022, 171, 107026. [Google Scholar] [CrossRef]
- Hu, W.B.; Peng, C.; Luo, W.J.; Lv, M.; Li, X.M.; Li, D.; Huang, Q.; Fan, C.H. Graphene-based antibacterial paper. ACS Nano 2010, 4, 4317–4323. [Google Scholar] [CrossRef]
- Selim, M.S.; Fatthallah, N.A.; Shenashen, M.A.; Higazy, S.A.; Madian, H.R.; Selim, M.M.; El-Safty, S.A. Bioinspired graphene oxide-magnetite nanocomposite coatings as protective superhydrophobic antifouling surfaces. Langmuir 2023, 39, 2333–2346. [Google Scholar] [CrossRef]
- Soleimani, S.; Jannesari, A.; Yousefzadi, M.; Ghaderi, A.; Shahdadi, A. Eco-friendly foul release coatings based on a novel reduced graphene oxide/Ag nanocomposite prepared by a green synthesis approach. Prog. Org. Coat. 2021, 151, 106107. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, J.W.; Cai, Y.; Xu, L.; Yi, L.M. Protein-resistant amphiphilic copolymers containing fluorosiloxane side chains with controllable length. ACS Appl. Polym. Mater. 2022, 4, 7903–7910. [Google Scholar] [CrossRef]
- Guazzelli, E.; Perondi, F.; Criscitiello, F.; Pretti, C.; Oliva, M.; Casu, V.; Maniero, F.; Gazzera, L.; Galli, G.; Martinelli, E. New amphiphilic copolymers for PDMS-based nanocomposite films with long-term marine antifouling performance. J. Mater. Chem. B 2020, 8, 9764–9776. [Google Scholar] [CrossRef]
- Tian, L.; Yin, Y.; Jin, H.; Bing, W.; Jin, E.; Zhao, J.; Ren, L. Novel marine antifouling coatings inspired by corals. Mater. Today Chem. 2020, 17, 100294. [Google Scholar] [CrossRef]
- Evans, S.M.; Leksono, T.; McKinnell, P.D. Tributyltin pollution: A diminishing problem following legislation limiting the use of TBT-based anti-fouling paints. Mar. Pollut. Bull. 1995, 30, 14–21. [Google Scholar] [CrossRef]
- Darya, M.; Abdolrasouli, M.H.; Yousefzadi, M.; Sajjadi, M.M.; Sourinejad, I.; Zarei, M. Antifouling coating based on biopolymers (PCL/PLA) and bioactive extract from the sea cucumber Stichopus herrmanni. AMB Express 2022, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Levert, A.; Foulon, V.; Fauchon, M.; Tapissier-Bontemps, N.; Banaigs, B.; Hellio, C. Antifouling activity of meroterpenes isolated from the ascidian Aplidium aff. densum. Mar. Biotechnol. 2021, 23, 51–61. [Google Scholar] [CrossRef]
- Pereira, F.; Almeida, J.R.; Paulino, M.; Grilo, I.R.; Macedo, H.; Cunha, I.; Sobral, R.G.; Vasconcelos, V.; Gaudêncio, S.P. Antifouling napyradiomycins from marine-derived actinomycetes Streptomyces aculeolatus. Mar. Drugs 2020, 18, 63. [Google Scholar] [CrossRef]
- Nong, X.H.; Zhang, X.Y.; Xu, X.Y.; Qi, S.H. Antifouling compounds from the marine-derived fungus aspergillus terreus SCSGAF0162. Nat. Prod. Commun. 2015, 10, 1033–1034. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.Q.; He, J.; Chen, S.Y.; Chen, S.Y.; Su, P.; Ke, C.H.; Wang, W. The plant alkaloid camptothecin as a novel antifouling compound for marine paints: Laboratory bioassays and field trials. Mar. Biotechnol. 2018, 20, 623–638. [Google Scholar] [CrossRef]
- Hao, H.H.; Chen, S.Y.; Wu, Z.W.; Su, P.; Ke, C.H.; Feng, D.Q. The degradation and environmental risk of camptothecin, a promising marine antifoulant. Sci. Total Environ. 2022, 821, 153384. [Google Scholar] [CrossRef]
- Selvaraj, T.; Carlton, R.; Sathishkumar, A.; Senthil, K.; Ankur, A.; Krishnana, K.G.; Dhinesh, V.; Belciya, P.S.; Raja, M.B.; Ramesh, K.R.; et al. Antifouling efficiency of latex producing plant species distributed in tidal and terrestrial regions of coromandel coast. Biomass Convers. Biorefin. 2023. [CrossRef]
- Chen, J.P.; Zhao, J.; Lin, F.C.; Zheng, X.X.; Jian, R.K.; Lin, Y.C.; Wei, F.F.; Lin, Q.; Bai, W.B.; Xu, Y.L. Polymerized tung oil toughened urushiol-based benzoxazine copper polymer coatings with excellent antifouling performances. Prog. Org. Coat. 2023, 177, 107411. [Google Scholar] [CrossRef]
- Zmozinski, A.V.; Peres, R.S.; Brust, F.R.; Macedo, A.J.; Becker, E.M.; Napp, A.P.; de Brito, H.A.; Vainstein, M.H.; Schrank, A.; Ferreira, C.A. The effect of rue (Ruta graveolens) and ginger (Zingiber officinale) extracts as antifouling agents in silicone matrix coatings. J. Coat. Technol. Res. 2021, 18, 1013–1025. [Google Scholar] [CrossRef]
- Labriere, C.; Elumalai, V.; Staffansson, J.; Cervin, G.; Norcy, T.L.; Denardou, H.; Réhel, K.; Moodie, L.W.K.; Hellio, C.; Pavia, H.; et al. Phidianidine a and synthetic analogues as naturally inspired marine antifoulants. J. Nat. Prod. 2020, 83, 3413–3423. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.L.; Xu, Y.; Lu, L.; Li, Y.X.; Han, Z.H.; Zhang, J.; Shao, C.L.; Wang, C.Y.; Qian, P.Y. Low-toxicity Diindol-3-ylmethanes as potent antifouling compounds. Mar. Biotechnol. 2015, 17, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.X.; Li, D.H.; Zhu, T.J.; Wang, F.P.; Xiao, X.; Gu, Q.Q. Two new indole alkaloids from the marine-derived bacterium Aeromonas sp CB101. Helv. Chim. Acta 2010, 93, 791–795. [Google Scholar] [CrossRef]
- Ni, C.H.; Feng, K.; Li, X.; Zhao, H.Z.; Yu, L.M. Study on the preparation and properties of new environmentally friendly antifouling acrylic metal salt resins containing indole derivative group. Prog. Org. Coat. 2020, 148, 105824. [Google Scholar] [CrossRef]
- Resende, D.I.S.P.; Almeida, J.R.; Pereira, S.; Campos, A.; Lemos, A.; Plowman, J.E.; Thomas, A.; Clerens, S.; Vasconcelos, V.; Pinto, M.; et al. From natural xanthones to synthetic c-1 aminated 3,4-dioxygenated xanthones as optimized antifouling agents. Mar. Drugs 2021, 19, 638. [Google Scholar] [CrossRef]
- Bai, X.Q.; Xie, G.T.; Fan, H.; Peng, Z.X.; Yuan, C.Q.; Yan, X.P. Study on biomimetic preparation of shell surface microstructure for ship antifouling. Wear 2013, 306, 285–295. [Google Scholar] [CrossRef]
- Scardino, A.J.; Harvey, E.; De, N.R. Testing attachment point theory: Diatom attachment on microtextured polyimide biomimics. Biofouling 2006, 22, 55–60. [Google Scholar] [CrossRef]
- Scardino, A.J.; Guenther, J.; Nys, R.D. Attachment point theory revisited: The fouling response to a microtextured matrix. Biofouling 2008, 24, 45–53. [Google Scholar] [CrossRef]
- Arzt, E.; Quan, H.; Mcmeeking, R.M.; René, H. Functional surface microstructures inspired by nature–from adhesion and wetting principles to sustainable new devices. Prog. Mater. Sci. 2021, 120, 100823. [Google Scholar] [CrossRef]
- Afroz, F.; Lang, A.; Habegger, M.L.; Motta, P.; Hueter, R. Experimental study of laminar and turbulent boundary layer separation control of shark skin. Bioinspir. Biomim. 2016, 12, 016009. [Google Scholar] [CrossRef] [PubMed]
- Carman, M.L.; Estes, T.G.; Feinberg, A.W.; Schumacher, J.F.; Wilkerson, W.; Wilson, L.H.; Callow, M.E.; Callow, J.A.; Brennan, A.B. Engineered antifouling microtopographies-correlating wettability with cell attachment. Biofouling 2006, 22, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.G.; Ma, Z.Y.; Sun, H.J.; Lu, S.; Zeng, Q.F.; Zhang, Y.L.; Dong, G.N. Drag reduction and antifouling properties of non-smooth surfaces modified with ZIF-67. Surf. Coat. Technol. 2021, 427, 127836. [Google Scholar] [CrossRef]
- He, B.L.; Du, Y.X.; Wang, B.W.; Wang, X.L.; Ye, Q.; Liu, S.J. Grafting embedded poly(ionic liquid) brushes on biomimetic sharklet resin surface for anti-biofouling applications. Prog. Org. Coat. 2021, 157, 106298. [Google Scholar] [CrossRef]
- Munther, M.; Palma, T.; Angeron, I.A.; Salari, S.; Ghassemi, H.; Vasefi, M.; Beheshti, A.; Davami, K. Microfabricated biomimetic placoid scale-inspired surfaces for antifouling applications. Appl. Surf. Sci. 2018, 453, 166–172. [Google Scholar] [CrossRef]
- Guan, Y.; Chen, R.R.; Sun, G.H.; Liu, Q.; Liu, J.Y.; Yu, J.; Lin, C.G.; Duan, J.Z.; Wang, J. The mussel-inspired micro-nano structure for antifouling: A flowering tree. J. Colloid Interface Sci. 2021, 603, 307–318. [Google Scholar] [CrossRef]
- Zhao, L.M.; Chen, R.R.; Lou, L.J.; Jing, X.Y.; Liu, Q.; Liu, J.Y.; Yu, J.; Liu, P.L.; Wang, J. Layer-by-Layer-Assembled antifouling films with surface microtopography inspired by Laminaria japonica. Appl. Surf. Sci. 2020, 511, 145564. [Google Scholar] [CrossRef]
- Shahali, H.; Hasan, J.; Mathews, A.; Wang, H.X.; Yan, C.; Tesfamichael, T.; Yarlagadda, P.K.D.V. Multi-biofunctional properties of three species of cicada wings and biomimetic fabrication of nanopatterned titanium pillars. J. Mater. Chem. B 2019, 7, 1300–1310. [Google Scholar] [CrossRef]
- Du, C.Z.; Yuan, H.L.; Zhu, X.N.; Zhang, T.; Liu, Z.H.; Wang, C.Y. Fabrication of antibacterial Zr-BMG biomimetic surfaces by femtosecond laser. Surf. Interfaces 2023, 37, 102740. [Google Scholar] [CrossRef]
- Cao, P.; Liu, D.; Liu, Y.H.; Zhang, Y.; Yuan, C.Q.; Zhang, C. Combining topography and peptide to inhibit algae attachment: Preparation of peptide-modified microstructured surfaces. Surf. Interface Anal. 2021, 53, 973–981. [Google Scholar] [CrossRef]
- Xie, Q.Y.; Pan, J.S.; Ma, C.F.; Zhang, G.Z. Dynamic surface antifouling: Mechanism and systems. Soft. Matter. 2019, 15, 1087–1107. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.L.; Lu, X.L.; Wei, H.; Long, P.; Xu, J.N.; Zheng, Y.F. Bio-inspired self-cleaning PAAS hydrogel released coating for marine antifouling. J. Colloid Interface Sci. 2014, 421, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.Y.; Hong, F.; He, C.X.; Ma, C.F.; Liu, J.H.; Zhang, G.Z.; Wu, C. Coatings with a self-generating hydrogel surface for antifouling. Polymer 2011, 52, 3738–3744. [Google Scholar] [CrossRef]
- Carr, L.R.; Zhou, Y.B.; Krause, J.E.; Xue, H.; Jiang, S.Y. Uniform zwitterionic polymer hydrogels with a nonfouling and functionalizable crosslinker using photopolymerization. Biomaterials 2011, 32, 6893–6899. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.Y.; Feng, D.Q.; Zhu, P.Y.; Song, W.L.; Yasir, M.; Zhang, C.; Liu, L. Hydrogel-anchored Fe-based amorphous coatings with integrated antifouling and anticorrosion functionality. ACS. Appl. Mater. Inter. 2023, 15, 13644–13655. [Google Scholar] [CrossRef]
- Yang, J.P.; Xue, B.; Zhou, Y.Y.; Qin, M.; Wang, W.; Cao, Y. Spray-painted hydrogel coating for marine antifouling. Adv. Mater. Technol. 2021, 6, 2000911. [Google Scholar] [CrossRef]
- Lu, G.M.; Tian, S.; Li, J.Y.; Xu, Y.J.; Liu, S.; Pu, J.B. Fabrication of bio-based amphiphilic hydrogel coating with excellent antifouling and mechanical properties. Chem. Eng. J. 2021, 409, 128134. [Google Scholar] [CrossRef]
- Yan, H.; Wu, Q.S.; Yu, C.M. Recent progress of biomimetic antifouling surfaces in marine. Adv. Mater. Interfaces 2020, 7, 2000966. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, W.; Fang, J. Highly dispersed bismuth oxide quantum dots/graphite carbon nitride nanosheets heterojunctions for visible light photocatalytic redox degradation of environmental pollutants. Appl. Catal. B 2021, 295, 120279. [Google Scholar] [CrossRef]
- Scandura, G.; Ciriminna, R.; Xu, Y.J.; Pagliaro, M.; Palmisano, G. Nanoflower-like Bi2WO6 encapsulated in ORMOSIL as a novel photocatalytic antifouling and foul-release coating. Chem. Eur. J. 2016, 22, 7063–7067. [Google Scholar] [CrossRef]
- Fauzi, A.A.; Jalil, A.A.; Hassan, N.S. A critical review on relationship of CeO2-based photocatalyst towards mechanistic degradation of organic pollutant. Chemosphere 2022, 286, 131651. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Qin, Z.; Ahmad, S.O.A.; Ikram, M.; Li, G. Recent advances in structural tailoring of BiOX-based 2D composites for solar energy harvesting. J. Environ. Chem. Eng. 2021, 9, 106569. [Google Scholar] [CrossRef]
- Zhang, L.F.; Wu, X.H.; Li, J.D. Sn-doped BiOI assisted the excellent photocatalytic performance of multi-shelled ZnO microspheres under simulated sunlight. Chemosphere 2022, 290, 133309. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.P.; Hao, W.; Wang, W. BiOI@CeO2@Ti3C2 mxene composite s-scheme photocatalyst with excellent bacteriostatic properties. J. Colloid Interface Sci. 2023, 633, 836–850. [Google Scholar] [CrossRef]
- Lam, S.S.; Nguyen, V.H.; Dinh, M.T.N. Mainstream avenues for boosting graphitic carbon nitride efficiency: Towards enhanced solar light-driven photocatalytic hydrogen production and environmental remediation. J. Mater. Chem. A 2020, 8, 10571–10603. [Google Scholar] [CrossRef]
- Chen, S.; Slattum, P.; Wang, C.Y. Self-assembly of perylene imide molecules into 1D nanostructures: Methods, morphologies, and applications. Chem. Rev. 2015, 115, 11967–11998. [Google Scholar] [CrossRef]
- Ma, C.C.; Wang, W.; Li, W. Full solar spectrum-driven Cu2O/PDINH heterostructure with enhanced photocatalytic antibacterial activity and mechanism insight. J. Hazard. Mater. 2023, 448, 130851. [Google Scholar] [CrossRef]
- Sun, X.Y.; Wang, C.Y.; Su, D.W.; Wang, G.X.; Zhong, Y.H. Application of photocatalytic materials in sensors. Adv. Mater. Technol. 2020, 5, 1900993. [Google Scholar] [CrossRef]
- Tong, Z.M.; Song, L.; Chen, S.F. Hagfish-inspired smart slips marine antifouling coating based on supramolecular: Lubrication modes responsively switching and self-healing properties. Adv. Funct. Mater. 2022, 32, 2201290. [Google Scholar] [CrossRef]
- Li, D.D.; Lin, Z.W.; Zhu, J.H.; Yu, J.; Liu, J.Y.; Liu, Z.Z.; Chen, R.R.; Liu, Q.; Liu, P.L.; Wang, J. An engineering-oriented approach to construct rough micro/nano-structures for anticorrosion and antifouling application. Colloids Surf. A 2021, 621, 126590. [Google Scholar] [CrossRef]
- Kopecka-Leitmanova, A.; Devinsky, F.; Mlynarcik, D.; Lacko, I. Interaction of amine oxides and quaternary ammonium salts with membrane and membrane-associated processes in E. coli cells: Mode of action. Drug Metab. Drug Interact. 1989, 7, 29–51. [Google Scholar] [CrossRef] [PubMed]
- Li, H.R.; Yan, M.L.; Zhao, W.J. Designing a MOF-based slippery lubricant-infused porous surface with dual functional anti-fouling strategy. J. Colloid Interface Sci. 2022, 607, 1424–1435. [Google Scholar] [CrossRef] [PubMed]
- Peppou-Chapman, S.; Hong, J.K.; Waterhouse, A.; Neto, C. Life and death of liquid-infused surfaces: A review on the choice, analysis and fate of the infused liquid layer. Chem. Soc. Rev. 2020, 49, 3688–3715. [Google Scholar] [CrossRef]
- Lapis, K. Physiologic and pathophysiologic significance of antimicrobial (host defensive) small peptides. Orv. Hetil. 2008, 149, 2419–2424. [Google Scholar] [CrossRef] [PubMed]
- Boman, H.G.; Nilsson, I.; Rasmuson, B. Inducible antibacterial defence system in Drosophila. Nature 1972, 237, 232–235. [Google Scholar] [CrossRef]
- Gan, B.H.; Gaynord, J.; Rowe, S.M.; Deingruber, T.; Spring, D.R. The multifaceted nature of antimicrobial peptides: Current synthetic chemistry approaches and future directions. Chem. Soc. Rev. 2021, 50, 7820–7880. [Google Scholar] [CrossRef]
- Yan, Y.H.; Li, Y.Z.; Zhang, Z.W.; Wang, X.H.; Niu, Y.Z.; Zhang, S.H.; Xu, W.L.; Ren, C.G. Advances of peptides for antibacterial applications. Colloids Surf. B 2021, 202, 111682. [Google Scholar] [CrossRef]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1170. [Google Scholar] [CrossRef]
- Glinel, K.; Thebault, P.; Humblot, V.; Pradier, C.M.; Jouenne, T. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater. 2012, 8, 1670–1684. [Google Scholar] [CrossRef]
- Onaizi, S.A.; Leong., S.S. Tethering antimicrobial peptides: Current status and potential Challenges. Biotechnol. Adv. 2011, 29, 67–74. [Google Scholar] [CrossRef]
- Li, K.; Chen, J.; Xue, Y.; Ding, T.X.; Zhu, S.B.; Mao, M.T.; Zhang, L.; Han, Y. Polymer brush grafted antimicrobial peptide on hydroxyapatite nanorods for highly effective antibacterial performance. Chem. Eng. J. 2021, 423, 130133. [Google Scholar] [CrossRef]
- Shukla, A.; Fleming, K.E.; Chuang, H.F.; Chau, T.M.; Loose, C.R.; Stephanopoulos, G.N.; Hammond, P.T. Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 2010, 31, 2348–2357. [Google Scholar] [CrossRef] [PubMed]
- Plácido, A.; Bragança, I.; Marani, M.; Araujo, A.R.D.; Vasconcelos, A.G.; Batziou, K.; Domingues, V.F.; Eaton, P.; Almeida Leite, J.R.S.A.; Delerue-Matos, C. Antibacterial activity of novel peptide derived from Cry1Ab16 toxin and development of lbl films for foodborne pathogens control. Mater. Sci. Eng. C 2017, 75, 503–509. [Google Scholar] [CrossRef]
- Ye, Z.; Kobe, A.C.; Sang, T.; Aparicio, C. Unraveling dominant surface physicochemistry to build antimicrobial peptide coatings with supramolecular amphiphiles. Nanoscale 2020, 12, 20767–20775. [Google Scholar] [CrossRef]
- Parreira, P.; Monteiro, C.; Graça, V. Surface grafted MSI-78A antimicrobial peptide has high potential for gastric infection management. Sci. Rep. 2019, 9, 18212. [Google Scholar] [CrossRef]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.; Chua, R.R.; Bow, H.; Tambyah, P.A.; Hadinoto, K.; Leong, S.S.J. Development of a catheter functionalized by a polydopamine peptide coating with antimicrobial and antibiofilm properties. Acta Biomater. 2015, 15, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Du, C.W.; He, X.Y.; Zhang, C.; Yuan, C.Q. Modification of a derived antimicrobial peptide on steel surface for marine bacterial resistance. Appl. Surf. Sci. 2020, 510, 145512. [Google Scholar] [CrossRef]
- Cao, P.; Liu, K.W.; Liu, X.D.; Sun, W.; Wu, D.L.; Yuan, C.Q.; Bai, X.Q.; Zhang, C. Antibacterial properties of magainin ii peptide onto 304 stainless steel surfaces: A comparison study of two dopamine modification methods. Colloids Surf. B 2020, 194, 111198. [Google Scholar] [CrossRef]
- Cao, P.; Liu, D.; Zhang, Y.B.; Xiao, F.; Yuan, C.Q.; Liang, F.; Liu, X.D.; Zhang, C. Dopamine-assisted sustainable antimicrobial peptide coating with antifouling and anticorrosion properties. Appl. Surf. Sci. 2022, 589, 153019. [Google Scholar] [CrossRef]
Antifouling Strategies | Mechanisms | Compounds | Advantages and Disadvantages | References |
---|---|---|---|---|
Fouling release coatings | “Baier curve”; low-surface-energy materials make it difficult for contaminated organisms to adhere to the surface | Low-surface-energy silicones and Fluoropolymers; fluoro; silicone co-modified materials | Commercialization poor adhesion on the hull surface; easily damaged | [16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31] |
Natural antifouling agent | Marine and terrestrial plants and animals resist the attachment of fouling organisms by secreting active substances | Steroids, fatty acids, amino acids, indoles, alkaloids and Synthetic analogs | Excellent biocompatibility and degradability; poor stability; difficulty with separation and purification | [32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47] |
Micro/nano structured materials | “Attachment point theory”; the different types of micro/nanostructures on plant and animal surfaces resist the attachment of fouling organisms | Microstructural morphology mimics shark skin, mussel and lotus leaves, etc.; regularized artificial microstructures surface | Low risk to the marine ecological environment; difficult processing; high production cost | [48,49,50,51,52,53,54,55,56,57,58,59,60,61] |
Hydrogel coatings | Inspired by the mucus secreted by the epidermis of fish and amphibians to resist attachment of fouling organisms | Amphiphilic Copolymers; polyethylene glycol (PEG); polyacrylamide (PAM), etc. | Enhanced mechanical stability and excellent antifouling activity; need to conduct further sea testing | [62,63,64,65,66,67,68,69] |
Photocatalytic materials | Based on semiconductor photocatalyst to decompose seawater and dissolved oxygen to produce reactive oxygen species (ROS) for antifouling | Titanium oxide (TiO2), zinc oxide (ZnO) and Cerium dioxide (CeO2), etc. | Restrictions on use in dark conditions | [70,71,72,73,74,75,76,77,78,79] |
Slippery liquid-infused porous surfaces (SLIPS) | Inspired by the special microstructure and smooth properties of natural pigweed | Microstructure; lubricants (perfluoro polyethers and silicone oils) | Self-healing; vulnerable; unclear impacts on marine ecosystems | [80,81,82,83,84] |
Antimicrobial-peptide-modified surfaces | Antibacterial peptides interact electrostatically with bacterial cell membranes to disrupt membrane integrity | Antimicrobial peptide | Environmentally friendly; excellent antifouling performance; maintaining spatial structure and antimicrobial properties remains a challenge | [85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Shu, H.; Zhou, J.; Bai, X.; Cao, P. Research Progress on New Environmentally Friendly Antifouling Coatings in Marine Settings: A Review. Biomimetics 2023, 8, 200. https://doi.org/10.3390/biomimetics8020200
Liu D, Shu H, Zhou J, Bai X, Cao P. Research Progress on New Environmentally Friendly Antifouling Coatings in Marine Settings: A Review. Biomimetics. 2023; 8(2):200. https://doi.org/10.3390/biomimetics8020200
Chicago/Turabian StyleLiu, De, Haobo Shu, Jiangwei Zhou, Xiuqin Bai, and Pan Cao. 2023. "Research Progress on New Environmentally Friendly Antifouling Coatings in Marine Settings: A Review" Biomimetics 8, no. 2: 200. https://doi.org/10.3390/biomimetics8020200
APA StyleLiu, D., Shu, H., Zhou, J., Bai, X., & Cao, P. (2023). Research Progress on New Environmentally Friendly Antifouling Coatings in Marine Settings: A Review. Biomimetics, 8(2), 200. https://doi.org/10.3390/biomimetics8020200