Design, Modeling, and Control of an Aurelia-Inspired Robot Based on SMA Artificial Muscles
Abstract
:1. Introduction
2. Design and Fabrication
2.1. Design of the Au-Robot
- (i)
- Subumbrellar muscles shorten and contract the bell to expel water, which provides the thrust;
- (ii)
- The bell regains its original configuration, using stored elastic energy.
2.2. SMA Artificial Muscle
2.3. Material Parameter Tests
3. Thrust Model of the Au-Robot
- (1)
- The length of the neutral surface of the artificial muscle will not change during the bending process;
- (2)
- During the bending of the artificial muscle, the contraction of SMA is the only direct factor of the system changes, and the deformation of the artificial muscle caused by the environmental temperature is negligible;
- (3)
- The change in the distance between SMA and the neutral surface during the bending of the artificial muscle is negligible;
- (4)
- The artificial muscle bending is approximately a standard arc.
4. Control Strategy
4.1. Central Pattern Generators Controller
4.2. Signal Modulation by Adaptive Regulation Heating Strategy
5. Experimental Results of the Au-Robot
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, Z.; Lu, J.; Wang, Z.; Chen, W.; Feng, H. Design of a new air pressure perception multi-cavity pneumatic-driven earthworm-like soft robot. Auton. Robot. 2020, 44, 267–279. [Google Scholar] [CrossRef]
- Lin, H.T.; Leisk, G.G.; Trimmer, B. GoQBot: A caterpillar-inspired soft-bodied rolling robot. Bioinspiration Biomim. 2011, 6, 026007. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, X.; Wu, Y.; Zhou, Z.; Wang, J.; Zhang, B.; Luo, Y.; Chepinskiy, S.A.; Zhilenkov, A.A. A novel underwater bipedal walking soft robot bio-inspired by the coconut octopus. Bioinspir. Biomim. 2021, 16, 046007. [Google Scholar] [CrossRef]
- Clark, A.J.; Tan, X.B.; McKinley, P.K. Evolutionary multiobjective design of a flexible caudal fin for robotic fish. Bioinspir. Biomim. 2015, 10, 065006. [Google Scholar] [CrossRef] [Green Version]
- Mao, S.; Dong, E.; Jin, H.; Xu, M.; Zhang, S.; Yang, J.; Low, K.H. Gait Study and Pattern Generation of a Starfish-Like Soft Robot with Flexible Rays Actuated by SMAs. J. Bionic Eng. 2014, 11, 400–411. [Google Scholar] [CrossRef]
- Nawroth, J.C.; Lee, H.; Feinberg, A.W.; Ripplinger, C.M.; McCain, M.L.; Grosberg, A.; Dabiri, J.O.; Parker, K.K. A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 2012, 30, 792–797. [Google Scholar] [CrossRef]
- Najem, J.; Sarles, S.A.; Akle, B.; Leo, D.J. Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators. Smart Mater. Struct. 2012, 21, 094026. [Google Scholar] [CrossRef] [Green Version]
- Ko, Y.; Na, S.; Lee, Y.; Cha, K.; Ko, S.Y.; Park, J.; Park, S. A jellyfish-like swimming mini-robot actuated by an electromagnetic actuation system. Smart Mater. Struct. 2012, 21, 057001. [Google Scholar] [CrossRef]
- Marut, K.; Stewart, C.; Michael, T.; Villanueva, A.; Priya, S. A jellyfish-inspired jet propulsion robot actuated by an iris mechanism. Smart Mater. Struct. 2013, 22, 094021. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, T.; Hu, W.; Sitti, M. A Magnetically-Actuated Untethered Jellyfish-Inspired Soft Milliswimmer. Robot. Sci. Syst. Xv 2019, 22–26, 1–7. [Google Scholar]
- Wang, Y.; Zhang, P.; Huang, H.; Zhu, J. Bio-Inspired Transparent Soft Jellyfish Robot. Soft Robot. 2022, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Almubarak, Y.; Punnoose, M.; Maly, N.X.; Hamidi, A.; Tadesse, Y. KryptoJelly: A jellyfish robot with confined, adjustable pre-stress, and easily replaceable shape memory alloy NiTi actuators. Smart Mater. Struct. 2020, 29, 075011. [Google Scholar] [CrossRef]
- Wang, S.B.; Chen, Z. Modeling of Two-Dimensionally Maneuverable Jellyfish-Inspired Robot Enabled by Multiple Soft Actuators. IEEE-Asme Trans. Mechatron. 2022, 27, 1998–2006. [Google Scholar] [CrossRef]
- Yeom, S.W.; Oh, I.K. A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater. Struct. 2009, 18, 085002. [Google Scholar] [CrossRef]
- Wang, T.; Joo, H.J.; Song, S.; Hu, W.; Keplinger, C.; Sitti, M. A versatile jellyfish-like robotic platform for effective underwater propulsion and manipulation. Sci. Adv. 2023, 9, eadg0292. [Google Scholar] [CrossRef]
- Xu, N.W.; Townsend, J.P.; Costello, J.H.; Colin, S.P.; Gemmell, B.J.; Dabiri, J.O. Field Testing of Biohybrid Robotic Jellyfish to Demonstrate Enhanced Swimming Speeds. Biomimetics 2020, 5, 64. [Google Scholar] [CrossRef]
- Ijspeert, A.J. Central pattern generators for locomotion control in animals and robots: A review. Neural Netw. 2008, 21, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Tan, M.; Chen, J.; Zhang, J. A Survey on CPG-Inspired Control Models and System Implementation. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 441–456. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Zhou, C.; Wang, J.; Fan, J.; Zhang, Z. A Wire-driven Elastic Robotic Fish and its Design and CPG-Based Control. J. Intell. Robot. Syst. 2023, 107, 4. [Google Scholar] [CrossRef]
- Wang, M.; Dong, H.; Li, X.; Zhang, Y.; Yu, J. Control and Optimization of a Bionic Robotic Fish Through a Combination of CPG model and PSO. Neurocomputing 2019, 337, 144–152. [Google Scholar] [CrossRef]
- Sun, G.; Sartoretti, G. Joint-Space CPG for Safe Foothold Planning and Body Pose Control During Locomotion and Climbing. IEEE Robot. Autom. Lett. 2022, 7, 9889–9896. [Google Scholar] [CrossRef]
- Yao, C.; Liu, C.; Xia, L.; Liu, M.; Chen, Q. Humanoid adaptive locomotion control through a bioinspired CPG-based controller. Robotica 2022, 40, 762–779. [Google Scholar] [CrossRef]
- Xu, Z.; Fang, Q.; Liu, C.; Chen, Q. Central Pattern Generator with Defined Pulse Signals for Compliant-Resistant Control of Biped Robots. Biomimetics 2023, 8, 100. [Google Scholar] [CrossRef] [PubMed]
- Ijspeert, A.J. A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol. Cybern. 2001, 84, 331–348. [Google Scholar] [CrossRef] [PubMed]
- Ijspeert, A.J.; Crespi, A.; Ryczko, D.; Cabelguen, J.M. From swimming to walking with a salamander robot driven by a spinal cord model. Science 2007, 315, 1416–1420. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Dong, E.; Alici, G.; Mao, S.; Min, X.; Liu, C.; Low, K.H.; Yang, J. A starfish robot based on soft and smart modular structure (SMS) actuated by SMA wires. Bioinspir. Biomim. 2016, 11, 056012. [Google Scholar] [CrossRef]
- Xu, N.W.; Townsend, J.P.; Costello, J.H.; Colin, S.P.; Gemmell, B.J.; Dabiri, J.O. Developing Biohybrid Robotic Jellyfish (Aurelia aurita) for Free-swimming Tests in the Laboratory and in the Field. Bio-Protoc. 2021, 11, e3974. [Google Scholar] [CrossRef]
- Megill, W.M.; Gosline, J.M.; Blake, R.W. The modulus of elasticity of fibrillin-containing elastic fibres in the mesoglea of the hydromedusa Polyorchis penicillatus. J. Exp. Biol. 2005, 208, 3819–3834. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; Tong, L.; Bambach, M.; Rasmussen, K.J.; Khezri, M. Active nonlinear buckling control of optimally designed laminated plates using SMA and PZT actuators. Thin-Walled Struct. 2022, 181, 110134. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Y.; Qiu, S.; Jiang, J.; Zhang, Q.; Zhang, X. Experiments and Modeling of Machined Spring Rotary Actuators with Shape Memory Alloys. Materials 2022, 15, 6674. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.Q.; Dong, E.B.; Sun, D. Soft Gripper Design Based on the Integration of Flat Dry Adhesive, Soft Actuator, and Microspine. IEEE Trans. Robot. 2021, 37, 1065–1080. [Google Scholar] [CrossRef]
- Jin, H.; Dong, E.; Xu, M.; Yang, J. A Smart and Hybrid Composite Finger with Biomimetic Tapping Motion for Soft Prosthetic Hand. J. Bionic Eng. 2020, 17, 484–500. [Google Scholar] [CrossRef]
- Jin, H.; Dong, E.; Xu, M.; Xia, Q.; Liu, S.; Li, W.; Yang, J. Tunable smart digital structure (SDS) to modularly assemble soft actuators with layered adhesive bonding. Smart Mater. Struct. 2018, 27, 015012. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Hang, G.; Li, J.; Wang, Y.; Xiao, K. A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin. Sens. Actuators A-Phys. 2008, 144, 354–360. [Google Scholar] [CrossRef]
- Wang, W.; Yu, C.Y.; Abrego Serrano, P.A.; Ahn, S.H. Shape Memory Alloy-Based Soft Finger with Changeable Bending Length Using Targeted Variable Stiffness. Soft Robot. 2020, 7, 283–291. [Google Scholar] [CrossRef]
- Wang, W.; Ahn, S.H. Shape Memory Alloy-Based Soft Gripper with Variable Stiffness for Compliant and Effective Grasping. Soft Robot. 2017, 4, 379–389. [Google Scholar] [CrossRef]
- Sun, Y.L.; Lueth, T.C. Enhancing Torsional Stiffness of Continuum Robots Using 3-D Topology Optimized Flexure Joints. IEEE-Asme Trans. Mechatron. 2023, 1–9. [Google Scholar] [CrossRef]
- Sun, Y.L.; Liu, Y.Q.; Lueth, T.C. Optimization of Stress Distribution in Tendon-Driven Continuum Robots Using Fish-Tail-Inspired Method. IEEE Robot. Autom. Lett. 2022, 7, 3380–3387. [Google Scholar] [CrossRef]
- Daniel, T.L. Mechanics and Energetics of Medusan Jet Propulsion. Can. J. Zool. Rev. Can. De Zool. 1983, 61, 1406–1420. [Google Scholar] [CrossRef]
- Battista, N.; Gaddam, M.G.; Hamlet, C.L.; Hoover, A.P.; Miller, L.A.; Santhanakrishnan, A. The Presence of a Substrate Strengthens the Jet Generated by Upside-Down Jellyfish. Front. Mar. Sci. 2022, 9, 582. [Google Scholar] [CrossRef]
- Neil, T.R.; Askew, G.N. Jet-paddling jellies: Swimming performance in the Rhizostomeae jellyfish Catostylus mosaicus. J. Exp. Biol. 2018, 221, jeb191148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Drive Method | Untethered | 3D Swimming | The Size of Umbrella (cm) | Velocity (mm/s) | |
---|---|---|---|---|---|
Bioinspired jellyfish [6] | Biosynthetic actuation | yes | no | 0.9 | 2.4 |
Jellyfish-inspired vehicle [7] | IPMC | no | no | 15 | 1.5 |
Jellyfish-like mini-robot [8] | EMA | yes | yes | 1.7 | - |
JetPro [9] | motor | no | no | 5.7 | 116 |
Soft Milliswimmer [10] | Magnetically-Actuated | yes | yes | 0.4 | 50 |
Jellyfish Robot [11] | DEAs | no | yes | 10.4 | 6.3 |
Jellyfish Robot [12] | SMA | no | yes | 21 | 60 |
Jellyfish-inspired robot [13] | DE and IPMC | no | yes | 12 | 4.8 |
Au-robot | SMA | yes | yes | 21 | 126.1 |
Items | Norms |
---|---|
Driving layer | 4 × Φ0.15 mm × 87 mm |
Restoring layer | 100 mm × 10 mm × 0.15 mm (length × width × height) |
Filling layer | 100 mm × 10 mm × 2 mm (length × width × height) |
The distance between driving layer and restoring layer | 1.5 mm |
Nomenclatures | Explanation or Values |
---|---|
= thrust = velocity of ejected fluid, = volume of Au-robot = sectional area of velar aperture = radius cross-section = radius angle of the artificial muscle = contraction percentage = radius of the artificial muscle | Time-varying |
= density of water | 1000 kg/m3 |
= effective length of the artificial muscle | 80 mm |
= diameter of SMAs | 0.15 mm |
= distance between SMAs and steel spring | 1.5 mm |
= thickness of steel spring | 0.1 mm |
= installation angle of the artificial muscle | 15° |
= ratio coefficient of proportionality , | |
= the end coordinate of the artificial muscle | In local coordinate system |
= any point coordinates of the artificial muscle | In local coordinate system |
= any point coordinates of the artificial muscle | In global coordinate system |
= coefficient matrix of heating process | [−1.26572 × 10−8 4.38787 × 10−6 −4.5698 × 10−4 0.0177 −0.065655 27.8867] |
= coefficient matrix of cooling process | [−1.594 × 10−10 3.09477 × 10−7 −2.2091 × 10−4 0.07273 −11.4340 843.9239] |
Time/s | ||||||||
---|---|---|---|---|---|---|---|---|
f/Hz | R/V | |||||||
0~4 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
4~8 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
8~12 | 1 or 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
12~16 | 1 | 1 | π | π | 0 | −π | −π | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Chu, C.; Jin, H.; Hu, Q.; Xu, M.; Dong, E. Design, Modeling, and Control of an Aurelia-Inspired Robot Based on SMA Artificial Muscles. Biomimetics 2023, 8, 261. https://doi.org/10.3390/biomimetics8020261
Yang Y, Chu C, Jin H, Hu Q, Xu M, Dong E. Design, Modeling, and Control of an Aurelia-Inspired Robot Based on SMA Artificial Muscles. Biomimetics. 2023; 8(2):261. https://doi.org/10.3390/biomimetics8020261
Chicago/Turabian StyleYang, Yihan, Chenzhong Chu, Hu Jin, Qiqiang Hu, Min Xu, and Erbao Dong. 2023. "Design, Modeling, and Control of an Aurelia-Inspired Robot Based on SMA Artificial Muscles" Biomimetics 8, no. 2: 261. https://doi.org/10.3390/biomimetics8020261
APA StyleYang, Y., Chu, C., Jin, H., Hu, Q., Xu, M., & Dong, E. (2023). Design, Modeling, and Control of an Aurelia-Inspired Robot Based on SMA Artificial Muscles. Biomimetics, 8(2), 261. https://doi.org/10.3390/biomimetics8020261