Self-Healing Silicone Materials: Looking Back and Moving Forward
Abstract
:1. Introduction
2. Self-Healing Silicone Materials: Looking Back
2.1. SHSMs Based on Covalent Interactions
2.1.1. Self-Healing by the Diels–Alder Cycloaddition
2.1.2. Self-Healing by Imine and Hydrazone-Based Bonds
2.1.3. Self-Healing by Disulfide Bonds
2.1.4. Self-Healing by Boronic Ester and Boroxine Bonds
2.1.5. Self-Healing by Thiourethane Bonds
2.1.6. Self-Healing by Urea Bonds
2.1.7. Self-Healing Polymer-Metal Complexes Based on (Co)polysiloxanes
2.2. SHSMs Based on Non-Covalent Interactions
2.2.1. Self-Healing by Hydrogen Bonds
2.2.2. Self-Healing by Ionic Bonds
2.2.3. Self-Healing by π–π-Stacking
2.2.4. Self-Healing by Intermolecular Metallophilic Interactions
2.2.5. Self-Healing by Host-Guest Interactions
Type of Reversible Interaction | Simplified Structure of SHSM 1 | Maximal Values | SH Conditions | Refs. | ||
---|---|---|---|---|---|---|
σ, MPa | ε, % | η, % (Time of SH) | ||||
Diels-Alder | — 2 | — 2 | 100% (5 min) | 110 °C | [41,42] | |
Imine bonds | 0.35 | 700 | 53% (1 min) | H2O, RT, down to −20 °C | [53] | |
Hydrazone bonds | 0.56 | 115 | 90% (—) | RT | [58] | |
Disulfide bonds | 3.06 | 1200 | 97% (3 h) | 60–120 °C | [48] | |
0.87 | 410 | 83 (12 h) | RT | [49] | ||
Disulfide + imine bonds | 0.31 | 2200 | 95% (4 h) | 60 °C | [47] | |
Boronic ester bonds | 1.28 | — 2 | 70% (30 min) | H2O, RT | [50] | |
Boroxine bonds | 10 | 10 | 98% (4 h) | H2O, RT | [51,52] | |
Thiourethane bonds | 12.56 | 100 | 69 (12 h) | 140 °C | [59] | |
Urea bonds | 1.3 | 95 | 95 (12 h) | 90 °C | [60] | |
Coordination bonds | 0.23 | 1860 | 92 (48 h) | RT, down to −20 °C | [66] | |
0.55 | 125 | 100 | 90 °C | [61] | ||
0.70 | 310 | 76 (48 h) | RT | [61] | ||
3.22 | 2400 | 77 (6 h) | RT | [68] | ||
99 (24 h) | ||||||
9.15 | 3.4 | 98 (4 h) | 80 °C | [71] | ||
Hydrogen bonds | 0.81 | 550 | 27 (4 h) | RT | [91] | |
100 (4 h) | 60 °C | |||||
4.36 | 590 | 97 (24 h) | RT | [100] | ||
0.48 | 2077 | 85 (2 h) | 60 °C | [102] | ||
Ionic bonds | 0.40 | 135 | 83 (12 h) | RT | [109] | |
π–π-stacking | — 2 | — 2 | 95 | 100 °C | [112] | |
Metallophilic interactions | 0.38 | 2000 | 100 (12 h) | RT | [87] |
2.3. SHSMs Based on Interactions between Nanoparticles and Polymers
2.4. SHSMs Based on Combination of Interactions
3. Applications of Self-Healing Silicone Materials: Moving Forward
3.1. Recent Developments in Protective Coatings
3.1.1. Self-Healing Anticorrosion Coatings
3.1.2. Self-Healing Antifouling and Antimicrobial Coatings
3.1.3. Self-Healing Anti-Icing Coatings
3.1.4. Self-Healing Superhydrophobic Coatings
3.2. Recent Developments in Electromagnetic Interference Shielding Films
3.3. Recent Developments in Flexible Sensors
3.3.1. Flexible Strain Sensors
3.3.2. Flexible Pressure Sensors
3.4. Recent Developments in Actuators
3.5. Recent Developments in Triboelectric Nanogenerators
3.6. Recent Developments in Luminescent and Electroluminescent Devices
3.7. Recent Developments in Solar Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Blaiszik, B.J.; Kramer, S.L.B.; Olugebefola, S.C.; Moore, J.S.; Sottos, N.R.; White, S.R. Self-Healing Polymers and Composites. Annu. Rev. Mater. Res. 2010, 40, 179–211. [Google Scholar] [CrossRef]
- Scheiner, M.; Dickens, T.J.; Okoli, O. Progress towards self-healing polymers for composite structural applications. Polymer 2016, 83, 260–282. [Google Scholar] [CrossRef]
- Utrera-Barrios, S.; Verdejo, R.; López-Manchado, M.A.; Hernández Santana, M. Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: A review. Mater. Horiz. 2020, 7, 2882–2902. [Google Scholar] [CrossRef]
- Zhu, D.Y.; Rong, M.Z.; Zhang, M.Q. Self-healing polymeric materials based on microencapsulated healing agents: From design to preparation. Prog. Polym. Sci. 2015, 49–50, 175–220. [Google Scholar] [CrossRef]
- Ghosh, S.K. Self-Healing Materials: Fundamentals, Design Strategies, and Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; ISBN 978-3-527-31829-2. [Google Scholar]
- Cazacu, M.; Dascalu, M.; Stiubianu, G.-T.; Bele, A.; Tugui, C.; Racles, C. From passive to emerging smart silicones. Rev. Chem. Eng. 2022. [Google Scholar] [CrossRef]
- Acome, E.; Mitchell, S.K.; Morrissey, T.G.; Emmett, M.B.; Benjamin, C.; King, M.; Radakovitz, M.; Keplinger, C. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 2018, 359, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Von Szczepanski, J.; Danner, P.M.; Opris, D.M. Self-Healable, Self-Repairable, and Recyclable Electrically Responsive Artificial Muscles. Adv. Sci. 2022, 9, 2202153. [Google Scholar] [CrossRef]
- Deriabin, K.V.; Dziuba, M.A.; Rashevskii, A.A.; Kolesnikov, I.E.; Korzhov, A.V.; Sharov, V.A.; Vorobyev, A.; Vereshchagin, A.A.; Chernukha, A.S.; Tian, J.; et al. Nickel(II)-Polysiloxane “Sandwiches” as Electrical Breakdown Protective Materials. ACS Appl. Polym. Mater. 2023, 5, 892–898. [Google Scholar] [CrossRef]
- White, S.R.; Blaiszik, B.J.; Kramer, S.L.B.; Olugebefola, S.C.; Moore, J.S.; Sottos, N.R. Self-healing Polymers and Composites. Am. Sci. 2011, 99, 392. [Google Scholar] [CrossRef]
- Van Der Zwaag, S.; Van Dijk, N.H.; Jonkers, H.M.; Mookhoek, S.D.; Sloof, W.G. Self-healing behaviour in man-made engineering materials: Bioinspired but taking into account their intrinsic character. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2009, 367, 1689–1704. [Google Scholar] [CrossRef]
- Deriabin, K.V. The Preparation and Properties of Silicone Materials with Electroactive Centers Based on Iron Triad Compounds; Saint Petersburg State University: Saint Petersburg, Russian, 2022. [Google Scholar]
- Kessler, M.R. Self-healing: A new paradigm in materials design. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2007, 221, 479–495. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, X.; Urban, M.W. Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 2015, 49–50, 34–59. [Google Scholar] [CrossRef] [Green Version]
- Wool, R.P. Self-healing materials: A review. Soft Matter 2008, 4, 400. [Google Scholar] [CrossRef] [PubMed]
- Hia, I.L.; Vahedi, V.; Pasbakhsh, P. Self-Healing Polymer Composites: Prospects, Challenges, and Applications. Polym. Rev. 2016, 56, 225–261. [Google Scholar] [CrossRef]
- Hillewaere, X.K.D.; Du Prez, F.E. Fifteen chemistries for autonomous external self-healing polymers and composites. Prog. Polym. Sci. 2015, 49–50, 121–153. [Google Scholar] [CrossRef]
- Miroshnichenko, A.S.; Neplokh, V.; Mukhin, I.S.; Islamova, R.M. Silicone Materials for Flexible Optoelectronic Devices. Materials 2022, 15, 8731. [Google Scholar] [CrossRef] [PubMed]
- Deriabin, K.V.; Ignatova, N.A.; Kirichenko, S.O.; Novikov, A.S.; Kryukova, M.A.; Kukushkin, V.Y.; Islamova, R.M. Structural Features of Polymer Ligand Environments Dramatically Affect the Mechanical and Room-Temperature Self-Healing Properties of Cobalt(II)-Incorporating Polysiloxanes. Organometallics 2021, 40, 2750–2760. [Google Scholar] [CrossRef]
- Wang, P.; Wang, B.; He, B.; Liu, S.; Ye, Q.; Zhou, F.; Liu, W. In situ generation of zwitterionic-functionalized liquid metal-based polydimethylsiloxane antifouling coatings with self-healing ability. Prog. Org. Coat. 2023, 181, 107604. [Google Scholar] [CrossRef]
- Taylor, D.L.; In Het Panhuis, M. Self-Healing Hydrogels. Adv. Mater. 2016, 28, 9060–9093. [Google Scholar] [CrossRef]
- Moretto, H.-H.; Schulze, M.; Wagner, G. Silicones. Ullmann’s Encyclopedia of Industrial Chemistry; Elvers, B., Hawklins, S., Schulz, G., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2000; p. a24_057. ISBN 978-3-527-30673-2. [Google Scholar]
- Yilgör, E.; Yilgör, I. Silicone containing copolymers: Synthesis, properties and applications. Prog. Polym. Sci. 2014, 39, 1165–1195. [Google Scholar] [CrossRef] [Green Version]
- Deriabin, K.V.; Islamova, R.M. Ferrocenyl-Containing Oligosiloxanes and Polysiloxanes: Synthesis, Properties, and Application. Polym. Sci. Ser. C 2022, 64, 95–109. [Google Scholar] [CrossRef]
- Mark, J.E.; Schaefer, D.W.; Lin, G. The Polysiloxanes; Oxford University Press: Oxford, UK, 2015; ISBN 978-0-19-518173-9. [Google Scholar]
- Wang, G.; Li, A.; Zhao, W.; Xu, Z.; Ma, Y.; Zhang, F.; Zhang, Y.; Zhou, J.; He, Q. A Review on Fabrication Methods and Research Progress of Superhydrophobic Silicone Rubber Materials. Adv. Mater. Interfaces 2021, 8, 2001460. [Google Scholar] [CrossRef]
- Eduok, U.; Faye, O.; Szpunar, J. Recent developments and applications of protective silicone coatings: A review of PDMS functional materials. Prog. Org. Coat. 2017, 111, 124–163. [Google Scholar] [CrossRef]
- Chruściel, J.J. Modifications of Textile Materials with Functional Silanes, Liquid Silicone Softeners, and Silicone Rubbers—A Review. Polymers 2022, 14, 4382. [Google Scholar] [CrossRef] [PubMed]
- Cordier, P.; Tournilhac, F.; Soulié-Ziakovic, C.; Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451, 977–980. [Google Scholar] [CrossRef]
- Bekas, D.G.; Tsirka, K.; Baltzis, D.; Paipetis, A.S. Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Compos. Part B Eng. 2016, 87, 92–119. [Google Scholar] [CrossRef]
- Buaksuntear, K.; Limarun, P.; Suethao, S.; Smitthipong, W. Non-Covalent Interaction on the Self-Healing of Mechanical Properties in Supramolecular Polymers. Int. J. Mol. Sci. 2022, 23, 6902. [Google Scholar] [CrossRef]
- Kamand, F.Z.; Mehmood, B.; Ghunem, R.; Hassan, M.K.; El-Hag A.; Al-Sulaiti, L.; Abdala, A. Self-Healing Silicones for Outdoor High Voltage Insulation: Mechanism, Applications and Measurements. Energies 2022, 15, 1677. [Google Scholar] [CrossRef]
- Zhang, F.; Ju, P.; Pan, M.; Zhang, D.; Huang, Y.; Li, G.; Li, X. Self-healing mechanisms in smart protective coatings: A review. Corros. Sci. 2018, 144, 74–88. [Google Scholar] [CrossRef]
- Wang, S.; Urban, M.W. Self-healing polymers. Nat. Rev. Mater. 2020, 5, 562–583. [Google Scholar] [CrossRef]
- Zheng, P.; McCarthy, T.J. A Surprise from 1954: Siloxane Equilibration Is a Simple, Robust, and Obvious Polymer Self-Healing Mechanism. J. Am. Chem. Soc. 2012, 134, 2024–2027. [Google Scholar] [CrossRef]
- Schmolke, W.; Perner, N.; Seiffert, S. Dynamically Cross-Linked Polydimethylsiloxane Networks with Ambient-Temperature Self-Healing. Macromolecules 2015, 48, 8781–8788. [Google Scholar] [CrossRef]
- Osthoff, R.C.; Bueche, A.M.; Grubb, W.T. Chemical Stress-Relaxation of Polydimethylsiloxane Elastomers. J. Am. Chem. Soc. 1954, 76, 4659–4663. [Google Scholar] [CrossRef]
- Schäfer, S.; Kickelbick, G. Self-healing polymer nanocomposites based on Diels-Alder-reactions with silica nanoparticles: The role of the polymer matrix. Polymer 2015, 69, 357–368. [Google Scholar] [CrossRef]
- Fu, G.; Yuan, L.; Liang, G.; Gu, A. Heat-resistant polyurethane films with great electrostatic dissipation capacity and very high thermally reversible self-healing efficiency based on multi-furan and liquid multi-maleimide polymers. J. Mater. Chem. A 2016, 4, 4232–4241. [Google Scholar] [CrossRef]
- Gou, Z.; Zuo, Y.; Feng, S. Thermally self-healing silicone-based networks with potential application in recycling adhesives. RSC Adv. 2016, 6, 73140–73147. [Google Scholar] [CrossRef]
- Jo, Y.Y.; Lee, A.S.; Baek, K.-Y.; Lee, H.; Hwang, S.S. Thermally reversible self-healing polysilsesquioxane structure-property relationships based on Diels-Alder chemistry. Polymer 2017, 108, 58–65. [Google Scholar] [CrossRef]
- Jo, Y.Y.; Lee, A.S.; Baek, K.-Y.; Lee, H.; Hwang, S.S. Multi-crosslinkable self-healing polysilsesquioxanes for the smart recovery of anti-scratch properties. Polymer 2017, 124, 78–87. [Google Scholar] [CrossRef]
- Nasresfahani, A.; Zelisko, P.M. Synthesis of a self-healing siloxane-based elastomer cross-linked via a furan-modified polyhedral oligomeric silsesquioxane: Investigation of a thermally reversible silicon-based cross-link. Polym. Chem. 2017, 8, 2942–2952. [Google Scholar] [CrossRef]
- Feng, Z.; Guo, J.; Cao, X.; Feng, G.; Chen, Z.; Zhang, X.-H. A thermo-reversible furfuryl poly(thioether)-b-polysiloxane-b-furfuryl poly(thioether) triblock copolymer as a promising material for high dielectric applications. Polym. Chem. 2022, 13, 1376–1386. [Google Scholar] [CrossRef]
- Zhao, L.; Jiang, B.; Huang, Y. Functionalized graphene-reinforced polysiloxane nanocomposite with improved mechanical performance and efficient healing properties. J. Appl. Polym. Sci. 2019, 136, 47725. [Google Scholar] [CrossRef]
- Zhao, L.; Jiang, B.; Huang, Y. Self-healable polysiloxane/graphene nanocomposite and its application in pressure sensor. J. Mater. Sci. 2019, 54, 5472–5483. [Google Scholar] [CrossRef]
- Lv, C.; Zhao, K.; Zheng, J. A Highly Stretchable Self-Healing Poly(dimethylsiloxane) Elastomer with Reprocessability and Degradability. Macromol. Rapid Commun. 2018, 39, 1700686. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, J.; Li, G.; Ling, L.; Zhang, G.; Sun, R.; Wong, C.-P. Heat-triggered poly(siloxane-urethane)s based on disulfide bonds for self-healing application. J. Appl. Polym. Sci. 2018, 135, 46532. [Google Scholar] [CrossRef]
- Zhang, T.; Su, H.; Shi, X.; Li, C. Self-healing siloxane elastomers constructed by hierarchical covalent crosslinked networks and reversible dynamic bonds for flexible electronics. J. Mater. Sci. 2022, 57, 10444–10456. [Google Scholar] [CrossRef]
- Zuo, Y.; Gou, Z.; Zhang, C.; Feng, S. Polysiloxane-Based Autonomic Self-Healing Elastomers Obtained Through Dynamic Boronic Ester Bonds Prepared by Thiol-Ene “Click” Chemistry. Macromol. Rapid Commun. 2016, 37, 1052–1059. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.-C.; Mei, J.-F.; Jia, X.-Y.; Li, C.-H.; You, X.-Z.; Bao, Z. A Stiff and Healable Polymer Based on Dynamic-Covalent Boroxine Bonds. Adv. Mater. 2016, 28, 8277–8282. [Google Scholar] [CrossRef]
- Liang, H.; Kuang, Q.; Hu, C.; Chen, J.; Lu, X.; Huang, Y.; Yan, H. Construction of durable superhydrophobic and anti-icing coatings via incorporating boroxine cross-linked silicone elastomers with good self-healability. Soft Matter 2022, 18, 8238–8250. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, P.; Zhang, H.; Yan, C.; Zheng, Z.; Wu, B.; Yu, Y. A Transparent, Highly Stretchable, Autonomous Self-Healing Poly(dimethyl siloxane) Elastomer. Macromol. Rapid Commun. 2017, 38, 1700110. [Google Scholar] [CrossRef]
- Lee, J.M.; Park, J.; Ko, J.; Shin, Y.; Shin, D.; Shim, W.; Lee, J.H.; Kappl, M.; Lee, J.; Wooh, S. Autonomous Self-healable Scratch-free Bilayer Anti-corrosion Film. Appl. Surf. Sci. 2023, 631, 157484. [Google Scholar] [CrossRef]
- Chang, Y.; Sun, J.; Dong, L.; Jiao, F.; Chang, S.; Wang, Y.; Liao, J.; Shang, Y.; Wu, W.; Qi, Y.; et al. Self-powered multi-color display based on stretchable self-healing alternating current electroluminescent devices. Nano Energy 2022, 95, 107061. [Google Scholar] [CrossRef]
- Wang, N.; Feng, L.; Xu, X.; Feng, S. Dynamic Covalent Bond Cross-Linked Luminescent Silicone Elastomer with Self-Healing and Recyclable Properties. Macromol. Rapid Commun. 2022, 43, 2100885. [Google Scholar] [CrossRef]
- Wu, S.; Hou, H.; Xue, X. Photothermal-thermoelectric composite film with excellent self-healing and low temperature resistance properties for electromagnetic wave shielding and absorption. Carbon 2022, 196, 163–175. [Google Scholar] [CrossRef]
- Roy, N.; Buhler, E.; Lehn, J.-M. Double dynamic self-healing polymers: Supramolecular and covalent dynamic polymers based on the bis-iminocarbohydrazide motif: Double dynamic self-healing polymers. Polym. Int. 2014, 63, 1400–1405. [Google Scholar] [CrossRef]
- Qian, Y.; Dong, F.; Guo, L.; Lu, S.; Xu, X.; Liu, H. Self-Healing and Reprocessable Terpene Polysiloxane-Based Poly(thiourethane-urethane) Material with Reversible Thiourethane Bonds. Biomacromolecules 2023, 24, 1184–1193. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Luo, J.; Zhang, L.; Chen, Y.; Li, P.; Zheng, Y.; Cheng, Y. Insulating Silicones Based on Dynamic Hindered Urea Bonds with High Dielectric Healability and Recyclability. ACS Appl. Polym. Mater. 2021, 3, 5622–5631. [Google Scholar] [CrossRef]
- Rao, Y.-L.; Chortos, A.; Pfattner, R.; Lissel, F.; Chiu, Y.-C.; Feig, V.; Xu, J.; Kurosawa, T.; Gu, X.; Wang, C.; et al. Stretchable Self-Healing Polymeric Dielectrics Cross-Linked Through Metal–Ligand Coordination. J. Am. Chem. Soc. 2016, 138, 6020–6027. [Google Scholar] [CrossRef] [PubMed]
- Williams, Z.H.; Burwell, E.D.; Chiomento, A.E.; Demsko, K.J.; Pawlik, J.T.; Harris, S.O.; Yarolimek, M.R.; Whitney, M.B.; Hambourger, M.; Schwab, A.D. Rubber-elasticity and electrochemical activity of iron(II) tris(bipyridine) crosslinked poly(dimethylsiloxane) networks. Soft Matter 2017, 13, 6542–6554. [Google Scholar] [CrossRef]
- Liu, L.; Liang, S.; Huang, Y.; Hu, C.; Yang, J. A stretchable polysiloxane elastomer with self-healing capacity at room temperature and solvatochromic properties. Chem. Commun. 2017, 53, 12088–12091. [Google Scholar] [CrossRef]
- Deriabin, K.V.; Ignatova, N.A.; Kirichenko, S.O.; Novikov, A.S.; Islamova, R.M. Nickel(II)-pyridinedicarboxamide-co-polydimethylsiloxane complexes as elastic self-healing silicone materials with reversible coordination. Polymer 2021, 212, 123119. [Google Scholar] [CrossRef]
- Miroshnichenko, A.S.; Deriabin, K.V.; Baranov, A.I.; Neplokh, V.; Mitin, D.M.; Kolesnikov, I.E.; Dobrynin, M.V.; Parshina, E.K.; Mukhin, I.S.; Islamova, R.M. Lanthanide(III)-Incorporating Polysiloxanes as Materials for Light-Emitting Devices. ACS Appl. Polym. Mater. 2022, 4, 2683–2690. [Google Scholar] [CrossRef]
- Li, C.-H.; Wang, C.; Keplinger, C.; Zuo, J.-L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-P.; Lai, J.-C.; Lai, H.-Y.; Mo, S.-R.; Zeng, K.-Y.; Li, C.-H.; Zuo, J.-L. Distinct Mechanical and Self-Healing Properties in Two Polydimethylsiloxane Coordination Polymers with Fine-Tuned Bond Strength. Inorg. Chem. 2018, 57, 3232–3242. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.-C.; Jia, X.-Y.; Wang, D.-P.; Deng, Y.-B.; Zheng, P.; Li, C.-H.; Zuo, J.-L.; Bao, Z. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nat. Commun. 2019, 10, 1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, X.-Y.; Mei, J.-F.; Lai, J.-C.; Li, C.-H.; You, X.-Z. A self-healing PDMS polymer with solvatochromic properties. Chem. Commun. 2015, 51, 8928–8930. [Google Scholar] [CrossRef]
- Tian, M.; Zuo, H.; Wang, J.; Ning, N.; Yu, B.; Zhang, L. A silicone elastomer with optimized and tunable mechanical strength and self-healing ability based on strong and weak coordination bonds. Polym. Chem. 2020, 11, 4047–4057. [Google Scholar] [CrossRef]
- Lai, J.-C.; Li, L.; Wang, D.-P.; Zhang, M.-H.; Mo, S.-R.; Wang, X.; Zeng, K.-Y.; Li, C.-H.; Jiang, Q.; You, X.-Z.; et al. A rigid and healable polymer cross-linked by weak but abundant Zn(II)-carboxylate interactions. Nat. Commun. 2018, 9, 2725. [Google Scholar] [CrossRef] [Green Version]
- Au-Duong, A.-N.; Hsu, Y.-C.; Malintoi, M.; Ubaidillah, A.N.; Li, Y.-T.; Lai, J.-Y.; Chiu, Y.-C. Highly transparent, stretchable, and self-healing polymers crosslinked by dynamic zinc(II)-poly(amic acid) bonds. Polym. J. 2022, 54, 305–312. [Google Scholar] [CrossRef]
- Lei, Y.; Huang, W.; Huang, Q.; Zhang, A. A novel polysiloxane elastomer based on reversible aluminum-carboxylate coordination. New J. Chem. 2019, 43, 261–268. [Google Scholar] [CrossRef]
- Yu, D.; Zhao, X.; Zhou, C.; Zhang, C.; Zhao, S. Room Temperature Self-Healing Methyl Phenyl Silicone Rubbers Based on the Metal-Ligand Cross-Link: Synthesis and Characterization. Macromol. Chem. Phys. 2017, 218, 1600519. [Google Scholar] [CrossRef]
- Tan, H.; Lyu, Q.; Xie, Z.; Li, M.; Wang, K.; Wang, K.; Xiong, B.; Zhang, L.; Zhu, J. Metallosupramolecular Photonic Elastomers with Self-Healing Capability and Angle-Independent Color. Adv. Mater. 2018, 31, e1805496. [Google Scholar] [CrossRef]
- Shan, Y.; Zhou, Z.; Bai, H.; Wang, T.; Liu, L.; Zhao, X.; Huang, Y. Recovery of the self-cleaning property of silicon elastomers utilizing the concept of reversible coordination bonds. Soft Matter 2020, 16, 8473–8481. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.-Y.; Mei, J.-F.; Lai, J.-C.; Li, C.-H.; You, X.-Z. A Highly Stretchable Polymer that Can Be Thermally Healed at Mild Temperature. Macromol. Rapid Commun. 2016, 37, 952–956. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, L.; Xie, L.; Wang, W.; Wang, L.; Zhang, C.; Li, L.; Feng, S. Mechanically Strong, Autonomous Self-Healing, and Fully Recyclable Silicone Coordination Elastomers with Unique Photoluminescent Properties. Macromol. Rapid Commun. 2021, 42, 2100519. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Wang, Y.; Long, L.; Zhou, S.; Yan, L.; Zhang, J.; Zou, H. Fabrication of Highly Thermally Resistant and Self-Healing Polysiloxane Elastomers by Constructing Covalent and Reversible Networks. Macromol. Rapid Commun. 2023, 2300191. [Google Scholar] [CrossRef]
- Rao, Y.-L.; Feig, V.; Gu, X.; Nathan Wang, G.-J.; Bao, Z. The effects of counter anions on the dynamic mechanical response in polymer networks crosslinked by metal-ligand coordination. J. Polym. Sci. Part Polym. Chem. 2017, 55, 3110–3116. [Google Scholar] [CrossRef] [Green Version]
- Frenking, G.; Shaik, S. (Eds.) The Chemical Bond: Fundamental Aspects of Chemical Bonding, 1st ed.; Wiley: Hoboken, NJ, USA, 2014; ISBN 978-3-527-33314-1. [Google Scholar]
- Janes, R.; Moore, E. Metal-Ligand Bonding; Royal Society of Chemistry: Cambridge, UK, 2004; ISBN 978-0-85404-979-0. [Google Scholar]
- Wang, N.; Feng, H.-W.; Hao, X.; Cao, Y.; Xu, X.-D.; Feng, S. Dynamic covalent bond and metal coordination bond-cross-linked silicone elastomers with excellent mechanical and aggregation-induced emission properties. Polym. Chem. 2023, 14, 1396–1403. [Google Scholar] [CrossRef]
- Huang, Y.; Shan, Y.; Liang, S.; Zhao, X.; Jiang, G.; Hu, C.; Yang, J.; Liu, L. Coordinated silicon elastomer coating@fabrics with oil/water separation capabilities, outstanding durability and ultra-fast room-temperature self-healing ability. J. Mater. Chem. A 2018, 6, 17156–17163. [Google Scholar] [CrossRef]
- Wu, X.; Wang, J.; Huang, J.; Yang, S. Robust, Stretchable, and Self-Healable Supramolecular Elastomers Synergistically Cross-Linked by Hydrogen Bonds and Coordination Bonds. ACS Appl. Mater. Interfaces 2019, 11, 7387–7396. [Google Scholar] [CrossRef]
- Yang, J.; Wang, T.; Guo, R.; Yao, D.; Guo, W.; Liu, S.; Li, Z.; Wang, Y.; Li, H. Self-Healing Material with Reversible Luminescence Switch Behavior. ACS Appl. Mater. Interfaces 2020, 12, 54026–54034. [Google Scholar] [CrossRef]
- Mei, J.-F.; Jia, X.-Y.; Lai, J.-C.; Sun, Y.; Li, C.-H.; Wu, J.-H.; Cao, Y.; You, X.-Z.; Bao, Z. A Highly Stretchable and Autonomous Self-Healing Polymer Based on Combination of Pt···Pt and π-π Interactions. Macromol. Rapid Commun. 2016, 37, 1667–1675. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Yang, L.; Lin, Y.; Yan, L.; Lu, H.; Wang, L. Self-healing supramolecular elastomers based on the multi-hydrogen bonding of low-molecular polydimethylsiloxanes: Synthesis and characterization. J. Appl. Polym. Sci. 2013, 129, 2435–2442. [Google Scholar] [CrossRef]
- Roy, N.; Buhler, E.; Lehn, J.-M. The Tris-Urea Motif and Its Incorporation into Polydimethylsiloxane-Based Supramolecular Materials Presenting Self-Healing Features. Chem.Eur. J. 2013, 19, 8814–8820. [Google Scholar] [CrossRef]
- Baek, P.; Aydemir, N.; Chaudhary, O.J.; Wai Chi Chan, E.; Malmstrom, J.; Giffney, T.; Khadka, R.; Barker, D.; Travas-Sejdic, J. Polymer electronic composites that heal by solvent vapour. RSC Adv. 2016, 6, 98466–98474. [Google Scholar] [CrossRef]
- Liu, C.; Ma, C.; Xie, Q.; Zhang, G. Self-repairing silicone coatings for marine anti-biofouling. J. Mater. Chem. A 2017, 5, 15855–15861. [Google Scholar] [CrossRef]
- Kang, J.; Son, D.; Wang, G.N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh, J.Y.; Katsumata, T.; Mun, J.; Lee, Y.; et al. Tough and Water-Insensitive Self-Healing Elastomer for Robust Electronic Skin. Adv. Mater. 2018, 30, 1706846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tazawa, S.; Shimojima, A.; Maeda, T.; Hotta, A. Thermoplastic polydimethylsiloxane with L -phenylalanine-based hydrogen-bond networks. J. Appl. Polym. Sci. 2018, 135, 45419. [Google Scholar] [CrossRef]
- Liu, M.; Liu, P.; Lu, G.; Xu, Z.; Yao, X. Multiphase-Assembly of Siloxane Oligomers with Improved Mechanical Strength and Water-Enhanced Healing. Angew. Chem. Int. Ed. 2018, 57, 11242–11246. [Google Scholar] [CrossRef]
- Cao, P.-F.; Li, B.; Hong, T.; Townsend, J.; Qiang, Z.; Xing, K.; Vogiatzis, K.D.; Wang, Y.; Mays, J.W.; Sokolov, A.P.; et al. Superstretchable, Self-Healing Polymeric Elastomers with Tunable Properties. Adv. Funct. Mater. 2018, 28, 1800741. [Google Scholar] [CrossRef]
- Tang, M.; Zheng, P.; Wang, K.; Qin, Y.; Jiang, Y.; Cheng, Y.; Li, Z.; Wu, L. Autonomous self-healing, self-adhesive, highly conductive composites based on a silver-filled polyborosiloxane/polydimethylsiloxane double-network elastomer. J. Mater. Chem. A 2019, 7, 27278–27288. [Google Scholar] [CrossRef]
- Du, R.; Xu, Z.; Zhu, C.; Jiang, Y.; Yan, H.; Wu, H.; Vardoulis, O.; Cai, Y.; Zhu, X.; Bao, Z.; et al. A Highly Stretchable and Self-Healing Supramolecular Elastomer Based on Sliding Crosslinks and Hydrogen Bonds. Adv. Funct. Mater. 2020, 30, 1907139. [Google Scholar] [CrossRef]
- Fauvre, L.; Fleury, E.; Ganachaud, F.; Portinha, D. Extra-Soft Self-Healable Supramolecular Silicone Elastomers from Bis-Amide-PDMS Multiblock Copolymers Prepared by Aza-Michael Reaction. ACS Appl. Polym. Mater. 2023, 5, 1229–1240. [Google Scholar] [CrossRef]
- Sun, F.; Xu, J.; Liu, T.; Li, F.; Poo, Y.; Zhang, Y.; Xiong, R.; Huang, C.; Fu, J. An autonomously ultrafast self-healing, highly colourless, tear-resistant and compliant elastomer tailored for transparent electromagnetic interference shielding films integrated in flexible and optical electronics. Mater. Horiz. 2021, 8, 3356–3367. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Zhou, L.; Lin, J.; Chen, G.; Zhou, Z.; Li, Q. Self-Healing, High-Strength, and Antimicrobial Polysiloxane Based on Amino Acid Hydrogen Bond. Macromol. Rapid Commun. 2023, 44, 2200657. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Shan, Y.; Li, Z.; Wang, X.; Cui, H.; Yang, K.; Cui, Y. Application of a super-stretched self-healing elastomer based on methyl vinyl silicone rubber for wearable electronic sensors. Polym. Chem. 2021, 12, 6145–6153. [Google Scholar] [CrossRef]
- Lang, Y.; Zheng, W.; Wang, W.; Li, Z. A super-stretched self-healing silicone elastomer based on high molecular weight polydimethylsiloxanes through intermolecular quadruple hydrogen bonding. Polym. Adv. Technol. 2023. [Google Scholar] [CrossRef]
- Cui, X.; Yan, Y.; Huang, J.; Qiu, X.; Zhang, P.; Chen, Y.; Hu, Z.; Liang, X. A substrate-independent isocyanate-modified polydimethylsiloxane coating harvesting mechanical durability, self-healing ability and low surface energy with anti-corrosion/biofouling potential. Appl. Surf. Sci. 2022, 579, 152186. [Google Scholar] [CrossRef]
- Sun, J.; Liu, C.; Duan, J.; Liu, J.; Dong, X.; Zhang, Y.; Wang, N.; Wang, J.; Hou, B. Facile fabrication of self-healing silicone-based poly(urea-thiourea)/tannic acid composite for anti-biofouling. J. Mater. Sci. Technol. 2022, 124, 1–13. [Google Scholar] [CrossRef]
- Gao, J.-H.; Wan, B.; Zheng, M.-S.; Zha, J.-W. Citric acid-induced room temperature self-healing polysiloxane elastomers with tunable mechanical properties and untraditional AIE fluorescence. Polym. Chem. 2022, 13, 5412–5421. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, N.; Li, Z.; Liu, Z.; Wang, G.; Gui, L.; Lin, J. Fast self-healing and antifouling polyurethane/fluorinated polysiloxane-microcapsules-silica composite material. Adv. Compos. Hybrid Mater. 2022, 5, 1899–1909. [Google Scholar] [CrossRef]
- Tao, H.; Yue, D.; Li, C. A Fast Self-Healing Magnetic Nanocomposite for Magnetic Actuators. Macromol. Mater. Eng. 2022, 307, 2100649. [Google Scholar] [CrossRef]
- Madsen, F.B.; Yu, L.; Skov, A.L. Self-Healing, High-Permittivity Silicone Dielectric Elastomer. ACS Macro Lett. 2016, 5, 1196–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Wang, J.; Hu, R.; Lv, C.; Zheng, J. A Highly Ionic Conductive, Healable, and Adhesive Polysiloxane-Supported Ionogel. Macromol. Rapid Commun. 2019, 40, 1800776. [Google Scholar] [CrossRef] [PubMed]
- Boumezgane, O.; Suriano, R.; Fedel, M.; Tonelli, C.; Deflorian, F.; Turri, S. Self-healing epoxy coatings with microencapsulated ionic PDMS oligomers for corrosion protection based on supramolecular acid-base interactions. Prog. Org. Coat. 2022, 162, 106558. [Google Scholar] [CrossRef]
- Zang, W.; Liu, X.; Li, J.; Jiang, Y.; Yu, B.; Zou, H.; Ning, N.; Tian, M.; Zhang, L. Conductive, self-healing and recyclable electrodes for dielectric elastomer generator with high energy density. Chem. Eng. J. 2022, 429, 132258. [Google Scholar] [CrossRef]
- Burattini, S.; Colquhoun, H.M.; Greenland, B.W.; Hayes, W. A novel self-healing supramolecular polymer system. Faraday Discuss. 2009, 143, 251. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, E.; Liang, J.; Li, H.; Zhao, S.; Wang, G.; Gu, X.; Tang, B.Z. Diradical-Featured Organic Small-Molecule Photothermal Material with High-Spin State in Dimers for Ultra-Broadband Solar Energy Harvesting. Adv. Mater. 2022, 34, 2108048. [Google Scholar] [CrossRef]
- Yoshida, D.; Park, J.; Ikura, R.; Yamashita, N.; Yamaguchi, H.; Takashima, Y. Self-healable Poly(dimethyl siloxane) Elastomers Based on Host-guest Complexation between Methylated β-Cyclodextrin and Adamantane. Chem. Lett. 2023, 52, 93–96. [Google Scholar] [CrossRef]
- Bai, L.; Zheng, J. Robust, reprocessable and shape-memory vinylogous urethane vitrimer composites enhanced by sacrificial and self-catalysis Zn(II)–ligand bonds. Compos. Sci. Technol. 2020, 190, 108062. [Google Scholar] [CrossRef]
- Martín, R.; Rekondo, A.; Echeberria, J.; Cabañero, G.; Grande, H.J.; Odriozola, I. Room temperature self-healing power of silicone elastomers having silver nanoparticles as crosslinkers. Chem. Commun. 2012, 48, 8255. [Google Scholar] [CrossRef]
- Jin, K.; Zhang, M.; Wang, J.; Jin, Z.; Sun, J.; Zhao, Y.; Xie, K.; Cai, Z. Robust highly conductive fabric with fluorine-free healable superhydrophobicity for the efficient deicing of outdoor’s equipment. Colloids Surf. Physicochem. Eng. Asp. 2022, 651, 129639. [Google Scholar] [CrossRef]
- Tang, M.; Li, Z.; Wang, K.; Jiang, Y.; Tian, M.; Qin, Y.; Gong, Y.; Li, Z.; Wu, L. Ultrafast self-healing and self-adhesive polysiloxane towards reconfigurable on-skin electronics. J. Mater. Chem. A 2022, 10, 1750–1759. [Google Scholar] [CrossRef]
- Lai, P.; Yuan, Y.; Huang, Y.; Bai, H.; Zhou, Z.; Tang, C.; Wen, J.; Liu, L. Preparation of Robust, Room-Temperature Self-Healable and Recyclable Polysiloxanes Based on Hierarchical Hard Domains. Adv. Eng. Mater. 2023, 2300129. [Google Scholar] [CrossRef]
- Sun, J.; Duan, J.; Liu, X.; Dong, X.; Zhang, Y.; Liu, C.; Hou, B. Environmentally benign smart self-healing silicone-based coating with dual antifouling and anti-corrosion properties. Appl. Mater. Today 2022, 28, 101551. [Google Scholar] [CrossRef]
- Li, R.; Tian, S.; Tian, Y.; Wang, J.; Xu, S.; Yang, K.; Yang, J.; Zhang, L. An Extreme-Environment-Resistant Self-Healing Anti-Icing Coating. Small 2023, 19, 2206075. [Google Scholar] [CrossRef]
- Wang, L.; Cai, Y.; Zhang, H.; Zou, H.; Chen, Y.; Liang, M.; Heng, Z. Room-temperature self-healing polysiloxane elastomer with reversible cross-linked network. Polymer 2022, 256, 125272. [Google Scholar] [CrossRef]
- Dai, S.; Li, M.; Yan, H.; Zhu, H.; Hu, H.; Zhang, Y.; Cheng, G.; Yuan, N.; Ding, J. Self-Healing Silicone Elastomer with Stable and High Adhesion in Harsh Environments. Langmuir 2021, 37, 13696–13702. [Google Scholar] [CrossRef]
- Yu, T.; Lü, X.; Bao, W. High electrical self-healing flexible strain sensor based on MWCNT- polydimethylsiloxane elastomer with high gauge factor and wide measurement range. Compos. Sci. Technol. 2023, 238, 110049. [Google Scholar] [CrossRef]
- Mo, P.; Hu, Z.; Mo, Z.; Chen, X.; Yu, J.; Selim, M.S.; Sun, R.; Xu, J.; Zeng, X.; Hao, Z. Fast Self-Healing and Self-Cleaning Anticorrosion Coating Based on Dynamic Reversible Imine and Multiple Hydrogen Bonds. ACS Appl. Polym. Mater. 2022, 4, 4709–4718. [Google Scholar] [CrossRef]
- Cai, Y.-W.; Wang, G.-G.; Mei, Y.-C.; Zhao, D.-Q.; Peng, J.-J.; Sun, N.; Zhang, H.-Y.; Han, J.-C.; Yang, Y. Self-healable, super-stretchable and shape-adaptive triboelectric nanogenerator based on double cross-linked PDMS for electronic skins. Nano Energy 2022, 102, 107683. [Google Scholar] [CrossRef]
- Yang, Z.; Li, H.; Li, C.; Lai, X.; Zeng, X. Conductive and room-temperature self-healable polydimethylsiloxane-based elastomer film with ridge-like microstructure for piezoresistive pressure sensor. Chem. Eng. J. 2022, 430, 133103. [Google Scholar] [CrossRef]
- Jiao, Y.; Rong, Z.; Gao, C.; Wu, Y.; Liu, Y. Tannic Acid Crosslinked Self-Healing and Reprocessable Silicone Elastomers with Improved Antibacterial and Flame Retardant Properties. Macromol. Rapid Commun. 2023, 44, 2200681. [Google Scholar] [CrossRef]
- Wang, W.; Wang, W.; Wang, F.; Xie, X.; Yi, G.; Li, Z. Tough and body-temperature self-healing polysiloxane elastomers through building a double physical crosslinking network via competing non-covalent interactions. J. Mater. Chem. A 2022, 10, 23375–23383. [Google Scholar] [CrossRef]
- Jiang, J.; Guan, Q.; Liu, Y.; Sun, X.; Wen, Z. Abrasion and Fracture Self-Healable Triboelectric Nanogenerator with Ultrahigh Stretchability and Long-Term Durability. Adv. Funct. Mater. 2021, 31, 2105380. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Z.; Liu, Y.; Zhao, H.; Gao, C.; Wu, Y. Cephalopods-inspired Repairable MWCNTs/PDMS Conductive Elastomers for Sensitive Strain Sensor. Chin. J. Polym. Sci. 2022, 40, 384–393. [Google Scholar] [CrossRef]
- Zhao, D.; Yang, J.; Tian, X.; Wei, J.; Li, Q.; Wang, Y. Self-healing metallo-supramolecular polymers showing luminescence off/on switching based on lanthanide ions and terpyridine moieties. Chem. Eng. J. 2022, 434, 134806. [Google Scholar] [CrossRef]
- Sun, H.; Liu, X.; Liu, S.; Yu, B.; Ning, N.; Tian, M.; Zhang, L. A supramolecular silicone dielectric elastomer with a high dielectric constant and fast and highly efficient self-healing under mild conditions. J. Mater. Chem. A 2020, 8, 23330–23343. [Google Scholar] [CrossRef]
- Mai, D.; Mo, J.; Shan, S.; Lin, Y.; Zhang, A. Self-Healing, Self-Adhesive Strain Sensors Made with Carbon Nanotubes/Polysiloxanes Based on Unsaturated Carboxyl–Amine Ionic Interactions. ACS Appl. Mater. Interfaces 2021, 13, 49266–49278. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Liu, X.; Liu, S.; Yu, B.; Ning, N.; Tian, M.; Zhang, L. Silicone dielectric elastomer with improved actuated strain at low electric field and high self-healing efficiency by constructing supramolecular network. Chem. Eng. J. 2020, 384, 123242. [Google Scholar] [CrossRef]
- Liu, W.; Liu, D.; Xiao, Y.; Zou, M.; Shi, L.; Yang, K.; Wang, Y. Healable, Recyclable, and High-Stretchable Polydimethylsiloxane Elastomer Based on Synergistic Effects of Multiple Supramolecular Interactions. Macromol. Mater. Eng. 2022, 307, 2200310. [Google Scholar] [CrossRef]
- Zhang, K.; Deng, Y.; Shi, X.; Li, X.; Qi, D.; Jiang, B.; Huang, Y. Interface Chelation Induced by Pyridine-Based Polymer for Efficient and Durable Air-Processed Perovskite Solar Cells. Angew. Chem. Int. Ed. 2022, 61, e202112673. [Google Scholar] [CrossRef]
- Zhang, K.; Shi, X.; Wu, G.; Huang, Y. Surface Chelation Enabled by Polymer-Doping for Self-Healable Perovskite Solar Cells. Nanomaterials 2022, 12, 3125. [Google Scholar] [CrossRef]
- Wang, T.; Wang, W.; Feng, H.; Sun, T.; Ma, C.; Cao, L.; Qin, X.; Lei, Y.; Piao, J.; Feng, C.; et al. Photothermal nanofiller-based polydimethylsiloxane anticorrosion coating with multiple cyclic self-healing and long-term self-healing performance. Chem. Eng. J. 2022, 446, 137077. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, M.; Li, S.; Liu, J.; Feng, A.; Zhang, L. Recyclable, self-healable and reshape vitrified poly-dimethylsiloxane composite filled with renewable cellulose nanocrystal. Polymer 2022, 245, 124648. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Zhang, D.; Gao, C.; Wu, Y. Mussel-inspired self-healing PDMS/AgNPs conductive elastomer with tunable mechanical properties and efficient antibacterial performances for wearable sensor. Compos. Part B Eng. 2021, 224, 109213. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, J.; Zhang, K.; Guo, K.; Yuan, L.; Wu, Y.; Gao, C. A novel type of self-healing silicone elastomers with reversible cross-linked network based on the disulfide, hydrogen and metal-ligand bonds. Prog. Org. Coat. 2020, 144, 105661. [Google Scholar] [CrossRef]
- Zhou, X.; Gong, Z.; Fan, J.; Chen, Y. Self-healable, recyclable, mechanically tough transparent polysiloxane elastomers based on dynamic microphase separation for flexible sensor. Polymer 2021, 237, 124357. [Google Scholar] [CrossRef]
- Ji, X.; Wang, W.; Zhao, X.; Wang, L.; Ma, F.; Wang, Y.; Duan, J.; Hou, B. Poly(dimethyl siloxane) anti-corrosion coating with wide pH-responsive and self-healing performance based on core−shell nanofiber containers. J. Mater. Sci. Technol. 2022, 101, 128–145. [Google Scholar] [CrossRef]
- Filippova, S.S.; Deriabin, K.V.; Perevyazko, I.; Shamova, O.V.; Orlov, D.S.; Islamova, R.M. Metal- and Peroxide-Free Silicone Rubbers with Antibacterial Properties Obtained at Room Temperature. ACS Appl. Polym. Mater. 2023. [Google Scholar] [CrossRef]
- Kim, E.E.; Kononevich, Y.N.; Dyuzhikova, Y.S.; Ionov, D.S.; Khanin, D.A.; Nikiforova, G.G.; Shchegolikhina, O.I.; Vasil’ev, V.G.; Muzafarov, A.M. Cross-Linked Luminescent Polymers Based on β-Diketone-Modified Polysiloxanes and Organoeuropiumsiloxanes. Polymers 2022, 14, 2554. [Google Scholar] [CrossRef]
- Wang, S.; Oh, J.Y.; Xu, J.; Tran, H.; Bao, Z. Skin-Inspired Electronics: An Emerging Paradigm. Acc. Chem. Res. 2018, 51, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.Y.; Bao, Z. Second Skin Enabled by Advanced Electronics. Adv. Sci. 2019, 6, 1900186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, Y.; Li, Z.; Yu, T.; Wang, X.; Cui, H.; Yang, K.; Cui, Y. Self-healing strain sensor based on silicone elastomer for human motion detection. Compos. Sci. Technol. 2022, 218, 109208. [Google Scholar] [CrossRef]
- Hunt, S.; McKay, T.G.; Anderson, I.A. A self-healing dielectric elastomer actuator. Appl. Phys. Lett. 2014, 104, 113701. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Wang, C.; Fan, Z.; Wang, Y. A multifunctional composite membrane with photocatalytic, self-cleaning, oil/water separation and antibacterial properties. Nanotechnology 2022, 33, 355703. [Google Scholar] [CrossRef] [PubMed]
- Horodecka, S.; Strachota, A.; Mossety-Leszczak, B.; Šlouf, M.; Zhigunov, A.; Vyroubalová, M.; Kaňková, D.; Netopilík, M. Meltable copolymeric elastomers based on polydimethylsiloxane with multiplets of pendant liquid-crystalline groups as physical crosslinker: A self-healing structural material with a potential for smart applications. Eur. Polym. J. 2020, 137, 109962. [Google Scholar] [CrossRef]
- Yu, K.; Xin, A.; Du, H.; Li, Y.; Wang, Q. Additive manufacturing of self-healing elastomers. NPG Asia Mater. 2019, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Cao, B.; Shang, R.; Mei, H.; Wang, L. Synthesis of poly(urea–formaldehyde) microcapsules for the self-healing system of silicone rubber insulating material. J. Appl. Polym. Sci. 2022, 139, e53021. [Google Scholar] [CrossRef]
- Allahdini, A.; Jafari, R.; Momen, G. Room-temperature microcapsule-based self-healing and fluorine-free superhydrophobic coating. Mater. Today Commun. 2023, 34, 105087. [Google Scholar] [CrossRef]
- Zulkiflee, I.; Masri, S.; Zawani, M.; Salleh, A.; Amirrah, I.N.; Wee, M.F.M.R.; Yusop, S.M.; Fauzi, M.B. Silicon-Based Scaffold for Wound Healing Skin Regeneration Applications: A Concise Review. Polymers 2022, 14, 4219. [Google Scholar] [CrossRef]
- Mathew, M.; Radhakrishnan, S.; Vaidyanathan, A.; Chakraborty, B.; Rout, C.S. Flexible and wearable electrochemical biosensors based on two-dimensional materials: Recent developments. Anal. Bioanal. Chem. 2020, 413, 727–762. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ouyang, G.; Chen, X.; Jakobsen, H. Engineering Electroactive Dielectric Elastomers for Miniature Electromechanical Transducers. Polym. Rev. 2017, 57, 369–396. [Google Scholar] [CrossRef]
- Miroshnichenko, A.S.; Deriabin, K.V.; Rashevskii, A.A.; Suslonov, V.V.; Novikov, A.S.; Mukhin, I.S.; Islamova, R.M. Structural Features of Eu3+ and Tb3+-Bipyridinedicarboxamide Complexes. Polymers 2022, 14, 5540. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deriabin, K.V.; Filippova, S.S.; Islamova, R.M. Self-Healing Silicone Materials: Looking Back and Moving Forward. Biomimetics 2023, 8, 286. https://doi.org/10.3390/biomimetics8030286
Deriabin KV, Filippova SS, Islamova RM. Self-Healing Silicone Materials: Looking Back and Moving Forward. Biomimetics. 2023; 8(3):286. https://doi.org/10.3390/biomimetics8030286
Chicago/Turabian StyleDeriabin, Konstantin V., Sofia S. Filippova, and Regina M. Islamova. 2023. "Self-Healing Silicone Materials: Looking Back and Moving Forward" Biomimetics 8, no. 3: 286. https://doi.org/10.3390/biomimetics8030286
APA StyleDeriabin, K. V., Filippova, S. S., & Islamova, R. M. (2023). Self-Healing Silicone Materials: Looking Back and Moving Forward. Biomimetics, 8(3), 286. https://doi.org/10.3390/biomimetics8030286