Chitosan Nanoparticle/Simvastatin for Experimental Maxillary Bony Defect Healing: A Histological and Histomorphometrical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Interventions
2.3. Surgical Procedure
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Histological Findings
3.1.1. Two Weeks of Healing
3.1.2. Four Weeks of Healing
3.2. Histomorphometrical Analysis of Bone Architecture
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ibrahim, A. 3D bioprinting bone. In 3D Bioprinting for Reconstructive Surgery; Elsevier: Amsterdam, The Netherlands, 2018; pp. 245–275. [Google Scholar]
- Banerjee, J.; Radvar, E.; Azevedo, H. Self-assembling peptides and their application in tissue engineering and regenerative medicine. In Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair; Woodhead Publishing: Sawston, UK, 2018; pp. 245–281. [Google Scholar]
- Westerman, R.W.; Scammell, B.E.J.S. Principles of bone and joint injuries and their healing. Surgery 2012, 30, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Sheen, J.R.; Garla, V.V. Fracture healing overview. In StatPearls [Internet]; StatPearls Publishing: St. Petersburg, FL, USA, 2022. [Google Scholar]
- Beckmann, R.; Tohidnezhad, M.; Lichte, P.; Wruck, C.; Jahr, H.; Pape, H.; Pufe, T.J.D.O. New from old: Relevant factors for fracture healing in aging bone. Der Orthopäde 2014, 43, 298–305. [Google Scholar] [CrossRef]
- Beulah, P.; Jinu, U.; Ghorbanpour, M.; Venkatachalam, P. Green engineered chitosan nanoparticles and its biomedical applications—An overview. Adv. Phytonanotechnol. 2019, 329–341. [Google Scholar] [CrossRef]
- Fini, A.; Orienti, I. The role of chitosan in drug delivery: Current and potential applications. Am. J. Drug Deliv. 2003, 1, 43–59. [Google Scholar] [CrossRef]
- Abu Al-timan, J.A.; Al-Huwaizi, H.F.; Abed, H.H. Development. The Effectiveness of Chelating Property of Chitosan Nanoparticles on Dentin. Indian J. Public Health Res. Dev. 2019, 10, 1088–1093. [Google Scholar] [CrossRef]
- Ahmed, T.A.; Aljaeid, B.M. Development; therapy. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Dev. Ther. 2016, 483–507. [Google Scholar] [CrossRef] [Green Version]
- Klokkevold, P.R.; Vandemark, L.; Kenney, E.B.; Bernard, G.W. Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in vitro. J. Periodontol. 1996, 67, 1170–1175. [Google Scholar] [CrossRef]
- Ho, M.H.; Yao, C.J.; Liao, M.H.; Lin, P.I.; Liu, S.H.; Chen, R.M. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway. Int. J. Nanomed. 2015, 10, 5941–5954. [Google Scholar]
- Sun, T.; Zhou, D.; Xie, J.; Mao, F. Preparation of chitosan oligomers and their antioxidant activity. Eur. Food Res. Technol. 2007, 225, 451–456. [Google Scholar] [CrossRef]
- Rodríguez-Vázquez, M.; Vega-Ruiz, B.; Ramos-Zúñiga, R.; Saldaña-Koppel, D.A.; Quiñones-Olvera, L.F. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine. BioMed Res. Int. 2015, 2015, 821279. [Google Scholar] [CrossRef] [Green Version]
- Muzzarelli, R.A. Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell. Mol. Life Sci. CMLS 1997, 53, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh, M.T.; Ashassi-Sorkhabi, H.; Afkari, R.; Kazempour, A. Cross-linked chitosan in nano and bead scales as drug carriers for betamethasone and tetracycline. Int. J. Biol. Macromol. 2019, 131, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.; da Silva, C.F.; da Silva, M.A.; Santana, M.H.A.; Souto, E.B. Chitosan Cross-Linked Pentasodium Tripolyphosphate Micro/Nanoparticles Produced by Ionotropic Gelation. Sugar Tech. 2016, 18, 49–54. [Google Scholar] [CrossRef]
- Shu, X.Z.; Zhu, K.J. The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Fur Pharm. Verfahrenstechnik E.V 2002, 54, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Haidar, M.K.; Demirbolat, G.M.; Timur, S.S.; Gürsoy, R.N.; Nemutlu, E.; Ulubayram, K.; Öner, L.; Eroğlu, H. Atorvastatin-loaded nanosprayed chitosan nanoparticles for peripheral nerve injury. Bioinspired Biomim. Nanobiomaterials 2019, 9, 74–84. [Google Scholar] [CrossRef]
- Sorasitthiyanukarn, F.N.; Muangnoi, C.; Rojsitthisak, P.; Rojsitthisak, P. Chitosan-alginate nanoparticles as effective oral carriers to improve the stability, bioavailability, and cytotoxicity of curcumin diethyl disuccinate. Carbohydr. Polym. 2021, 256, 117426. [Google Scholar] [CrossRef]
- Junqueira, J.C.; Mancini, M.N.; Carvalho, Y.R.; Anbinder, A.L.; Balducci, I.; Rocha, R.F. Effects of simvastatin on bone regeneration in the mandibles of ovariectomized rats and on blood cholesterol levels. J. Oral Sci. 2002, 44, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Del Fabbro, M.; Chang, J. The impact of simvastatin intervention on the healing of bone, soft tissue, and TMJ cartilage in dentistry: A systematic review and meta-analysis. Int. J. Implant Dent. 2019, 5, 17. [Google Scholar] [CrossRef]
- Mohammed, H.J.; Zaidan, T.F. Taste Detection Thresholds in Relation to Salivary and Serum Zinc in Patients on Simvastatin Treatment. J. Baghdad Coll. Dent. 2019, 31, 25–31. [Google Scholar] [CrossRef]
- Garrett, I.R.; Gutierrez, G.; Mundy, G.R. Statins and bone formation. Curr. Pharm. Des. 2001, 7, 715–736. [Google Scholar] [CrossRef]
- Mundy, G.; Garrett, R.; Harris, S.; Chan, J.; Chen, D.; Rossini, G.; Boyce, B.; Zhao, M.; Gutierrez, G. Stimulation of bone formation in vitro and in rodents by statins. Science 1999, 286, 1946–1949. [Google Scholar] [CrossRef]
- Grasser, W.A.; Baumann, A.P.; Petras, S.F.; Harwood, H.J., Jr.; Devalaraja, R.; Renkiewicz, R.; Baragi, V.; Thompson, D.D.; Paraklar, V.M. Regulation of osteoclast differentiation by statins. J. Musculoskelet. Neuronal Interact. 2003, 3, 53–62. [Google Scholar] [PubMed]
- Yamashita, M.; Otsuka, F.; Mukai, T.; Otani, H.; Inagaki, K.; Miyoshi, T.; Goto, J.; Yamamura, M.; Makino, H. Simvastatin antagonizes tumor necrosis factor-alpha inhibition of bone morphogenetic proteins-2-induced osteoblast differentiation by regulating Smad signaling and Ras/Rho-mitogen-activated protein kinase pathway. J. Endocrinol. 2008, 196, 601–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauhan, A.S.; Maria, A.; Managutti, A. Efficacy of simvastatin in bone regeneration after surgical removal of mandibular third molars: A clinical pilot study. J. Maxillofac. Oral Surg. 2015, 14, 578–585. [Google Scholar] [CrossRef] [Green Version]
- Montazerolghaem, M.; Ning, Y.; Engqvist, H.; Karlsson Ott, M.; Tenje, M.; Mestres, G. Simvastatin and zinc synergistically enhance osteoblasts activity and decrease the acute response of inflammatory cells. J. Mater. Sci. Mater. Med. 2016, 27, 23. [Google Scholar] [CrossRef] [PubMed]
- Elavarasu, S.; Suthanthiran, T.K.; Naveen, D. Statins: A new era in local drug delivery. J. Pharm. Bioallied Sci. 2012, 4, S248. [Google Scholar] [CrossRef]
- Rosselli, J.E.G.C.; Martins, D.M.F.S.; Martins, J.L.; de Oliveira, C.R.G.C.M.; Fagundes, D.J.; Taha, M.O. The effect of simvastatin on the regeneration of surgical cavities in the femurs of rabbits. Acta Cir. Bras. 2014, 29, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Terauchi, M.; Inada, T.; Tonegawa, A.; Tamura, A.; Yamaguchi, S.; Harada, K.; Yui, N. Supramolecular inclusion complexation of simvastatin with methylated β-cyclodextrins for promoting osteogenic differentiation. Int. J. Biol. Macromol. 2016, 93, 1492–1498. [Google Scholar] [CrossRef]
- Rampino, A.; Borgogna, M.; Blasi, P.; Bellich, B.; Cesàro, A. Chitosan nanoparticles: Preparation, size evolution and stability. Int. J. Pharm. 2013, 455, 219–228. [Google Scholar] [CrossRef]
- Delan, W.; Elsaadany, B.; Fares, A.; ElMeshad, A.; Mamdouh, W.; Zakaria, M. Histomorphometric analysis of bone formation after using simvastatin chitosan nanoparticles as a local delivery system in periodontal bony defects in rabbits. Adv. Dent. J. 2021, 3, 109–119. [Google Scholar] [CrossRef]
- Raafat, S.N.; Amin, R.M.; Elmazar, M.M.; Khattab, M.M.; El-Khatib, A.S. The sole and combined effect of simvastatin and platelet rich fibrin as a filling material in induced bone defect in tibia of albino rats. Bone 2018, 117, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, I.F.; Ghani, B.A.; Fatalla, A.A. Histological Evaluation of the Effect of Local Application of Punica granatum Seed Oil on Bone Healing. Int. J. Biomater. 2022, 2022, 4266589. [Google Scholar] [CrossRef] [PubMed]
- AL-Ghaban, N.M.; Jasem, G.H. Histomorphometric evaluation of the effects of local application of red cloveroil (trifolium pratense) on bone healing in rats. J. Baghdad Coll. Dent. 2020, 32, 26–31. [Google Scholar] [CrossRef]
- Fadhil, E.; Dosh, R.H.; Wally, Z.J.; Haider, J. Histological evaluation of the effects of bone morphogenetic protein 9 and angiopoietin 1 on bone healing. J. Taibah Univ. Med. Sci. 2023, 18, 954–963. [Google Scholar] [CrossRef]
- Collins, T.J. ImageJ for microscopy. Biotechniques 2007, 43, S25–S30. [Google Scholar] [CrossRef]
- Safer, A.M.; Leporatti, S.; Jose, J.; Soliman, M.S. Conjugation Of EGCG And Chitosan NPs As A Novel Nano-Drug Delivery System. Int. J. Nanomed. 2019, 14, 8033–8046. [Google Scholar] [CrossRef] [Green Version]
- Jafernik, K.; Ładniak, A.; Blicharska, E.; Czarnek, K.; Ekiert, H.; Wiącek, A.E.; Szopa, A. Chitosan-Based Nanoparticles as Effective Drug Delivery Systems—A review. Molecules 2023, 28, 1963. [Google Scholar] [CrossRef]
- Moshiri, A.; Shahrezaee, M.; Shekarchi, B.; Oryan, A.; Azma, K. Three-dimensional porous gelapin–simvastatin scaffolds promoted bone defect healing in rabbits. Calcif. Tissue Int. 2015, 96, 552–564. [Google Scholar] [CrossRef]
- Skoglund, B.; Forslund, C.; Aspenberg, P. Simvastatin improves fracture healing in mice. J. Bone Miner. Res. 2002, 17, 2004–2008. [Google Scholar] [CrossRef]
- Gilsanz, V.; Roe, T.F.; Gibbens, D.T.; Schulz, E.E.; Carlson, M.E.; Gonzalez, O.; Boechat, M.I. Effect of sex steroids on peak bone density of growing rabbits. Am. J. Physiol.-Endocrinol. Metab. 1988, 255, E416–E421. [Google Scholar] [CrossRef]
- Stübinger, S.; Dard, M. The rabbit as experimental model for research in implant dentistry and related tissue regeneration. J. Investig. Surg. 2013, 26, 266–282. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Sengupta, P. Rabbits and men: Relating their ages. J. Basic Clin. Physiol. Pharmacol. 2018, 29, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, A.; Sennerby, L.; Lundgren, D. An experimental rabbit model for jaw-bone healing. Int. J. Oral Maxillofac. Surg. 1997, 26, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh, H.; Moushekhian, S.; Ghazi, N.; Vahidi, M.; Bagherpour, A.; Shafieian, R.; Moeini, S.; Kazemian, A.; Azarpazhooh, A.; Kishen, A. Bone Regeneration Effect of Nanochitosan with or without Temporally Controlled Release of Dexamethasone. J. Endod. 2023, 49, 496–503. [Google Scholar] [CrossRef]
- Gallinari, M.O.; Bordini, E.A.F.; Stuani, V.T.; Cassiano, F.B.; Melo, C.; Almeida, J.M.; Cintra, L.; CA, D.E.S.C.; Soares, D.G. Assessment of the regenerative potential of macro-porous chitosan-calcium simvastatin scaffolds on bone cells. Braz. Oral Res. 2023, 37, e018. [Google Scholar] [CrossRef]
- Ghadri, N.; Anderson, K.M.; Adatrow, P.; Stein, S.H.; Su, H.; Garcia-Godoy, F.; Karydis, A.; Bumgardner, J.D. Evaluation of bone regeneration of simvastatin loaded chitosan nanofiber membranes in rodent calvarial defects. J. Biomater. Nanobiotechnol. 2018, 9, 210. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-K.; Chang, N.-J.; Wu, Y.-T.; Fu, E.; Shen, E.-C.; Feng, C.-W.; Wen, Z.-H. Bone formation using cross-linked chitosan scaffolds in rat calvarial defects. Implant Dent. 2018, 27, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Cruz, R.; Pesce, G.; Calasans-Maia, J.; Moraschini, V.; Calasans-Maia, M.D.; Granjeiro, J.M. Calcium Phosphate Carrying Simvastatin Enhances Bone Regeneration: A Systematic Review. Braz. Dent. J. 2020, 31, 93–102. [Google Scholar] [CrossRef]
- Xue, Y.; Wu, M.; Liu, Z.; Song, J.; Luo, S.; Li, H.; Li, Y.; Jin, L.; Guan, B.; Lin, M. In vitro and in vivo evaluation of chitosan scaffolds combined with simvastatin-loaded nanoparticles for guided bone regeneration. J. Mater. Sci. Mater. Med. 2019, 30, 47. [Google Scholar] [CrossRef]
- Koç, O.; Tüz, H.H.; Ocak, M.; Bilecenoğlu, B.; Fırat, A.; Kaymaz, F.F. Can the Combination of Simvastatin and Melatonin Create a Synergistic Effect on Bone Regeneration. J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surgeons. 2021, 79, 1672–1682. [Google Scholar] [CrossRef]
- AL-Mashhadi, Z.A.; AL-Ghaban, N.M. Local Evaluation of Chitosan and B-Tricalcium Phosphate Alone and Combination in Bone Defect of Rabbit by Histological and Histomorphometric Analysis. J. Res. Med. Dent. Sci. 2022, 10, 171–178. [Google Scholar]
- Zhao, S.; Yu, S.; Zhu, D.; Dai, L.; Yang, P.; Xing, X. Stimulatory effects of simvastatin on bone regeneration of the expanded suture in rats. Am. J. Transl. Res. 2020, 12, 1767–1778. [Google Scholar] [PubMed]
- Karanikola, T.; Cheva, A.; Sarafidou, K.; Myronidou-Tzouveleki, M.; Tsavdaridis, I.; Kontonasaki, E.; Tsirlis, A. Effect of Diclofenac and Simvastatin on Bone Defect Healing-An In Vivo Animal Study. Biomimetics 2022, 7, 143. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.; Karkavelas, G.; Vouros, I.; Kessopoulou, E.; Konstantinidis, A. Effects of local application of simvastatin on bone regeneration in femoral bone defects in rabbit. J. Cranio-Maxillofac. Surg. 2015, 43, 232–237. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, Y.; Chen, Y.H.; Dusad, A.; Yuan, H.; Ren, K.; Li, F.; Fehringer, E.V.; Purdue, P.E.; Goldring, S.R. Simvastatin prodrug micelles target fracture and improve healing. J. Control. Release 2015, 200, 23–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdurlu, C.; Deniz, E.; Olgac, V.J.B.; Equipment, B. Histopathologic evaluation of the effects of local simvastatin application and photobiomodulation by light-emitting diode on bone healing of rat calvarial defects. Biotechnol. Biotechnol. Equip. 2018, 32, 442–450. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Li, J.; Yu, X.; Fu, Z. Effects of simvastatin on osseointegration in a canine total hip arthroplasty model: An experimental study. J. Arthroplast. 2011, 26, 1534–1539. [Google Scholar] [CrossRef]
- Rather, H.A.; Patel, R.; Yadav, U.C.; Vasita, R. Dual drug-delivering polycaprolactone-collagen scaffold to induce early osteogenic differentiation and coupled angiogenesis. Biomed. Mater. 2020, 15, 045008. [Google Scholar] [CrossRef]
- Garg, U.; Chauhan, S.; Nagaich, U.; Jain, N. Current Advances in Chitosan Nanoparticles Based Drug Delivery and Targeting. Adv. Pharm. Bull. 2019, 9, 195–204. [Google Scholar] [CrossRef] [Green Version]
Co Mean ± SD | ChN Mean ± SD | Sim Mean ± SD | ChSimN Mean ± SD | ||
---|---|---|---|---|---|
Osteoblasts | 2 weeks | 91.33 ± 10.9 | 146.85 ± 21.6 | 112.32 ± 22.5 | 98.28 ± 20.7 |
4 weeks | 48.92 ± 12.6 | 79.92 ± 33.2 | 65.51 ± 13.7 | 70.85 ± 34.5 | |
p value * | 0.001 | 0.001 | 0.001 | 0.102 | |
Osteocytes | 2 weeks | 53.35 ± 9.7 | 73.78 ± 30.5 | 70.14 ± 22.6 | 61.71 ± 13.0 |
4 weeks | 75.31 ± 14.0 | 106.42 ± 24.7 | 91.75 ± 28.3 | 80.85 ± 13.4 | |
p value * | 0.001 | 0.048 | 0.14 | 0.019 | |
Osteoclasts | 2 weeks | 1.0 ± 0.77 | 2.71 ± 1.1 | 1.42 ± 0.53 | 1.57 ± 0.78 |
4 weeks | 0.61 ± 0.49 | 1.14 ± 1.06 | 0.85 ± 0.89 | 1.0 ± 0.57 | |
p value * | 0.066 | 0.02 | 0.18 | 0.15 | |
Trabecular number | 2 weeks | 12.52 ± 3.9 | 14.57 ± 5.8 | 13.42 ± 4.9 | 17.71 ± 4.7 |
4 weeks | 4.23 ± 1.4 | 7.28 ± 1.9 | 6.57 ± 1.7 | 10.0 ± 7.2 | |
p value * | 0.001 | 0.008 | 0.004 | 0.038 | |
Trabecular area | 2 weeks | 0.87 ± 0.53 | 1.87 ± 0.93 | 1.53 ± 0.69 | 2.04 ± 0.81 |
4 weeks | 2.75 ± 0.62 | 3.66 ± 0.64 | 3.46 ± 1.9 | 3.87 ± 0.58 | |
p value * | 0.001 | 0.002 | 0.038 | 0.001 | |
Bone marrow area | 2 weeks | 1.26 ± 0.58 | 2.65 ± 1.0 | 1.84 ± 0.74 | 2.91 ± 0.6 |
4 weeks | 0.69 ± 0.29 | 0.34 ± 0.1 | 0.56 ± 0.27 | 0.4 ± 0.37 | |
p value * | 0.001 | 0.001 | 0.003 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaeed, M.A.; Al-Ghaban, N.M.H. Chitosan Nanoparticle/Simvastatin for Experimental Maxillary Bony Defect Healing: A Histological and Histomorphometrical Study. Biomimetics 2023, 8, 363. https://doi.org/10.3390/biomimetics8040363
Alsaeed MA, Al-Ghaban NMH. Chitosan Nanoparticle/Simvastatin for Experimental Maxillary Bony Defect Healing: A Histological and Histomorphometrical Study. Biomimetics. 2023; 8(4):363. https://doi.org/10.3390/biomimetics8040363
Chicago/Turabian StyleAlsaeed, Muna Alaa, and Nada M.H. Al-Ghaban. 2023. "Chitosan Nanoparticle/Simvastatin for Experimental Maxillary Bony Defect Healing: A Histological and Histomorphometrical Study" Biomimetics 8, no. 4: 363. https://doi.org/10.3390/biomimetics8040363
APA StyleAlsaeed, M. A., & Al-Ghaban, N. M. H. (2023). Chitosan Nanoparticle/Simvastatin for Experimental Maxillary Bony Defect Healing: A Histological and Histomorphometrical Study. Biomimetics, 8(4), 363. https://doi.org/10.3390/biomimetics8040363