Hybrid Manta Ray Foraging Algorithm with Cuckoo Search for Global Optimization and Three-Dimensional Wireless Sensor Network Deployment Problem
Abstract
:1. Introduction
Algorithm | Application in WSNs | Key Features | Advantages | Limitations |
---|---|---|---|---|
PSO [2] | Coverage maximization, network lifetime | Swarm-based optimization, global search capability | Fast convergence, reduce costs, coverage enhancement | Scale limitations, obstacles not considered |
CS [3] | Node localization | The flight characteristics of the cuckoo | Better convergence, calculation accuracy | Time consuming, complex implementation |
WOA [34] | Coverage optimization | Social Behavior of humpback whales | High coverage, low deployment cost | 2D, convergence speed |
GWO [35] | Coverage optimization | Group hunting behavior of gray wolves | Easy implementation, high search efficiency | Time consuming, 2D |
SSA [36] | Network data aggregation | Squirrel foraging behavior | Low energy consumption, high accuracy | 2D, convergence speed |
SMA [37] | Node localization, 3D | Behavior of slime mold | Low complexity, high convergence | CPU time, high memory |
ABC [38] | Routing protocol | Honey bee behavior | Reduced convergence delay, low energy consumption | Time consuming, complex implementation |
HBA [39] | Smart city | Foraging behavior of honey badgers | Low energy consumption, high accuracy | Scale limitations, complex implementation |
BOA [40] | Energy efficiency | Behavior of butterflies | Low complexity, high efficiency | Complex implementation |
ACO [40] | Energy efficiency | Foraging behavior of ants | Low complexity | High memory |
PIO [41] | Coverage optimization | Pigeon homing behavior | Better convergence, high efficiency | 2D, time consuming |
2. Preliminary
2.1. Manta Ray Foraging Optimization
2.2. Cuckoo Search Algorithm
3. The Proposed Method
3.1. Dynamic Perturbation Factor Strategy
3.2. Hybrid CS with AMRFO
3.3. The Proposed AMRFOCS
Algorithm 1: AMRFOCS |
1. Input: The number of generations (T), size of the population (N), and the upper and lower bounds Up and Low. |
2. Output: Optimal solution xbest. |
3. Initialize the population and parameters |
4. Compute the fitness of every initialized agent and sort all agents according to their fitness values. |
5. while t < T do: |
6. if rand < 0.5 then |
7. if |M| < 1 then |
8. Update based on Equation (4). |
9. else if then |
10. Update on the usage of Equation (9). |
11. end if |
12. else if then |
13. Update on the usage of Equation (6) |
14. end if |
15. for i = 1:N do |
16. Update based on Equation (7). |
17. if then |
18. |
19. end if |
20. end for |
21. Sort the new population according to fitness. |
22. |
23. end while |
24. return |
3.4. The Computational Complexity of AMRFOCS
4. Experimental Results and Discussion
4.1. Comparison of AMRFOCS with Other Algorithms on CEC2017
4.1.1. Analysis and Discussion of Results
Type | No. | Functions | Range | |
---|---|---|---|---|
Unimodal Function | F1 | Shifted and Rotated Bent Cigar Function | [−100, 100] | 100 |
F2 | Shifted and Rotated Sum of Different Power Function | [−100, 100] | 200 | |
F3 | Shifted and Rotated Zakharov Function | [−100, 100] | 300 | |
Simple Multimodal Functions | F4 | Shifted and Rotated Rosenbrock’s Function | [−100, 100] | 400 |
F5 | Shifted and Rotated Rastrigin’s Function | [−100, 100] | 500 | |
F6 | Shifted and Rotated Expanded Scaffer’s F6 Function | [−100, 100] | 600 | |
F7 | Shifted and Rotated Lunacek Bi_Rastrigin Function | [−100, 100] | 700 | |
F8 | Shifted and Rotated Noncontinuous Rastrigin’s Function | [−100, 100] | 800 | |
F9 | Shifted and Rotated Levy Function | [−100, 100] | 900 | |
F10 | Shifted and Rotated Schwefel’s Function | [−100, 100] | 1000 | |
Hybrid Functions | F11 | Hybrid Function 1 (N = 3) | [−100, 100] | 1100 |
F12 | Hybrid Function 2 (N = 3) | [−100, 100] | 1200 | |
F13 | Hybrid Function 3 (N =3) | [−100, 100] | 1300 | |
F14 | Hybrid Function 4 (N = 4) | [−100, 100] | 1400 | |
F15 | Hybrid Function 5 (N = 4) | [−100, 100] | 1500 | |
F16 | Hybrid Function 6 (N = 4) | [−100, 100] | 1600 | |
F17 | Hybrid Function 6 (N =5) | [−100, 100] | 1700 | |
F18 | Hybrid Function 6 (N =5) | [−100, 100] | 1800 | |
F19 | Hybrid Function 6 (N =5) | [−100, 100] | 1900 | |
F20 | Hybrid Function 6 (N = 6) | [−100, 100] | 2000 | |
Composition Functions | F21 | Composition Function 1 (N = 3) | [−100, 100] | 2100 |
F22 | Composition Function 2 (N = 3) | [−100, 100] | 2200 | |
F23 | Composition Function 3 (N = 4) | [−100, 100] | 2300 | |
F24 | Composition Function 4 (N = 4) | [−100, 100] | 2400 | |
F25 | Composition Function 5 (N = 5) | [−100, 100] | 2500 | |
F26 | Composition Function 6 (N = 5) | [−100, 100] | 2600 | |
F27 | Composition Function 7 (N = 6) | [−100, 100] | 2700 | |
F28 | Composition Function 8 (N = 6) | [−100, 100] | 2800 | |
F29 | Composition Function 9 (N = 3) | [−100, 100] | 2900 | |
F30 | Composition Function 10 (N = 3) | [−100, 100] | 3000 |
Type | No. | Functions | Range | |
---|---|---|---|---|
Unimodal Function | F1 | Shifted and Rotated Bent Cigar Function (CEC 2017 F1) | [−100, 100] | 100 |
Basic Functions | F2 | Shifted and Rotated Schwefel’s Function (CEC 2014 F11) | [−100, 100] | 1100 |
F3 | Shifted and Rotated Lunacek Bi_Rastrigin Function (CEC 2017 F7) | [−100, 100] | 700 | |
F4 | Expanded Rosenbrock’s plus Griewangk’s Function (CEC2017 F19) | [−100, 100] | 1900 | |
Hybrid Functions | F5 | Hybrid Function 1 (N = 3) (CEC 2014 F17) | [−100, 100] | 1700 |
F6 | Hybrid Function 2 (N = 4) (CEC 2017 F16) | [−100, 100] | 1600 | |
F7 | Hybrid Function 3 (N = 5) (CEC 2014 F21) | [−100, 100] | 2100 | |
Composition Functions | F8 | Composition Function 1 (N = 3) (CEC 2017 F22) | [−100, 100] | 2200 |
F9 | Composition Function 2 (N = 4) (CEC 2017 F24) | [−100, 100] | 2400 | |
F10 | Composition Function 3 (N = 5) (CEC 2017 F25) | [−100, 100] | 2500 |
Algorithm | Parameters | Setting Value |
---|---|---|
ABC | a | 1 |
k | [1, 10] | |
p | [−1, 1] | |
ACO | r | 0.9 |
P | 0.2 | |
y | [−5, 5] | |
s | 0.1 | |
DE | f | 0.5 |
c | 0.9 | |
GA | l | 20 |
g | 0.9 | |
c | 1 | |
s | 0 | |
SMA | z | 0.03 |
PSO | a | 2.0 |
c | 2.0 | |
WOA | b | 1 |
MRFO | S | 2 |
Function | ABC [43] | ACO [42] | DE [46] | GA | SMA [44] | PSO [45] | WOA [46] | MRFO | AMRFOCS | |
---|---|---|---|---|---|---|---|---|---|---|
F1 | Min | 1.0154 × 108 | 9.7148 × 1010 | 4.1095 × 106 | 4.8990 × 1010 | 1.5430 × 103 | 1.2997 × 107 | 5.9003 × 108 | 1.4427 × 102 | 3.1760 × 102 |
Max | 8.3189 × 108 | 1.5513 × 1011 | 1.9979 × 107 | 1.0217 × 1011 | 2.2200 × 104 | 2.5143 × 107 | 5.9382 × 109 | 2.0702 × 104 | 1.9893 × 104 | |
Mean | 3.1937 × 108 | 1.2948 × 1011 | 1.1488 × 107 | 8.2198 × 1010 | 7.1400 × 103 | 1.9757 × 107 | 2.1909 × 109 | 5.1159 × 103 | 4.2103 × 103 | |
Std | 1.7466 × 108 | 1.3586 × 1010 | 4.4221 × 106 | 1.2920 × 1010 | 5.7760 × 103 | 2.6789 × 106 | 1.2084 × 109 | 6.2854 × 103 | 4.4114 × 103 | |
Rank | 6 | 9 | 4 | 8 | 3 | 5 | 7 | 2 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 1.4643 × 10−10 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F2 | Min | 1.3826 × 1039 | 3.0174 × 1042 | 3.7900 × 1020 | 2.6307 × 1039 | 3.9166 × 108 | 6.9869 × 105 | 1.8526 × 1024 | 5.0665 × 1031 | 6.2613 × 104 |
Max | 2.7949 × 1044 | 1.8218 × 1055 | 1.1983 × 1026 | 2.7913 × 1052 | 2.6824 × 1014 | 2.6965 × 1022 | 3.3101 × 1035 | 6.1316 × 1042 | 3.3447 × 1014 | |
Mean | 1.1188 × 1043 | 6.7792 × 1053 | 7.1918 × 1024 | 1.2717 × 1051 | 1.7130 × 1013 | 8.9883 × 1020 | 2.1003 × 1034 | 2.9023 × 1041 | 2.5585 × 1013 | |
Std | 5.0853 × 1043 | 3.3270 × 1054 | 2.2580 × 1025 | 5.1032 × 1051 | 4.9641 × 1013 | 4.9231 × 1021 | 7.2555 × 1034 | 1.1238 × 1042 | 7.2185 × 1013 | |
Rank | 7 | 9 | 4 | 8 | 2 | 3 | 5 | 6 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.5137 × 10−2 | 5.4617 × 10−9 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F3 | Min | 9.3798 × 104 | 1.6570 × 105 | 6.7056 × 104 | 1.5029 × 105 | 2.5152 × 103 | 9.7560 × 103 | 1.2175 × 105 | 3.2351 × 103 | 3.7305 × 103 |
Max | 5.2367 × 105 | 5.3531 × 1010 | 1.4788 × 105 | 2.7782 × 106 | 2.8997 × 104 | 4.0783 × 104 | 4.5221 × 105 | 2.7003 × 104 | 1.8743 × 104 | |
Mean | 1.1306 × 105 | 1.9316 × 109 | 1.1091 × 105 | 4.0455 × 105 | 1.2249 × 104 | 2.1596 × 104 | 2.6893 × 105 | 1.1526 × 104 | 1.0662 × 104 | |
Std | 1.0781 × 104 | 9.7489 × 109 | 1.9454 × 104 | 5.1915 × 105 | 6.1721 × 103 | 7.2295 × 103 | 6.3779 × 104 | 6.3253 × 103 | 3.6521 × 103 | |
Rank | 6 | 9 | 5 | 8 | 2 | 4 | 7 | 3 | 1 | |
p-value | 1.2118 × 10−12 | 1.2118 × 10−12 | 1.2118 × 10−12 | 1.2118 × 10−12 | NaN | 1.2118 × 10−12 | 1.2118 × 10−12 | NaN | - | |
F4 | Min | 5.8946 × 102 | 1.0314 × 104 | 4.8507 × 102 | 8.8614 × 103 | 4.7389 × 102 | 4.0953 × 102 | 6.3226 × 102 | 4.7040 × 102 | 4.1566 × 102 |
Max | 8.2750 × 102 | 6.5144 × 104 | 5.6890 × 102 | 4.5406 × 104 | 5.2629 × 102 | 5.3342 × 102 | 1.3639 × 103 | 5.2245 × 102 | 5.2182 × 102 | |
Mean | 7.1050 × 102 | 4.2604 × 104 | 5.3124 × 102 | 2.5276 × 104 | 4.9765 × 102 | 5.0183 × 102 | 9.3728 × 102 | 4.9125 × 102 | 4.9033 × 102 | |
Std | 5.9761 × 101 | 1.2617 × 104 | 1.8107 × 101 | 9.5705 × 103 | 1.4174 × 101 | 2.3918 × 101 | 1.8251 × 102 | 1.8396 × 101 | 2.4232 × 101 | |
Rank | 6 | 9 | 5 | 8 | 3 | 4 | 7 | 2 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 6.7220 × 10−10 | 3.0199 × 10−11 | 3.0317 × 10−2 | 1.3345 × 10−1 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F5 | Min | 7.1654 × 102 | 9.5422 × 102 | 6.9318 × 102 | 9.3910 × 102 | 5.8094 × 102 | 6.2262 × 102 | 7.5584 × 102 | 6.0248 × 102 | 5.9751 × 102 |
Max | 7.8028 × 102 | 1.2844 × 103 | 7.5963 × 102 | 1.1767 × 103 | 7.5104 × 102 | 7.7320 × 102 | 1.0409 × 103 | 7.7262 × 102 | 7.5371 × 102 | |
Mean | 7.5297 × 102 | 1.1637 × 103 | 7.2788 × 102 | 1.0489 × 103 | 6.2679 × 102 | 6.9384 × 102 | 8.4935 × 102 | 6.9020 × 102 | 6.6148 × 102 | |
Std | 1.5245 × 101 | 7.3984 × 101 | 1.2938 × 101 | 6.2624 × 101 | 3.1612 × 101 | 3.4506 × 101 | 6.8712 × 101 | 4.6749 × 101 | 4.3148 × 101 | |
Rank | 6 | 9 | 3 | 8 | 1 | 5 | 7 | 4 | 2 | |
p-value | 3.3386 × 10−3 | 3.0199 × 10−11 | 7.9782 × 10−2 | 3.0199 × 10−11 | 1.6980 × 10−8 | 7.6183 × 10−1 | 7.0881 × 10−8 | 4.0772 × 10−11 | - | |
F6 | Min | 6.0000 × 102 | 6.9858 × 102 | 6.0322 × 102 | 6.8868 × 102 | 6.0060 × 102 | 6.4167 × 102 | 6.5717 × 102 | 6.0133 × 102 | 6.0349 × 102 |
Max | 6.2288 × 102 | 7.6250 × 102 | 6.1152 × 102 | 7.4279 × 102 | 6.1350 × 102 | 6.6457 × 102 | 6.9289 × 102 | 6.5316 × 102 | 6.5961 × 102 | |
Mean | 6.0000 × 102 | 6.2900 × 101 | 6.0631 × 102 | 7.1490 × 102 | 6.0340 × 102 | 6.5720 × 102 | 6.7537 × 102 | 6.2528 × 102 | 6.2502 × 102 | |
Std | 2.7437 × 1000 | 1.2400 × 101 | 1.8413 × 100 | 1.2006 × 101 | 2.4610 × 100 | 5.6088 × 100 | 9.1749 × 100 | 1.2338 × 101 | 1.4127 × 101 | |
Rank | 1 | 7 | 3 | 9 | 2 | 5 | 8 | 4 | 6 | |
p-value | 6.3560 × 10−5 | 3.0199 × 10−11 | 1.3289 × 10−10 | 3.0199 × 10−11 | 4.4440 × 10−7 | 7.3803 × 10−10 | 5.4941 × 10−11 | 9.9186 × 10−11 | - | |
F7 | Min | 9.6084 × 102 | 3.1096 × 103 | 9.3278 × 102 | 2.2940 × 103 | 8.0722 × 102 | 9.3742 × 102 | 1.1594 × 103 | 8.5152 × 102 | 8.5189 × 102 |
Max | 1.0117 × 103 | 3.8617 × 103 | 9.9053 × 102 | 3.4478 × 103 | 9.7487 × 102 | 1.1843 × 103 | 1.4545 × 103 | 1.2944 × 103 | 1.2630 × 103 | |
Mean | 9.9282 × 102 | 4.2000 × 101 | 9.6627 × 102 | 2.8176 × 103 | 8.6422 × 102 | 1.1061 × 103 | 1.2986 × 103 | 1.0147 × 103 | 1.0224 × 103 | |
Std | 1.2683 × 101 | 1.2200 × 101 | 1.2768 × 101 | 2.9262 × 102 | 3.9480 × 101 | 5.0331 × 101 | 6.7914 × 101 | 1.2166 × 102 | 1.1825 × 102 | |
Rank | 3 | 4 | 2 | 9 | 1 | 5 | 8 | 6 | 7 | |
p-value | 8.5338 × 10−1 | 3.0199 × 10−11 | 4.5146 × 10−2 | 3.0199 × 10−11 | 2.4386 × 10−9 | 2.6015 × 10−8 | 4.9752 × 10−11 | 3.0199 × 10−11 | - | |
F8 | Min | 8.7478 × 102 | 1.2947 × 103 | 1.0047 × 103 | 1.1921 × 103 | 8.6985 × 102 | 9.0755 × 102 | 9.3940 × 100 | 8.7562 × 1002 | 8.8855 × 102 |
Max | 1.0846 × 103 | 1.4828 × 103 | 1.0568 × 103 | 1.3960 × 103 | 9.7051 × 102 | 1.0308 × 103 | 1.1676 × 103 | 1.0159 × 103 | 1.0030 × 103 | |
Mean | 8.9952 × 102 | 5.2300 × 101 | 1.0304 × 103 | 1.2837 × 103 | 9.1685 × 102 | 9.5942 × 102 | 1.0438 × 103 | 9.4463 × 102 | 9.3939 × 102 | |
Std | 6.9538 × 100 | 1.0200 × 101 | 1.2740 × 101 | 5.3439 × 101 | 3.1005 × 101 | 3.4689 × 101 | 4.8060 × 101 | 3.3363 × 101 | 2.8957 × 101 | |
Rank | 2 | 5 | 6 | 9 | 1 | 7 | 8 | 4 | 3 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 4.5043 × 10−11 | 3.0199 × 10−11 | 2.0023 × 10−6 | 8.8830 × 10−1 | 3.8202 × 10−10 | 3.0199 × 10−11 | - | |
F9 | Min | 7.0032 × 103 | 1.9054 × 104 | 2.0538 × 103 | 1.4697 × 104 | 1.9214 × 103 | 5.1607 × 103 | 6.7932 × 103 | 6.3749 × 103 | 1.9424 × 103 |
Max | 1.6985 × 104 | 4.7601 × 104 | 4.5199 × 103 | 3.0143 × 104 | 1.0980 × 104 | 9.6916 × 103 | 3.2571 × 104 | 1.2225 × 104 | 8.5475 × 103 | |
Mean | 1.1643 × 104 | 3.7500 × 104 | 2.7952 × 103 | 2.4068 × 104 | 5.2442 × 103 | 7.6564 × 103 | 1.3059 × 104 | 9.7479 × 103 | 5.1747 × 103 | |
Std | 2.3773 × 103 | 5.9949 × 103 | 6.0699 × 102 | 4.0708 × 103 | 2.2777 × 103 | 1.1944 × 103 | 5.8199 × 103 | 1.3856 × 103 | 1.6948 × 103 | |
Rank | 6 | 9 | 1 | 8 | 3 | 4 | 7 | 5 | 2 | |
p-value | 3.6897 × 10−11 | 3.0199 × 10−11 | 4.1178 × 10−6 | 3.0199 × 10−11 | 6.5204 × 10−1 | 6.0459 × 10−7 | 4.1997 × 10−10 | 1.4643 × 10−10 | - | |
F10 | Min | 8.4132 × 103 | 9.7867 × 103 | 7.7355 × 103 | 8.1999 × 103 | 3.0770 × 103 | 4.6398 × 103 | 5.0641 ×103 | 3.6012 × 103 | 2.5686 × 103 |
Max | 9.8864 × 103 | 1.1866 × 104 | 9.3152 × 103 | 1.0092 × 104 | 6.3150 × 103 | 7.0070 × 103 | 8.6416 × 103 | 7.2093 × 103 | 7.7606 × 103 | |
Mean | 9.2739 × 103 | 1.0854 × 104 | 8.7408 × 103 | 9.4494 × 103 | 4.6711 × 103 | 5.7831 × 103 | 6.9687 × 103 | 4.7415 × 103 | 5.1107 × 103 | |
Std | 2.8525 × 102 | 3.4400 × 103 | 3.7295 × 102 | 4.5335 × 102 | 7.2820 × 102 | 6.1827 × 102 | 9.2541 × 102 | 7.1060 × 102 | 9.3500 × 102 | |
Rank | 7 | 9 | 5 | 8 | 1 | 3 | 6 | 2 | 4 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 9.2344 × 10−1 | 8.1465 × 10−5 | 1.0702 × 10−9 | 1.6132 × 10−10 | - | |
F11 | Min | 5.5276 × 103 | 1.3745 × 104 | 1.1986 × 103 | 7.5074 × 103 | 1.1490 × 103 | 1.2088 × 103 | 2.6028 × 103 | 1.1349 × 103 | 1.1368 × 103 |
Max | 1.6185 × 104 | 2.8377 × 105 | 1.2875 × 103 | 5.8373 × 104 | 1.3760 × 103 | 1.3374 × 103 | 1.3561 × 104 | 1.3641 × 103 | 1.2840 × 103 | |
Mean | 1.0463 × 104 | 6.3637 × 104 | 1.2488 × 103 | 2.8766 × 104 | 1.2660 × 103 | 1.2665 × 103 | 7.0216 × 103 | 1.2207 × 103 | 1.2037 × 103 | |
Std | 2.6622 × 103 | 5.2876 × 104 | 2.1263 × 101 | 1.2367 × 104 | 5.2560 × 101 | 2.9995 × 101 | 2.9811 × 103 | 5.8135 × 101 | 4.4210 × 101 | |
Rank | 7 | 9 | 2 | 8 | 5 | 4 | 6 | 3 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 2.0681 × 10−2 | 3.0199 × 10−11 | 2.2658 × 10−3 | 3.0059 × 10−4 | 3.0199 × 10−11 | 3.0199 × 10−11 | ||
F12 | Min | 2.2161 × 108 | 1.4479 × 1010 | 1.2600 × 106 | 5.2363 × 109 | 4.8730 × 105 | 2.1766 × 106 | 3.3151 × 107 | 2.8406 × 104 | 7.3759 × 104 |
Max | 9.3358 × 108 | 3.9797 × 1010 | 1.0749 × 107 | 2.6238 × 1010 | 8.5280 × 106 | 4.2295 × 107 | 8.9433 × 108 | 2.3103 × 106 | 1.5100 × 106 | |
Mean | 4.5281 × 108 | 2.6199 × 1010 | 4.3229 × 106 | 1.5373 × 1010 | 2.9180 × 106 | 1.6871 × 107 | 2.8065 × 108 | 4.6619 × 105 | 3.5144 × 105 | |
Std | 1.5863 × 108 | 6.5010 × 109 | 2.4314 × 106 | 5.1740 × 109 | 1.9490 × 106 | 1.0816 × 107 | 2.2948 × 108 | 5.0090 × 105 | 3.1390 × 105 | |
Rank | 7 | 9 | 4 | 8 | 3 | 5 | 6 | 2 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 5.5727 × 10−10 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F13 | Min | 1.1452 × 104 | 9.2894 × 109 | 4.2655 × 103 | 4.2862 × 109 | 9.4720 × 103 | 3.6456 × 105 | 4.6561 × 105 | 1.3532 × 103 | 1.5607 × 103 |
Max | 2.6848 × 107 | 4.8535 × 1010 | 2.2415 × 104 | 2.8201 × 1010 | 7.1220 × 104 | 4.7730 × 106 | 8.7062 × 106 | 5.9713 × 104 | 6.2857 × 104 | |
Mean | 1.7766 × 104 | 2.2200 × 103 | 9.2416 × 103 | 1.3551 × 1010 | 3.5200 × 104 | 1.0753 × 106 | 2.9308 × 106 | 1.6871 × 104 | 1.9422 × 104 | |
Std | 7.5745 × 103 | 1.2200 × 102 | 3.7397 × 103 | 5.5841 × 109 | 2.5470 × 104 | 7.7927 × 105 | 2.3216 × 106 | 1.5084 × 104 | 1.8341 × 104 | |
Rank | 4 | 5 | 1 | 9 | 6 | 7 | 8 | 2 | 3 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 5.1060 × 10−1 | 3.0199 × 10−11 | 7.6588 × 10−5 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F14 | Min | 9.6728 × 104 | 5.2670 × 106 | 1.4663 × 103 | 1.7641 × 106 | 9.4450 × 103 | 4.9433 × 103 | 4.7043 × 104 | 2.9000 × 103 | 2.8036 × 103 |
Max | 1.0616 × 106 | 1.8985 × 108 | 1.5120 × 103 | 1.2344 × 108 | 1.9580 × 105 | 2.0460 × 105 | 1.3090 × 107 | 5.4617 × 104 | 4.0539 × 104 | |
Mean | 2.0324 × 105 | 7.3300 × 101 | 1.4927 × 103 | 2.5264 × 107 | 1.0290 × 105 | 4.4592 × 104 | 3.3724 × 106 | 1.6243 × 104 | 1.1884 × 104 | |
Std | 5.5827 × 104 | 7.3300 × 102 | 9.1438 × 100 | 2.5037 × 107 | 5.2110 × 104 | 4.6969 × 104 | 2.9973 × 106 | 1.4535 × 104 | 9.1818 × 103 | |
Rank | 7 | 5 | 1 | 9 | 6 | 4 | 8 | 3 | 2 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 7.7725 × 10−9 | 1.6813 × 10−4 | 3.0199 × 10−11 | 6.6955 × 10−11 | - | |
F15 | Min | 2.0459 × 103 | 1.8897 × 109 | 1.5964 × 103 | 1.9734 × 108 | 1.9910 × 103 | 5.8591 × 104 | 8.3870 × 104 | 1.5717 × 103 | 1.5505 × 103 |
Max | 5.5536 × 106 | 1.3480 × 1010 | 1.7114 × 103 | 6.2995 ×109 | 4.3310 × 104 | 3.3304 × 105 | 2.2859 × 107 | 4.0793 × 104 | 4.2819 × 104 | |
Mean | 8.8916 × 103 | 5.2400 × 103 | 1.6582 × 103 | 2.6018 × 109 | 2.4960 × 10 4 | 1.5894 × 105 | 2.1739 × 106 | 8.7091 × 103 | 1.1109 × 104 | |
Std | 3.1246 × 103 | 7.7000 × 102 | 2.5041 × 101 | 1.3775 × 109 | 1.4300 × 104 | 6.5396 × 104 | 4.2818 × 106 | 9.2998 × 103 | 1.2935 × 104 | |
Rank | 4 | 6 | 1 | 9 | 5 | 7 | 8 | 2 | 3 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 6.5183 × 10−9 | 3.0199 × 10−11 | 1.7836 × 10−4 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F16 | Min | 2.0452 × 103 | 5.8741 × 103 | 3.1551 × 103 | 4.8248 × 103 | 1.7720 × 103 | 2.7007 × 103 | 2.4831 × 103 | 2.1619 × 103 | 1.9438 × 103 |
Max | 4.3828 × 103 | 1.3395 × 104 | 3.8340 × 103 | 1.1386 × 104 | 3.2970 × 103 | 3.5684 × 103 | 6.7716 × 103 | 3.2044 × 103 | 3.2119 × 103 | |
Mean | 4.0016 × 103 | 5.5600 × 103 | 3.5677 × 103 | 6.7991 × 103 | 2.5070 × 103 | 3.1605 × 103 | 4.2004 × 103 | 2.6004 × 103 | 2.4746 × 103 | |
Std | 2.2691 × 102 | 2.2000 × 102 | 1.8219 × 102 | 1.3622 × 103 | 3.3580 × 102 | 2.4959 × 102 | 8.2898 × 102 | 3.1577 × 102 | 2.7366 × 102 | |
Rank | 4 | 8 | 5 | 9 | 2 | 6 | 7 | 3 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 9.7052 × 10−01 | 1.2023 × 10−08 | 8.9934 × 10−11 | 3.0199 × 10−11 | - | |
F17 | Min | 1.8441 × 103 | 4.6659 × 103 | 2.1103 × 103 | 3.3244 × 103 | 1.8040 × 103 | 2.0717 × 103 | 2.2412 × 103 | 1.7956 × 103 | 1.7925 × 103 |
Max | 3.1530 × 103 | 3.4404 × 105 | 2.6988 × 103 | 3.2925 × 104 | 2.7230 × 103 | 3.3136 × 103 | 3.2823 × 103 | 2.6236 × 103 | 2.5946 × 103 | |
Mean | 2.9495 × 103 | 4.7341 × 104 | 2.4235 × 103 | 1.0638 × 104 | 2.2450 × 103 | 2.5941 × 103 | 2.7821 × 103 | 2.1502 × 103 | 2.1664 × 103 | |
Std | 1.6006 × 102 | 2.6600 × 103 | 1.4637 × 102 | 7.7982 × 103 | 2.1920 × 102 | 2.7539 × 102 | 2.7887 × 102 | 2.0232 × 102 | 1.8561 × 102 | |
Rank | 5 | 9 | 3 | 8 | 4 | 6 | 7 | 2 | 1 | |
p-value | 4.5043 × 10−11 | 3.0199 × 10−11 | 1.1077 × 10−06 | 3.0199 × 10−11 | 2.4157 × 10−2 | 7.6588 × 10−5 | 1.5581 × 10−8 | 2.3897 × 10−8 | - | |
F18 | Min | 1.3677 × 105 | 4.1987 × 107 | 4.7817 × 103 | 1.4347 × 107 | 1.2430 × 105 | 9.9131 × 104 | 3.1313 × 105 | 4.1933 × 104 | 4.6072 × 104 |
Max | 3.8236 × 107 | 1.5215 × 109 | 4.6879 × 104 | 5.1200 × 108 | 4.2940 × 106 | 3.3343 × 106 | 6.0586 × 107 | 1.3249 × 106 | 1.8493 × 106 | |
Mean | 3.0928 × 105 | 1.6000 × 103 | 1.8993 × 104 | 1.2777 × 108 | 1.4650 × 106 | 6.1749 × 105 | 8.8647 × 106 | 2.7455 × 105 | 2.8187 × 105 | |
Std | 9.6714 × 104 | 5.7300 × 102 | 1.0976 × 104 | 1.2244 × 108 | 1.2390 × 106 | 6.5543 × 105 | 1.3895 × 107 | 2.6898 × 105 | 3.7817 × 105 | |
Rank | 4 | 5 | 1 | 9 | 7 | 6 | 8 | 2 | 3 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 4.5043 × 10−11 | 3.0199 × 10−11 | 1.0105 × 10−8 | 1.5014 × 10−2 | 1.6132 × 10−10 | 8.1014 × 10−10 | - | |
F19 | Min | 3.3711 × 103 | 2.4416 × 109 | 1.9460 × 103 | 1.3628 × 109 | 7.1370 × 103 | 1.4973 × 105 | 4.2547 × 104 | 1.9200 × 103 | 1.9943 × 103 |
Max | 4.6006 × 105 | 2.3046 × 1010 | 1.9999 × 103 | 6.0346 × 109 | 5.6570 × 104 | 2.1529 × 106 | 3.1903 × 107 | 5.6153 × 104 | 4.9774 × 104 | |
Mean | 8.5326 × 103 | 3.3200 × 102 | 1.9642 × 103 | 2.9205 × 109 | 3.8150 × 104 | 8.7076 × 105 | 1.1132 × 107 | 1.1733 × 104 | 1.0513 × 104 | |
Std | 5.0755 × 103 | 1.2200 × 103 | 1.1177 × 101 | 1.1896 × 109 | 1.9450 × 104 | 5.4963 × 105 | 7.9663 × 106 | 1.4443 × 104 | 1.1281 × 104 | |
Rank | 4 | 5 | 1 | 9 | 6 | 7 | 8 | 3 | 2 | |
p-value | 1.6132 × 10−10 | 3.0199 × 10−11 | 5.5727 × 10−10 | 3.0199 × 10−11 | 8.6844 × 10−3 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F20 | Min | 2.1506 × 103 | 3.4140 × 103 | 2.6418 × 103 | 2.9675 × 103 | 2.2980 × 103 | 2.3455 × 103 | 2.5271 × 103 | 2.1960 × 103 | 2.1806 × 103 |
Max | 3.3109 × 103 | 4.3081 × 103 | 3.0783 × 103 | 3.6499 × 103 | 2.7500 × 103 | 3.1023 × 103 | 3.3016 × 103 | 2.8994 × 103 | 2.9051 × 103 | |
Mean | 2.2816 × 103 | 3.2200 × 103 | 2.8286 × 103 | 3.3611 × 103 | 2.5160 × 103 | 2.7642 × 103 | 2.9118 × 103 | 2.4544 × 103 | 2.5069 × 103 | |
Std | 4.5941 × 101 | 4.2300 × 102 | 1.1178 × 102 | 1.5474 × 102 | 1.4400 × 102 | 2.0481 × 102 | 2.3447 × 102 | 1.8973 × 102 | 1.9487 × 102 | |
Rank | 1 | 9 | 5 | 8 | 2 | 6 | 7 | 3 | 4 | |
p-value | 4.9752 × 10−11 | 3.0199 × 10−11 | 7.3803 × 10−10 | 3.0199 × 10−11 | 1.3272 × 10−2 | 2.6784 × 10−6 | 1.3289 × 10−10 | 1.2023 × 10−8 | - | |
F21 | Min | 2.4998 × 103 | 2.7335 × 103 | 2.4938 × 103 | 2.6432 × 103 | 2.3610 × 103 | 2.4422 × 103 | 2.5117 × 103 | 2.3667 × 103 | 2.3609 × 103 |
Max | 2.5791 × 103 | 3.0507 × 103 | 2.5555 × 103 | 2.8797 × 103 | 2.4870 × 103 | 2.6160 × 103 | 2.7173 × 103 | 2.5234 × 103 | 2.5046 × 103 | |
Mean | 2.3037 × 103 | 2.9379 × 103 | 2.5278 × 103 | 2.7886 × 103 | 2.4090 × 103 | 2.5320 × 103 | 2.6246 × 103 | 2.4281 × 103 | 2.4234 × 103 | |
Std | 7.5583 × 101 | 7.9959 × 101 | 1.4103 × 101 | 5.9467 × 101 | 2.4530 × 101 | 4.4806 × 101 | 6.3342 × 101 | 4.2821 × 101 | 2.9822 × 101 | |
Rank | 5 | 9 | 4 | 8 | 1 | 6 | 7 | 3 | 2 | |
p-value | 4.5043 × 10−11 | 3.0199 × 10−11 | 2.3715 × 10−10 | 3.0199 × 10−11 | 6.7350 × 10−1 | 2.0338 × 10−9 | 4.0772 × 10−11 | 3.0199 × 10−11 | - | |
F22 | Min | 2.3000 × 103 | 1.0306 × 104 | 2.3168 × 103 | 7.9256 × 103 | 2.3010 × 103 | 2.3236 × 103 | 2.8013 × 103 | 2.3000 × 103 | 2.3000 × 103 |
Max | 1.0900 × 104 | 1.3120 × 104 | 2.3262 × 103 | 1.2211 × 104 | 7.7140 × 103 | 8.5579 × 103 | 1.0547 × 104 | 7.7688 × 103 | 6.4637 × 103 | |
Mean | 2.3128 × 103 | 4.3300 × 102 | 2.3211 × 103 | 1.0590 × 104 | 5.7980 × 103 | 5.9502 × 103 | 8.1343 × 103 | 3.1031 × 103 | 2.4397 × 103 | |
Std | 3.5097 × 100 | 2.3300 × 103 | 2.1808 × 100 | 8.8398 × 102 | 1.1790 × 103 | 2.1662 × 103 | 1.6086 × 103 | 1.8419 × 103 | 7.6001 × 102 | |
Rank | 3 | 8 | 1 | 9 | 4 | 6 | 7 | 5 | 2 | |
p-value | 3.3384 × 10−11 | 3.0199 × 10−11 | 8.4848 × 10−9 | 3.0199 × 10−11 | 5.4617 × 10−9 | 6.7220 × 10−10 | 9.9186 × 10−11 | 1.9568 × 10−10 | - | |
F23 | Min | 2.8749 × 103 | 3.3073 × 103 | 2.8510 × 103 | 3.2778 × 103 | 2.7238 × 103 | 3.0471 × 103 | 2.9423 × 103 | 2.6967 × 103 | 2.7000 × 103 |
Max | 2.9480 × 103 | 4.2982 × 103 | 2.9063 × 103 | 3.7566 × 103 | 2.8054 × 103 | 3.6307 × 103 | 3.3612 × 103 | 2.9593 × 103 | 2.8401 × 103 | |
Mean | 2.9172 × 103 | 3.8783 × 103 | 2.8843 × 103 | 3.5453 × 103 | 2.7566 × 103 | 3.3266 × 103 | 3.1063 × 103 | 2.7818 × 103 | 2.7615 × 103 | |
Std | 1.8843 × 101 | 2.3000 × 103 | 1.4124 × 101 | 1.3473 × 102 | 1.9185 × 101 | 1.5349 × 102 | 1.0442 × 102 | 4.5888 × 101 | 3.6622 × 101 | |
Rank | 5 | 9 | 3 | 8 | 1 | 7 | 6 | 4 | 2 | |
p-value | 4.9752 × 10−11 | 3.0199 × 10−11 | 3.8202 × 10−10 | 3.0199 × 10−11 | 4.2039 × 10−1 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F24 | Min | 3.0675 × 103 | 3.8413 × 103 | 3.0087 × 103 | 3.4658 × 103 | 2.8850 × 103 | 3.1984 × 103 | 3.0610 × 103 | 2.8646 × 103 | 2.8767 × 103 |
Max | 3.1290 × 103 | 4.8371 × 103 | 3.0811 × 103 | 4.4138 × 103 | 3.0170 × 103 | 3.6435 × 103 | 3.4669 × 103 | 3.0880 × 103 | 2.9916 × 103 | |
Mean | 3.0956 × 103 | 4.3577 × 103 | 3.0513 × 103 | 3.7671 × 103 | 2.9420 × 103 | 3.3670 × 103 | 3.2159 × 103 | 2.9248 × 103 | 2.9276 × 103 | |
Std | 1.7187 × 102 | 6.3300 × 102 | 2.6623 × 102 | 2.3032 × 102 | 3.4050 × 101 | 1.1382 × 102 | 1.0195 × 102 | 4.3333 × 101 | 2.6834 × 101 | |
Rank | 6 | 9 | 4 | 8 | 3 | 7 | 5 | 2 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 6.6955 × 10−11 | 3.0199 × 10−11 | 3.9167 × 10−2 | 3.0199 × 10−11 | 3.3384 × 10−11 | 3.0199 × 10−11 | - | |
F25 | Min | 2.8837 × 103 | 1.1399 × 104 | 2.8914 × 103 | 6.2271 × 103 | 2.8840 × 103 | 2.8864 × 103 | 3.0208 × 103 | 2.8836 × 103 | 2.8836 × 103 |
Max | 3.0289 × 103 | 2.5458 × 104 | 2.9291 × 103 | 1.5988 × 104 | 2.9270 × 103 | 2.9518 × 103 | 3.2495 × 103 | 2.9429 × 103 | 2.9409 × 103 | |
Mean | 2.9808 × 103 | 1.8598 × 104 | 2.9018 × 103 | 1.1112 × 104 | 2.8957 × 103 | 2.9090 × 103 | 3.1302 × 103 | 2.8939 × 103 | 2.8984 × 103 | |
Std | 2.0681 × 101 | 4.2200 × 101 | 8.3757 × 100 | 2.4224 × 103 | 1.0550 × 101 | 2.0669 × 101 | 5.8141 × 101 | 1.5232 × 101 | 1.9458 × 101 | |
Rank | 6 | 9 | 1 | 8 | 4 | 5 | 7 | 2 | 3 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.8307 × 10−5 | 3.0199 × 10−11 | 5.6922 × 10−1 | 2.0023 × 10−6 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F26 | Min | 2.8361 × 103 | 1.1704 × 104 | 5.3538 × 103 | 9.6453 × 103 | 4.4010 × 103 | 2.8905 × 103 | 4.1644 × 103 | 2.8000 × 103 | 2.8000 × 103 |
Max | 6.1479 × 103 | 2.2693 × 104 | 6.0782 × 103 | 1.5103 × 104 | 5.2560 × 103 | 1.0225 × 104 | 1.0138 × 104 | 7.8492 × 103 | 7.7356 × 103 | |
Mean | 2.9114 × 103 | 3.4400 × 101 | 5.8138 × 103 | 1.2221 × 104 | 4.7580 × 103 | 7.3677 × 103 | 8.1429 × 103 | 5.1373 × 103 | 5.1514 × 103 | |
Std | 2.8268 × 101 | 2.5500 × 102 | 1.4751 × 102 | 1.2602 × 103 | 2.1090 × 102 | 1.9198 × 103 | 1.1711 × 103 | 1.4116 × 103 | 1.4729 × 103 | |
Rank | 1 | 6 | 3 | 9 | 2 | 8 | 7 | 4 | 5 | |
p-value | 4.6390 × 10−5 | 3.0199 × 10−11 | 9.7917 × 10−5 | 3.0199 × 10−11 | 6.7350 × 10−1 | 2.1959 × 10−7 | 6.0658 × 10−11 | 3.0199 × 10−11 | - | |
F27 | Min | 3.2035 × 103 | 4.3757 × 103 | 3.2797 × 103 | 3.9060 × 103 | 3.1960 × 103 | 3.3824 × 103 | 3.3121 × 103 | 3.2117 × 103 | 3.2042 × 103 |
Max | 3.2000 × 103 | 6.4912 × 103 | 3.3598 × 103 | 5.1682 × 103 | 3.2650 × 103 | 4.4337 × 103 | 3.8718 × 103 | 3.3703 × 103 | 3.3554 × 103 | |
Mean | 3.2068 × 103 | 6.3300 × 102 | 3.3131 × 103 | 4.4317 × 103 | 3.2250 × 103 | 3.7969 × 103 | 3.4806 × 103 | 3.2394 × 103 | 3.2369 × 103 | |
Std | 4.7499 × 100 | 8.2200 × 101 | 2.3424 × 101 | 3.0325 × 102 | 1.7090 × 101 | 2.7048 × 102 | 1.3175 × 102 | 3.0071 × 101 | 2.8526 × 101 | |
Rank | 1 | 6 | 4 | 9 | 2 | 8 | 7 | 5 | 3 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.6897 × 10−11 | 3.0199 × 10−11 | 6.6273 × 10−1 | 3.0199 × 10−11 | 3.6897 × 10−11 | 3.0199 × 10−11 | - | |
F28 | Min | 3.1485 × 103 | 9.7515 × 103 | 3.2360 × 103 | 7.3217 × 103 | 3.2010 × 103 | 3.2096 × 103 | 3.4433 × 103 | 3.1774 × 103 | 3.1475 × 103 |
Max | 3.3000 × 103 | 1.7571 × 104 | 3.3029 × 103 | 1.2710 × 104 | 3.3490 × 103 | 3.2792 × 103 | 4.0095 × 103 | 3.2612 × 103 | 3.2628 × 103 | |
Mean | 3.2013 × 103 | 8.3300 × 102 | 3.2658 × 103 | 9.5271 × 103 | 3.2520 × 103 | 3.2426 × 103 | 3.6372 × 103 | 3.2101 × 103 | 3.2066 × 103 | |
Std | 1.0859 × 101 | 3.2200 × 103 | 1.9187 × 101 | 1.3320 × 103 | 3.5840 × 101 | 2.3085 × 101 | 1.2677 × 102 | 1.9640 × 101 | 2.2023 × 101 | |
Rank | 1 | 7 | 5 | 9 | 6 | 4 | 8 | 3 | 2 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 9.2603 × 10−9 | 3.0199 × 10−11 | 1.7479 × 10−5 | 7.1988 × 10−5 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F29 | Min | 4.4928 × 103 | 6.6630 × 103 | 4.1331 × 103 | 6.5491 × 103 | 3.5400 × 103 | 3.9504 × 103 | 4.4103 × 103 | 3.3856 × 103 | 3.5042 × 103 |
Max | 5.3740 × 103 | 1.2556 × 105 | 4.8043 × 103 | 2.5381 × 104 | 4.2920 × 103 | 5.2354 × 103 | 6.4875 × 103 | 4.1276 × 103 | 4.1586 × 103 | |
Mean | 4.9700 × 103 | 7.3300 × 103 | 4.4994 × 103 | 1.2062 × 104 | 3.9020 × 103 | 4.5567 × 103 | 5.3922 × 103 | 3.8356 × 103 | 3.8396 × 103 | |
Std | 2.4081 × 102 | 3.4400 × 102 | 1.6904 × 102 | 4.8332 × 103 | 1.7880 × 102 | 3.1462 × 102 | 5.5518 × 102 | 2.0514 × 102 | 1.7926 × 102 | |
Rank | 6 | 8 | 4 | 9 | 3 | 5 | 7 | 1 | 2 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 4.0772 × 10−11 | 3.0199 × 10−11 | 3.2651 × 10−2 | 2.8716 × 10−10 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F30 | Min | 1.2719 × 104 | 9.3579 × 108 | 3.5700 × 104 | 7.2064 × 108 | 8.8130 × 103 | 5.0064 × 105 | 2.9098 × 106 | 5.3023 × 103 | 5.6202 × 103 |
Max | 1.3080 × 106 | 6.4592 × 109 | 3.0691 × 105 | 5.4165 × 109 | 6.0320 × 104 | 1.0031 × 107 | 2.0458 × 108 | 1.9861 × 104 | 1.6952 × 104 | |
Mean | 2.1358 × 104 | 3.3295 × 109 | 1.0250 × 105 | 2.4729 × 109 | 2.4640 × 104 | 4.3834 × 106 | 5.3564 × 107 | 1.0142 × 104 | 9.4990 × 103 | |
Std | 5.9215 × 103 | 1.4214 × 109 | 6.2618 × 104 | 1.1582 × 109 | 1.0280 × 104 | 2.3051 × 106 | 5.4071 × 107 | 3.9579 × 103 | 3.0359 × 103 | |
Rank | 4 | 9 | 5 | 8 | 3 | 6 | 7 | 2 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.1589 × 10−10 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
+/=/− | 29/0/1 | 30/0/0 | 28/0/2 | 30/0/0 | 21/0/9 | 27/0/3 | 30/0/0 | 29/0/1 | - |
Function | ABC [43] | ACO | DE | GA | SMA [50] | PSO [50] | WOA | MRFO [50] | AMRFOCS | |
---|---|---|---|---|---|---|---|---|---|---|
F1 | Min | 2.1737 × 1010 | 2.2302 × 1011 | 3.7780 × 108 | 1.7644 × 1011 | 2.8025 × 106 | 4.4042 × 107 | 1.2604 × 1010 | 7.2939 × 104 | 3.6432 × 104 |
Max | 5.3757 × 1010 | 3.1622 × 1011 | 2.2735 × 109 | 2.5294 × 1011 | 1.2339 × 107 | 2.1058 × 109 | 2.8191 × 1010 | 7.0300 × 106 | 3.1240 × 106 | |
Mean | 3.6270 × 1010 | 2.6670 × 1011 | 8.8973 × 108 | 2.1598 × 1011 | 6.2106 × 106 | 5.6369 × 108 | 2.1789 × 1010 | 4.8755 × 105 | 3.9104 × 105 | |
Std | 8.0415 × 109 | 2.0681 × 1010 | 5.0840 × 108 | 2.4075 × 1010 | 2.2142 × 106 | 6.5264 × 108 | 4.5794 × 109 | 1.2467 × 106 | 6.9240 × 105 | |
Rank | 7 | 9 | 5 | 8 | 3 | 4 | 6 | 2 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.6897 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F2 | Min | 1.5809 × 1075 | 8.2101 × 1082 | 4.0980 × 1043 | 1.1236 × 1080 | 1.5879 × 1025 | 2.8225 × 1020 | 1.5711 × 1064 | 1.2697 × 1064 | 3.1012 × 1025 |
Max | 3.4176 × 1083 | 5.5082 × 1096 | 1.1547 × 1056 | 8.4006 × 1092 | 2.2968 × 1038 | 2.6945 × 1052 | 2.3354 × 1084 | 1.0921 × 1083 | 4.2615 × 1040 | |
Mean | 2.5029 × 1082 | 1.8541 × 1095 | 4.7927 × 1054 | 5.3503 × 1091 | 8.8177 × 1036 | 8.9816 × 1050 | 7.7881 × 1082 | 3.6479 × 1081 | 1.4390 × 1039 | |
Std | 7.2547 × 1082 | 1.0053 × 1096 | 2.1507 × 1055 | 2.0042 × 1092 | 4.2031 × 1037 | 4.9194 × 1051 | 4.2638 × 1083 | 1.9937 × 1082 | 7.7774 × 1039 | |
Rank | 7 | 9 | 4 | 8 | 1 | 3 | 6 | 5 | 2 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 4.0772 × 10−11 | 3.0199 × 10−11 | 8.1875 × 10−1 | 8.3520 × 10−8 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F3 | Min | 1.8730 × 105 | 5.1261 × 105 | 1.7665 × 105 | 3.0514 × 105 | 7.7718 × 104 | 9.2693 × 104 | 1.9486 × 105 | 1.0899 × 105 | 9.0521 × 104 |
Max | 1.8842 × 106 | 3.9258 × 1012 | 3.2630 × 105 | 7.5046 × 108 | 3.5256 × 105 | 2.2562 × 105 | 5.7027 × 105 | 2.6159 × 105 | 2.2619 × 105 | |
Mean | 2.2788 × 105 | 3.6318 × 1011 | 2.6879 × 105 | 3.4493 × 107 | 3.0052 × 102 | 1.1823 × 104 | 3.3277 × 105 | 3.0061 × 102 | 1.6057 × 105 | |
Std | 1.8593 × 104 | 9.4573 × 1011 | 3.8977 × 104 | 1.3871 × 108 | 3.3306 × 10−1 | 3.6550 × 103 | 1.0007 × 105 | 1.4242 × 100 | 3.1640 × 104 | |
Rank | 6 | 9 | 5 | 8 | 1 | 2 | 7 | 3 | 4 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.6897 × 10−11 | 3.0199 × 10−11 | 3.0317 × 10−2 | 8.0727 × 10−1 | 8.1527 × 10−11 | 2.8314 × 10−8 | - | |
F4 | Min | 4.2924 × 102 | 6.7079 × 104 | 6.7833 × 102 | 5.4906 × 104 | 5.2565 × 102 | 4.8158 × 102 | 2.8058 × 103 | 4.4762 × 102 | 4.3289 × 102 |
Max | 3.1194 × 104 | 1.4920 × 105 | 9.2950 × 102 | 1.1222 × 105 | 7.5166 × 102 | 7.4709 × 102 | 7.8817 × 103 | 8.1191 × 102 | 7.2753 × 102 | |
Mean | 4.5806 × 102 | 1.1460 × 105 | 7.8814 × 102 | 8.2777 × 104 | 5.4940 × 102 | 6.9121 × 102 | 4.8658 × 103 | 4.6152 × 102 | 5.7350 × 102 | |
Std | 1.5587 × 101 | 2.1693 × 104 | 6.4800 × 101 | 1.8160 × 104 | 5.3517 × 101 | 7.7460 × 101 | 1.2178 × 103 | 4.5205 × 101 | 5.3578 × 101 | |
Rank | 1 | 9 | 6 | 8 | 4 | 5 | 7 | 2 | 3 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.6897 × 10−11 | 3.0199 × 10−11 | 4.2067 × 10−02 | 2.8913 × 10−03 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F5 | Min | 6.7622 × 102 | 1.4434 × 103 | 9.1209 × 102 | 1.3227 × 103 | 6.6596 × 102 | 7.8626 × 102 | 1.0008 × 103 | 7.1991 × 102 | 7.4477 × 102 |
Max | 1.2094 × 103 | 1.8792 × 103 | 1.0089 × 103 | 1.7771 × 103 | 8.8866 × 102 | 9.5048 × 102 | 1.3249 × 103 | 9.3479 × 102 | 9.1489 × 102 | |
Mean | 7.1659 × 102 | 1.6872 × 103 | 9.4975 × 102 | 1.5792 × 103 | 7.0992 × 102 | 6.3764 × 102 | 1.1352 × 103 | 8.2425 × 102 | 8.3384 × 102 | |
Std | 3.0539 × 101 | 1.1129 × 102 | 2.4416 × 101 | 1.0960 × 102 | 4.3070 × 101 | 2.9924 × 101 | 8.3373 × 101 | 3.9911 × 101 | 3.6296 × 101 | |
Rank | 3 | 9 | 6 | 8 | 1 | 2 | 7 | 4 | 5 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.3384 × 10−11 | 3.0199 × 10−11 | 8.3146 × 10−3 | 4.1191 × 10−1 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F6 | Min | 6.0000 × 102 | 7.3948 × 102 | 6.0963 × 102 | 7.1424 × 102 | 6.1911 × 102 | 6.5547 × 102 | 6.8136 × 102 | 6.2359 × 102 | 6.2709 × 102 |
Max | 7.0165 × 102 | 7.7541 × 102 | 6.2515 × 102 | 7.6016 × 102 | 6.6413 × 102 | 6.8208 × 102 | 7.3238 × 102 | 6.7067 × 102 | 6.6725 × 102 | |
Mean | 6.0000 × 102 | 7.5660 × 102 | 6.1498 × 102 | 7.4094 × 102 | 6.0575 × 102 | 6.4765 × 102 | 7.0095 × 102 | 6.0121 × 102 | 6.4814 × 102 | |
Std | 3.8755 ×10−13 | 8.8646 × 100 | 3.8880 × 100 | 1.0274 × 101 | 2.2689 × 100 | 1.1227 × 101 | 1.2176 × 101 | 7.6182 ×10−1 | 1.0358 × 101 | |
Rank | 1 | 9 | 2 | 7 | 3 | 6 | 8 | 4 | 5 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 5.1060 × 10−01 | 9.9186 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F7 | Min | 9.2657 × 102 | 4.3362 × 103 | 1.1683 × 103 | 4.7100 × 103 | 1.0340 × 103 | 1.6035 × 103 | 1.7225 × 103 | 1.2525 × 103 | 1.1067 × 103 |
Max | 2.0399 × 103 | 7.0315 × 103 | 1.2890 × 103 | 5.9726 × 103 | 1.3204 × 103 | 1.9375 × 103 | 2.0341 × 103 | 1.8252 × 103 | 1.7588 × 103 | |
Mean | 9.3679 × 102 | 6.0513 × 103 | 1.2322 × 103 | 5.4172 × 103 | 9.8578 × 102 | 9.4995 × 102 | 1.8734 × 103 | 1.4977 × 103 | 1.4712 × 103 | |
Std | 1.3669 × 101 | 5.0609 × 102 | 3.0198 × 101 | 3.6143 × 102 | 4.6819 × 101 | 4.9071 × 101 | 7.8377 × 101 | 1.3581 × 102 | 1.5023 × 102 | |
Rank | 1 | 9 | 3 | 8 | 2 | 4 | 7 | 6 | 5 | |
p-value | 1.8731 × 10−7 | 3.0199 × 10−11 | 1.3111 × 10−8 | 3.0199 × 10−11 | 5.5727 × 10−10 | 1.6351 × 10−5 | 4.6159 × 10−10 | 5.4941 × 10−11 | - | |
F8 | Min | 9.5307 × 102 | 1.8134 × 103 | 1.1621 × 103 | 1.7187 × 103 | 1.0106 × 103 | 1.1057 × 103 | 1.2746 × 103 | 1.0109 × 103 | 1.0667 × 103 |
Max | 1.5179 × 103 | 2.1794 × 103 | 1.2895 × 103 | 2.0365 × 103 | 1.2399 × 103 | 1.2817 × 103 | 1.6484 × 103 | 1.2428 × 103 | 1.2248 × 103 | |
Mean | 1.0207 × 103 | 2.0123 × 103 | 1.2439 × 103 | 1.8588 × 103 | 9.8827 × 102 | 9.4820 × 102 | 1.3998 × 103 | 1.1382 × 103 | 1.1408 × 103 | |
Std | 2.2909 × 101 | 8.7077 × 101 | 2.5499 × 101 | 8.7226 × 101 | 4.5826 × 101 | 2.3206 × 101 | 7.1058 × 101 | 4.4933 × 101 | 4.0742 × 101 | |
Rank | 1 | 9 | 6 | 8 | 2 | 3 | 7 | 5 | 4 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 1.7769 × 10−10 | 3.0199 × 10−11 | 7.6171 × 10−3 | 3.6439 × 10−2 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F9 | Min | 4.8233 × 104 | 7.2918 × 104 | 5.8535 × 103 | 5.7641 × 104 | 9.4579 × 103 | 2.4979 × 104 | 2.6835 × 104 | 2.9374 × 104 | 1.2546 × 104 |
Max | 9.0949 × 104 | 1.2119 × 105 | 2.1322 × 104 | 1.0598 × 105 | 2.9632 × 104 | 4.2548 × 104 | 7.4146 × 104 | 4.5420 × 104 | 3.5896 × 104 | |
Mean | 7.3802 × 104 | 9.9799 × 104 | 1.3925 × 104 | 8.2871 × 104 | 1.8497 × 104 | 3.4493 × 104 | 3.9735 × 104 | 3.6275 × 104 | 2.3481 × 104 | |
Std | 9.4844 × 103 | 1.2560 × 104 | 3.8673 × 103 | 1.0137 × 104 | 4.4405 × 103 | 4.1921 × 103 | 9.8762 × 103 | 3.9604 × 103 | 5.8765 × 103 | |
Rank | 7 | 9 | 1 | 8 | 2 | 4 | 6 | 5 | 3 | |
p-value | 3.6897 × 10−11 | 3.0199 × 10−11 | 4.1178 × 10−6 | 3.0199 × 10−11 | 6.5204 × 10−6 | 6.0459 × 10−7 | 4.1997 × 10−10 | 1.4643 × 10−10 | - | |
F10 | Min | 1.4934 × 104 | 1.7224 × 104 | 1.4494 × 104 | 1.5148 × 104 | 6.2925 × 103 | 7.0489 × 103 | 1.1265 × 104 | 6.1837 × 103 | 5.5321 × 103 |
Max | 1.6715 × 104 | 1.9414 × 104 | 1.6160 × 104 | 1.8002 × 104 | 9.8385 × 103 | 1.0939 × 104 | 1.5006 × 104 | 9.6680 × 103 | 1.1909 × 104 | |
Mean | 1.6150 × 104 | 1.8362 × 104 | 1.5510 × 104 | 1.6538 × 104 | 7.3335 × 103 | 6.9984 × 103 | 1.3376 × 104 | 7.4781 × 103 | 7.9009 × 103 | |
Std | 5.6697 × 102 | 5.1518 × 102 | 4.2387 × 102 | 5.5881 × 102 | 8.1754 × 102 | 1.3399 × 103 | 9.6279 × 102 | 8.6425 × 102 | 1.2515 × 103 | |
Rank | 7 | 9 | 4 | 8 | 5 | 3 | 6 | 2 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.1830 × 10−1 | 7.2208 × 10−6 | 1.9568 × 10−10 | 8.9934 × 10−11 | - | |
F11 | Min | 2.0214 × 103 | 6.3864 × 104 | 1.4631 × 103 | 4.1450 × 104 | 1.2675 × 103 | 1.3884 × 103 | 4.7453 × 103 | 1.2529 × 103 | 1.2173 × 103 |
Max | 1.1219 × 105 | 1.2177 × 108 | 2.1360 × 103 | 3.4811 × 105 | 1.6147 × 103 | 1.6474 × 103 | 1.2710 × 104 | 1.4930 × 103 | 1.5044 × 103 | |
Mean | 4.5105 × 103 | 7.8482 × 106 | 1.6211 × 103 | 1.1678 × 105 | 1.3906 × 103 | 1.3255 × 103 | 8.4656 × 103 | 1.3531 × 103 | 1.3283 × 103 | |
Std | 1.4754 × 103 | 2.4554 × 107 | 1.6887 × 102 | 7.3811 × 104 | 7.2417 × 101 | 6.8586 × 101 | 2.0427 × 103 | 6.0964 × 101 | 7.0062 × 101 | |
Rank | 6 | 9 | 5 | 8 | 4 | 3 | 7 | 2 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 1.0105 × 10−8 | 3.0199 × 10−11 | 1.6351 × 10−5 | 2.3897 × 10−8 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F12 | Min | 3.5279 × 106 | 8.7017 × 1010 | 7.2668 × 106 | 6.2728 × 1010 | 1.1258 × 107 | 4.5434 × 107 | 1.5888 × 109 | 2.4553 × 1010 | 6.5751 × 105 |
Max | 2.2512 × 1010 | 2.0672 × 1011 | 6.4227 × 107 | 1.4081 × 1011 | 1.1308 × 108 | 1.0011 × 109 | 1.4224 × 1010 | 9.2162 × 1010 | 8.1294 × 106 | |
Mean | 6.7942 × 106 | 1.5357 × 1011 | 2.7073 × 107 | 1.0607 × 1011 | 5.6105 × 106 | 2.7271 × 106 | 5.1376 × 109 | 5.3826 × 1010 | 4.2792 × 106 | |
Std | 1.4874 × 106 | 2.9783 × 1010 | 1.3604 × 107 | 2.1816 × 1010 | 3.3639 × 106 | 2.5234 × 106 | 2.6765 × 109 | 1.5493 × 1010 | 1.7662 × 106 | |
Rank | 2 | 9 | 5 | 8 | 4 | 3 | 6 | 7 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 4.0772 × 10−11 | 3.0199 × 10−11 | 2.1544 × 10−10 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F13 | Min | 7.2149 × 103 | 4.9894 × 1010 | 5.9113 × 103 | 2.5897 × 1010 | 4.6446 × 104 | 2.7099 × 106 | 1.1170 × 108 | 2.0782 × 103 | 2.1310 × 103 |
Max | 6.0868 × 108 | 1.4655 × 1011 | 3.8426 × 105 | 1.0462 × 1011 | 4.0505 × 105 | 1.4181 × 107 | 1.1703 × 109 | 3.8934 × 104 | 3.0815 × 104 | |
Mean | 2.4268 × 104 | 9.4367 × 1010 | 6.9790 × 104 | 5.6101 × 1010 | 3.5581 × 104 | 6.7661 × 106 | 5.0369 × 108 | 1.2327 × 104 | 1.0811 × 104 | |
Std | 1.3717 × 104 | 2.3674 × 1010 | 8.6118 × 104 | 2.3213 × 1010 | 9.0619 × 103 | 2.4739 × 106 | 2.6966 × 108 | 1.0564 × 104 | 8.2004 × 103 | |
Rank | 5 | 9 | 4 | 8 | 3 | 6 | 7 | 2 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.8202 × 10−10 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F14 | Min | 4.1906 × 105 | 9.5570 × 107 | 2.0714 × 103 | 3.3316 × 107 | 1.3498 × 105 | 1.7340 × 104 | 8.9321 × 105 | 1.4359 × 104 | 1.4389 × 104 |
Max | 1.7106 × 107 | 1.4629 × 109 | 7.7314 × 104 | 4.1784 × 108 | 3.1740 × 106 | 1.9287 × 106 | 2.5760 × 107 | 5.2479 × 105 | 3.2952 × 105 | |
Mean | 1.0222 × 106 | 4.6257 × 108 | 1.7420 × 104 | 1.9959 × 108 | 1.2329 × 105 | 8.7627 × 104 | 7.0398 × 106 | 6.2703 × 103 | 1.2819 × 105 | |
Std | 2.9243 × 105 | 3.3366 × 108 | 1.7944 × 104 | 1.1014 × 108 | 8.1386 × 104 | 8.2944 × 104 | 5.3175 × 106 | 5.0191 × 103 | 8.5647 × 104 | |
Rank | 6 | 9 | 1 | 8 | 5 | 3 | 7 | 2 | 4 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 2.8716 × 10−10 | 3.0199 × 10−11 | 1.5581 × 10−8 | 1.0035 × 10−3 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F15 | Min | 1.3091 × 104 | 1.0950 × 1010 | 3.1864 × 103 | 7.8860 × 109 | 9.5371 × 103 | 1.0031 × 106 | 2.2147 × 106 | 2.1377 × 103 | 1.7094 × 103 |
Max | 6.7823 × 107 | 6.4681 × 1010 | 1.8522 × 104 | 3.5336 × 1010 | 1.0513 × 105 | 2.6072 × 106 | 7.3772 × 108 | 2.0301 × 104 | 2.0306 × 104 | |
Mean | 2.0082 × 104 | 3.7251 × 1010 | 8.8352 × 103 | 2.0862 × 1010 | 2.6560 × 104 | 8.1477 × 103 | 1.2709 × 108 | 1.0394 × 104 | 1.0118 × 104 | |
Std | 1.3254 × 107 | 1.0897 × 1010 | 3.9229 × 103 | 7.2317 × 109 | 7.0281 × 103 | 7.2640 × 103 | 1.5770 × 108 | 6.3665 × 103 | 6.3766 × 103 | |
Rank | 6 | 9 | 1 | 8 | 5 | 4 | 7 | 3 | 2 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.4783 × 10−01 | 3.0199 × 10−11 | 1.0937 × 10−10 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F16 | Min | 2.6894 × 103 | 1.0329 × 104 | 4.7435 × 103 | 6.9585 × 103 | 2.9053 × 103 | 3.1301 × 103 | 4.9183 × 103 | 2.6587 × 103 | 2.6772 × 103 |
Max | 7.6050 × 103 | 2.9300 × 104 | 6.0319 × 103 | 1.8262 × 104 | 4.9114 × 103 | 5.0726 × 103 | 8.1525 × 103 | 4.2215 × 103 | 4.3269 × 103 | |
Mean | 7.0721 × 103 | 1.6145 × 104 | 5.4797 × 103 | 1.2009 × 104 | 3.6782 × 103 | 4.1060 × 103 | 6.3953 × 103 | 3.5095 × 103 | 3.3572 × 103 | |
Std | 1.8079 × 102 | 4.0451 × 103 | 3.2502 × 102 | 2.8612 × 103 | 3.0762 × 102 | 3.5018 × 102 | 8.3211 × 102 | 4.3163 × 102 | 4.5277 × 102 | |
Rank | 4 | 9 | 6 | 8 | 3 | 5 | 7 | 1 | 2 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 9.5207 × 10−4 | 2.6015 × 10−8 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F17 | Min | 2.4423 × 103 | 9.8528 × 104 | 3.6865 × 103 | 3.3592 × 104 | 2.6928 × 103 | 2.9257 × 103 | 3.3481 × 103 | 2.4857 × 103 | 2.2453 × 103 |
Max | 6.2546 × 103 | 9.5595 × 106 | 4.4438 × 103 | 2.9279 × 106 | 4.2062 × 103 | 4.1047 × 103 | 6.2500 × 103 | 4.1235 × 103 | 3.6754 × 103 | |
Mean | 2.7730 × 103 | 1.9614 × 106 | 4.1175 × 103 | 8.1293 × 105 | 3.1007 × 103 | 2.7561 × 103 | 4.5374 × 103 | 3.2171 × 103 | 3.1866 × 103 | |
Std | 1.1315 × 102 | 2.1509 × 106 | 2.1428 × 102 | 8.0943 × 105 | 3.8834 × 102 | 3.4257 × 102 | 6.6839 × 102 | 3.5632 × 102 | 2.9674 × 102 | |
Rank | 2 | 9 | 6 | 8 | 5 | 3 | 7 | 4 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 1.3289 × 10−10 | 3.0199 × 10−11 | 3.1830 × 10−3 | 7.6588 × 10−5 | 9.9186 × 10−11 | 3.0199 × 10−11 | - | |
F18 | Min | 1.1442 × 106 | 2.6311 × 108 | 1.4109 × 105 | 1.3777 × 108 | 9.0091 × 105 | 1.9368 × 105 | 5.6824 × 106 | 3.1599 × 105 | 1.4013 × 105 |
Max | 1.9841 × 108 | 4.2097 × 109 | 6.9597 × 106 | 1.8157 × 109 | 1.6783 × 107 | 6.1907 × 106 | 1.9516 × 108 | 3.0602 × 106 | 3.6657 × 106 | |
Mean | 2.2748 × 106 | 1.6174 × 109 | 1.0200 × 106 | 5.1869 × 108 | 6.5200 × 105 | 1.4151 × 106 | 7.8002 × 107 | 6.2117 × 104 | 1.2824 × 106 | |
Std | 9.3414 × 105 | 9.0538 × 108 | 1.2802 × 106 | 3.8238 × 108 | 3.7436 × 105 | 1.5271 × 106 | 5.7298 × 107 | 3.1235 × 104 | 9.1925 × 105 | |
Rank | 6 | 9 | 3 | 8 | 4 | 5 | 7 | 1 | 2 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 7.2446 × 10−2 | 3.0199 × 10−11 | 4.4440 × 10−7 | 6.5671 × 10−2 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F19 | Min | 2.2536 × 104 | 7.2629 × 109 | 2.7325 × 103 | 1.7391 × 109 | 4.9036 × 103 | 4.3727 × 105 | 1.5371 × 106 | 2.7933 × 103 | 2.2570 × 103 |
Max | 1.0624 × 107 | 2.5147 × 1010 | 3.3273 × 104 | 1.3703 × 1010 | 5.3008 × 104 | 8.5652 × 106 | 2.0519 × 108 | 4.3588 × 104 | 4.3440 × 104 | |
Mean | 3.5934 × 104 | 1.5889 × 1010 | 1.2450 × 104 | 8.2284 × 109 | 1.1180 × 104 | 1.1636 × 104 | 2.2289 × 107 | 1.6594 × 104 | 1.9110 × 104 | |
Std | 5.8193 × 103 | 4.4925 × 109 | 8.1019 × 103 | 2.6890 × 109 | 1.4291 × 104 | 1.3499 × 104 | 3.8275 × 107 | 8.6516 × 103 | 1.1465 × 104 | |
Rank | 5 | 9 | 1 | 8 | 4 | 6 | 7 | 3 | 2 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 6.9724 × 10−03 | 3.0199 × 10−11 | 6.5671 × 10−2 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F20 | Min | 2.6998 × 103 | 4.3422 × 103 | 3.6976 × 103 | 4.2261 × 103 | 2.5538 × 103 | 2.9170 × 103 | 2.9470 × 103 | 2.7100 × 103 | 2.5200 × 103 |
Max | 5.1469 × 100 | 6.3104 × 103 | 4.5766 × 103 | 5.5410 × 103 | 3.9869 × 103 | 4.2865 × 103 | 4.8530 × 103 | 4.0657 × 103 | 3.7274 × 103 | |
Mean | 2.8057 × 103 | 5.5757 × 103 | 4.2660 × 103 | 5.0164 × 103 | 2.9847 × 103 | 2.7640 × 103 | 3.9645 × 103 | 3.2555 × 103 | 3.1375 × 103 | |
Std | 1.1503 × 102 | 3.9107 × 102 | 1.8976 × 102 | 2.8959 × 102 | 2.6650 × 102 | 3.5288 × 102 | 4.5085 × 102 | 2.8232 × 102 | 2.8467 × 102 | |
Rank | 3 | 9 | 6 | 8 | 5 | 2 | 7 | 4 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.3384 × 10−11 | 3.0199 × 10−11 | 1.2235 ×10−1 | 2.4327 × 10−5 | 4.1997 × 10−10 | 1.6132 × 10−10 | - | |
F21 | Min | 2.3136 × 103 | 3.4265 × 103 | 2.7012 × 103 | 3.1961 × 103 | 2.4949 × 103 | 2.6926 × 103 | 2.8774 × 103 | 2.4874 × 103 | 2.4818 × 103 |
Max | 3.0055 × 103 | 3.8239 × 103 | 2.7877 × 103 | 3.7133 × 103 | 2.7156 × 103 | 2.9352 × 103 | 3.3561 × 103 | 2.7711 × 103 | 2.6774 × 103 | |
Mean | 2.5208 × 103 | 3.5781 × 103 | 2.7456 × 103 | 3.4235 × 103 | 2.5004 × 103 | 2.4284 × 103 | 3.0989 × 103 | 2.5924 × 103 | 2.5879 × 103 | |
Std | 4.1582 × 101 | 1.0084 × 102 | 2.2641 × 101 | 1.1081 × 102 | 4.8130 × 101 | 2.6054 × 101 | 1.0630 × 102 | 5.9981 × 101 | 4.5289 × 101 | |
Rank | 2 | 9 | 5 | 8 | 3 | 4 | 7 | 6 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 2.6099 × 10−10 | 3.0199 × 10−11 | 5.1060 × 10−1 | 6.0658 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F22 | Min | 2.3290 × 103 | 1.7731 × 104 | 1.5921 × 104 | 1.6734 × 104 | 7.9563 × 103 | 8.7394 × 103 | 1.3148 × 104 | 2.3027 × 103 | 2.3083 × 103 |
Max | 1.8295 × 104 | 2.1117 × 104 | 1.7677 × 104 | 1.9531 × 104 | 1.1998 × 104 | 1.3645 × 104 | 1.6183 × 104 | 1.6584 × 104 | 1.4202 × 104 | |
Mean | 7.2668 × 103 | 1.9976 × 104 | 1.6949 × 104 | 1.8199 × 104 | 8.5906 × 103 | 8.6909 × 103 | 1.5011 × 104 | 9.7202 × 103 | 1.0244 × 104 | |
Std | 1.7029 × 103 | 7.5148 × 102 | 4.1891 × 102 | 6.5818 × 102 | 8.8234 × 102 | 1.5935 × 103 | 7.7079 × 102 | 1.6942 × 103 | 1.4818 × 103 | |
Rank | 5 | 9 | 7 | 8 | 1 | 3 | 6 | 4 | 2 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.3384 × 10−11 | 3.0199 × 10−11 | 8.7663 × 10−1 | 2.6806 × 10−4 | 1.6947 × 10−9 | 1.3289 × 10−10 | - | |
F23 | Min | 2.9430 × 103 | 4.3426 × 103 | 3.1540 × 103 | 4.3702 × 103 | 2.9032 × 103 | 3.7582 × 103 | 3.2908 × 103 | 2.8899 × 103 | 2.8969 × 103 |
Max | 3.5530 × 103 | 6.1944 × 103 | 3.2442 × 103 | 5.3720 × 103 | 3.1720 × 103 | 5.1547 × 103 | 4.3469 × 103 | 3.2646 × 103 | 3.2729 × 103 | |
Mean | 2.9640 × 103 | 5.4133 × 103 | 3.2063 × 103 | 4.7249 × 103 | 2.9374 × 103 | 2.8589 × 103 | 3.8112 × 103 | 3.1530 × 103 | 3.0477 × 103 | |
Std | 1.6073 × 101 | 4.4709 × 102 | 2.3231 × 101 | 2.6141 × 102 | 3.7229 × 101 | 2.3081 × 101 | 1.9865 × 102 | 1.2025 × 102 | 8.2490 × 101 | |
Rank | 2 | 9 | 5 | 8 | 1 | 6 | 7 | 3 | 4 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 4.6159 × 10−10 | 3.0199 × 10−11 | 1.9073 × 10−01 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F24 | Min | 3.3535 × 103 | 5.2235 × 103 | 3.3085 × 103 | 4.6051 × 103 | 3.0156 × 103 | 3.4696 × 103 | 3.6496 × 103 | 3.0843 × 103 | 3.0889 × 103 |
Max | 3.8130 × 103 | 6.6783 × 103 | 3.4137 × 103 | 6.1114 × 103 | 3.3977 × 103 | 4.3417 × 103 | 4.5317 × 103 | 3.4981 × 103 | 3.4223 × 103 | |
Mean | 3.3993 × 103 | 6.0244 × 103 | 3.3676 × 103 | 5.1850 × 103 | 3.0837 × 103 | 3.1199 × 103 | 3.9231 × 103 | 3.3588 × 103 | 3.2258 × 103 | |
Std | 4.3891 × 101 | 3.7345 × 102 | 3.3211 × 101 | 3.7552 × 102 | 3.3313 × 101 | 1.2851 × 102 | 1.8043 × 102 | 1.2714 × 102 | 8.7882 × 101 | |
Rank | 5 | 9 | 2 | 8 | 1 | 6 | 7 | 4 | 3 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 5.9673 × 10−9 | 3.0199 × 10−11 | 4.3764 × 10−1 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F25 | Min | 2.9755 × 103 | 4.7272 × 104 | 3.1495 × 103 | 2.8090 × 104 | 3.0408 × 103 | 2.9953 × 103 | 4.0182 × 103 | 3.0579 × 103 | 3.0554 × 103 |
Max | 1.4647 × 104 | 9.0089 × 104 | 3.3198 × 103 | 6.2084 × 104 | 3.1692 × 103 | 3.1970 × 103 | 6.4537 × 103 | 3.1648 × 103 | 3.1685 × 103 | |
Mean | 3.0165 × 103 | 6.4324 × 104 | 3.2248 × 103 | 4.5618 × 104 | 3.0272 × 103 | 3.1182 × 103 | 5.0816 × 103 | 3.0624 × 103 | 3.1108 × 103 | |
Std | 1.3439 × 101 | 9.8094 × 103 | 4.8319 × 101 | 8.5251 × 103 | 3.9176 × 101 | 4.6437 × 101 | 6.1735 × 102 | 4.0919 × 101 | 2.3322 × 101 | |
Rank | 1 | 9 | 6 | 8 | 2 | 5 | 7 | 4 | 3 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 8.1527 × 10−11 | 3.0199 × 10−11 | 1.7613 × 10−1 | 1.3272 × 10−2 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F26 | Min | 2.9444 × 103 | 2.4665 × 104 | 7.8425 × 103 | 1.6339 × 104 | 2.9634 × 103 | 3.1709 × 103 | 1.1662 × 104 | 3.0121 × 103 | 2.9194 × 103 |
Max | 1.2607 × 104 | 4.0057 × 104 | 9.2694 × 103 | 3.1395 × 104 | 1.0315 × 104 | 1.3575 × 104 | 1.8656 × 104 | 1.1977 × 104 | 1.2784 × 104 | |
Mean | 4.7204 × 103 | 3.2947 × 104 | 8.4516 × 103 | 2.6237 × 104 | 5.6094 × 103 | 5.2261 × 103 | 1.4650 × 104 | 7.1147 × 103 | 8.8009 × 103 | |
Std | 1.5343 × 103 | 4.6618 × 103 | 3.2312 × 102 | 3.5910 × 103 | 8.4608 × 102 | 3.5855 × 102 | 1.5239 × 103 | 3.9328 × 103 | 3.0914 × 103 | |
Rank | 2 | 9 | 3 | 8 | 1 | 4 | 7 | 6 | 5 | |
p-value | 2.6243 × 10−3 | 3.0199 × 10−11 | 1.3345 × 10−1 | 3.0199 × 10−11 | 9.5207 × 10−4 | 7.2951 × 10−4 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F27 | Min | 3.3438 × 103 | 7.1551 × 103 | 3.6472 × 103 | 6.2376 × 103 | 3.3222 × 103 | 4.0781 × 103 | 4.0833 × 103 | 3.3419 × 103 | 3.3592 × 103 |
Max | 3.2000 × 103 | 1.1558 × 104 | 4.1135 × 103 | 9.2642 × 103 | 3.6406 × 103 | 6.8633 × 103 | 6.2070 × 103 | 3.9052 × 103 | 4.0475 × 103 | |
Mean | 3.3665 × 103 | 9.4605 × 103 | 3.8592 × 103 | 7.2641 × 103 | 3.3638 × 103 | 3.4086 × 103 | 4.9736 × 103 | 3.7284 × 103 | 3.5766 × 103 | |
Std | 1.1946 × 101 | 1.0557 × 103 | 1.5081 × 102 | 7.5261 × 102 | 6.6761 × 101 | 6.8591 × 101 | 5.7337 × 102 | 2.0288 × 102 | 1.6445 × 102 | |
Rank | 2 | 9 | 6 | 8 | 1 | 5 | 7 | 3 | 4 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 4.8011 × 10−7 | 3.0199 × 10−11 | 9.0000 × 10−1 | 4.0772 × 10−11 | 4.5043 × 10−11 | 3.0199 × 10−11 | - | |
F28 | Min | 3.2686 × 103 | 1.8715 × 104 | 3.4037 × 103 | 1.5041 × 104 | 3.3066 × 103 | 3.3134 × 103 | 5.1531 × 103 | 3.3186 × 103 | 3.2791 × 103 |
Max | 3.3000 × 103 | 3.9762 × 104 | 4.0746 × 103 | 2.6058 × 104 | 3.5665 × 103 | 4.6174 × 103 | 7.5274 × 103 | 3.4944 × 103 | 3.4946 × 103 | |
Mean | 3.2929 × 103 | 2.5912 × 104 | 3.6658 × 103 | 2.0357 × 104 | 3.3093 × 103 | 3.3430 × 103 | 5.9790 × 103 | 3.2984 × 103 | 3.3820 × 103 | |
Std | 1.2643 × 101 | 4.5988 × 103 | 1.3597 × 102 | 3.0568 × 103 | 2.2196 × 101 | 4.2886 × 101 | 5.3741 × 102 | 3.4640 × 101 | 4.3503 × 101 | |
Rank | 1 | 9 | 6 | 8 | 2 | 5 | 7 | 3 | 4 | |
p-value | 5.5727 × 10−10 | 3.0199 × 10−11 | 3.3384 × 10−11 | 3.0199 × 10−11 | 4.2896 × 10−1 | 6.9522 × 10−1 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F29 | Min | 3.8197 × 103 | 1.2914 × 105 | 5.1182 × 103 | 2.7327 × 104 | 4.4704 × 103 | 5.0757 × 103 | 6.9052 × 103 | 3.4215 × 103 | 3.6832 × 103 |
Max | 1.4178 × 104 | 9.3402 × 106 | 6.3314 × 103 | 7.8777 × 106 | 5.9182 × 103 | 8.1004 × 103 | 1.4442 × 104 | 5.4800 × 103 | 5.3900 × 103 | |
Mean | 4.0094 × 103 | 2.5219 × 106 | 5.7297 × 103 | 1.3381 × 106 | 4.3452 × 103 | 3.8221 × 103 | 9.3579 × 103 | 4.6241 × 103 | 4.5194 × 103 | |
Std | 1.3811 × 102 | 2.3693 × 106 | 2.6551 × 102 | 1.8461 × 106 | 2.3220 × 102 | 2.4027 × 102 | 1.6141 × 103 | 3.1504 × 102 | 3.1315 × 102 | |
Rank | 4 | 9 | 6 | 8 | 5 | 3 | 7 | 2 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 5.0723 × 10−10 | 3.0199 × 10−11 | 9.6263 × 10−2 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F30 | Min | 7.4175 × 105 | 1.5664 × 1010 | 6.5073 × 106 | 5.7609 × 109 | 4.7658 × 106 | 5.8641 × 107 | 1.2543 × 108 | 9.0351 × 108 | 7.7096 × 105 |
Max | 8.3117 × 108 | 3.5848 × 1010 | 1.7274 × 107 | 2.6506 × 1010 | 2.2023 × 107 | 1.1202 × 108 | 7.8791 × 108 | 8.6897 × 109 | 2.4072 × 106 | |
Mean | 8.4809 × 105 | 2.3769 × 1010 | 1.1678 × 107 | 1.2540 × 1010 | 1.6586 × 106 | 2.4672 × 106 | 3.4948 × 108 | 3.5788 × 109 | 1.2371 × 106 | |
Std | 5.8574 × 104 | 5.7961 × 109 | 2.6507 × 106 | 5.2766 × 109 | 3.0622 × 105 | 6.2579 × 105 | 1.6293 × 108 | 1.8702 × 109 | 3.9959 × 105 | |
Rank | 1 | 9 | 4 | 8 | 3 | 5 | 6 | 7 | 2 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
+/=/− | 30/0/0 | 30/0/0 | 27/0/3 | 30/0/0 | 18/0/12 | 26/0/4 | 30/0/0 | 30/0/0 | - |
4.1.2. Convergence Behavior Analysis
4.2. Valuation AMRFOCS by Utilizing CEC2020 Benchmark Functions
4.2.1. Statistical Results Analysis
Function | ABC | ACO | SMA | GA | PSO | WOA | MRFO | AMRFOCS | |
---|---|---|---|---|---|---|---|---|---|
F1 | Min | 1.1392 × 102 | 1.2380 × 1010 | 4.1585 × 102 | 4.1787 × 109 | 1.0248 × 102 | 5.2553 × 104 | 1.0102 × 102 | 1.0001 × 102 |
Max | 3.7030 × 103 | 4.0313 × 1010 | 1.2741 × 104 | 2.7128 × 1010 | 5.5466 × 103 | 2.2853 × 106 | 6.8346 × 103 | 8.8983 × 103 | |
Mean | 8.2827 × 102 | 2.2807 × 1010 | 7.1025 × 103 | 1.3071 × 1010 | 1.6719 × 103 | 2.8538 × 105 | 1.8831 × 103 | 2.0195 × 103 | |
Std | 8.9945 × 102 | 6.7663 × 109 | 4.5802 × 103 | 5.7495 × 109 | 2.0858 × 103 | 4.9750 × 105 | 1.8434 × 103 | 2.4139 × 103 | |
Rank | 1 | 8 | 5 | 7 | 2 | 6 | 3 | 4 | |
p-value | 7.6183 × 10−1 | 3.0199 × 10−11 | 1.5292 × 10−5 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F2 | Min | 2.1494 × 103 | 2.7892 × 103 | 1.2259 × 103 | 2.6188 × 103 | 1.2431 × 103 | 1.4208 × 103 | 1.2420 × 103 | 1.1069 × 103 |
Max | 2.7872 × 103 | 4.6651 × 103 | 2.0202 × 103 | 3.5672 × 103 | 2.3308 × 103 | 2.5457 × 103 | 2.5707 × 103 | 2.1619 × 103 | |
Mean | 2.5096 × 103 | 3.8503 × 103 | 1.5427 × 103 | 3.1849 × 103 | 1.8046 × 103 | 2.0166 × 103 | 1.7194 × 103 | 1.6420 × 103 | |
Std | 1.5423 × 102 | 3.6014 × 102 | 2.0360 × 102 | 2.8795 × 102 | 2.8154 × 102 | 3.1524 × 102 | 3.0358 × 102 | 2.7249 × 102 | |
Rank | 5 | 8 | 1 | 7 | 4 | 3 | 6 | 2 | |
p-value | 4.0772 × 10−11 | 3.0199 × 10−11 | 4.8413 × 10−2 | 3.0199 × 10−11 | 9.3341 × 10−2 | 5.1857 × 10−7 | 2.0283 × 10−7 | - | |
F3 | Min | 7.2727 × 102 | 1.0276 × 103 | 7.1436 × 102 | 8.9206 × 102 | 7.1620 × 102 | 7.4046 × 102 | 7.1873 × 102 | 7.1666 × 102 |
Max | 7.4843 × 102 | 1.4397 × 103 | 7.4611 × 102 | 1.1748 × 103 | 7.2973 × 102 | 8.1452 × 102 | 7.8961 × 102 | 7.7151 × 102 | |
Mean | 7.3954 × 102 | 1.2033 × 103 | 7.2509 × 102 | 1.0282 × 103 | 7.2131 × 102 | 7.7289 × 102 | 7.4756 × 102 | 7.4002 × 102 | |
Std | 4.8970 × 100 | 9.1232 × 101 | 5.9102 × 100 | 8.3489 × 101 | 4.2931 × 100 | 1.8023 × 101 | 1.7360 × 101 | 1.3309 × 101 | |
Rank | 3 | 8 | 2 | 7 | 1 | 5 | 6 | 4 | |
p-value | 4.9178 × 10−1 | 3.0199 × 10−11 | 1.7479 × 10−5 | 3.0199 × 10−11 | 1.1536 × 10−1 | 4.1825 × 10−9 | 1.1023 × 10−8 | - | |
F4 | Min | 1.9009 × 103 | 3.9594 × 105 | 1.9006 × 103 | 1.4313 × 104 | 1.9005 × 100 | 1.9015 × 103 | 1.9005 × 103 | 1.9001 × 103 |
Max | 1.9024 × 103 | 2.1254 × 107 | 1.9020 × 103 | 3.9910 × 106 | 1.9017 × 103 | 1.9133 × 103 | 1.9021 × 103 | 1.9017 × 103 | |
Mean | 1.9018 × 103 | 5.8465 × 106 | 1.9010 × 103 | 1.1194 × 106 | 1.9010 × 103 | 1.9052 × 103 | 1.9011 × 103 | 1.9010 × 103 | |
Std | 3.8056 × 10−1 | 5.3127 × 106 | 3.6866 × 10−1 | 1.1438 × 106 | 3.8581 × 10−1 | 3.0433 × 100 | 4.0247 × 10−1 | 3.4371 × 10 -1 | |
Rank | 4 | 8 | 2 | 7 | 3 | 5 | 6 | 1 | |
p-value | 2.6099 × 10−10 | 3.0199 × 10−11 | 2.6433 × 10−1 | 3.0199 × 10−11 | 2.0283 × 10−7 | 3.3384 × 10−11 | 3.0199 × 10−11 | - | |
F5 | Min | 3.0234 × 104 | 7.8639 × 105 | 1.7319 × 103 | 1.2076 × 105 | 2.1097 × 103 | 4.0071 × 103 | 1.7394 × 103 | 1.7216 × 103 |
Max | 3.0470 × 105 | 2.0144 × 108 | 1.7902 × 104 | 7.0618 × 107 | 9.3423 × 103 | 2.2519 × 106 | 2.6867 × 103 | 2.3247 × 103 | |
Mean | 9.7741 × 104 | 3.5939 × 107 | 7.4005 × 103 | 1.0550 × 107 | 4.5410 × 103 | 3.2595 × 105 | 2.1621 × 103 | 2.0043 × 103 | |
Std | 7.7378 × 104 | 4.2267 × 107 | 5.9110 × 103 | 1.7068 × 107 | 2.6321 × 103 | 5.8379 × 105 | 2.6215 × 102 | 1.7213 × 102 | |
Rank | 5 | 8 | 3 | 7 | 2 | 6 | 4 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 2.7829 × 10−07 | 3.0199 × 10−11 | 6.5183 × 10−09 | 3.0199 × 10−11 | 1.0702 × 10−9 | - | |
F6 | Min | 1.6004 × 103 | 1.6107 × 103 | 1.6002 × 103 | 1.6035 × 103 | 1.6007 × 103 | 1.6126 × 103 | 1.6000 × 103 | 1.6000 × 103 |
Max | 1.6010 × 103 | 2.1694 × 103 | 1.6010 × 103 | 1.8803 × 103 | 1.9365 × 103 | 1.9815 × 103 | 1.6012 × 103 | 1.6006 × 103 | |
Mean | 1.6007 × 103 | 1.7757 × 103 | 1.6005 × 103 | 1.7042 × 103 | 1.7815 × 103 | 1.8004 × 103 | 1.6003 × 103 | 1.6002 × 103 | |
Std | 1.6805 × 10−1 | 1.3259 × 102 | 2.5080 × 10−1 | 7.1502 × 101 | 8.9709 × 101 | 1.0238 × 102 | 2.9741 × 10−1 | 1.6704 × 10 -1 | |
Rank | 3 | 8 | 2 | 7 | 4 | 5 | 6 | 1 | |
p-value | 1.5465 × 10−9 | 3.0199 × 10−11 | 8.5641 × 10−4 | 3.0199 × 10−11 | 8.1014 × 10−10 | 2.6015 × 10−8 | 2.1544 × 10−10 | - | |
F7 | Min | 7.2813 × 103 | 1.0613 × 104 | 2.1235 × 103 | 2.5605 × 104 | 2.1008 × 103 | 3.1679 × 103 | 2.1006 × 103 | 2.1001 × 103 |
Max | 4.8656 × 104 | 5.5590 × 107 | 1.3274 × 104 | 2.8168 × 107 | 2.7098 × 103 | 7.9900 × 104 | 2.5875 × 103 | 2.3049 × 103 | |
Mean | 2.1022 × 104 | 1.3985 × 107 | 4.2549 × 103 | 3.9699 × 106 | 2.3453 × 103 | 2.1814 × 104 | 2.2227 × 103 | 2.1724 × 103 | |
Std | 1.0771 × 104 | 1.4600 × 107 | 3.2623 × 103 | 6.1860 × 106 | 1.7779 × 102 | 1.8219 × 104 | 1.2202 × 102 | 6.8456 × 101 | |
Rank | 5 | 8 | 2 | 7 | 3 | 6 | 4 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 9.0632 × 10−8 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 4.9752 × 10−11 | - | |
F8 | Min | 2.3042 × 103 | 3.5079 × 103 | 2.2226 × 103 | 2.7068 × 103 | 2.3006 × 103 | 2.2835 × 103 | 2.3003 × 103 | 2.2181 × 103 |
Max | 2.3090 × 103 | 5.5522 × 103 | 3.2109 × 103 | 4.2787 × 103 | 2.3042 × 103 | 3.6330 × 103 | 2.3062 × 103 | 2.3032 × 103 | |
Mean | 2.3068 × 103 | 4.5947 × 103 | 2.4092 × 103 | 3.4760 × 103 | 2.3018 × 103 | 2.4247 × 103 | 2.3020 × 103 | 2.2970 × 103 | |
Std | 1.3501 × 100 | 5.6370 × 102 | 2.5965 × 102 | 4.6147 × 102 | 8.2941 × 10−1 | 3.4389 × 102 | 1.3591 × 100 | 7.6795 × 10 -1 | |
Rank | 2 | 8 | 3 | 7 | 5 | 6 | 4 | 1 | |
p-value | 3.0180 × 10−11 | 3.0180 × 10−11 | 2.9203 × 10−2 | 3.0180 × 10−11 | 3.0180 × 10−11 | 5.0695 × 10−10 | 3.0180 × 10−11 | - | |
F9 | Min | 2.7173 × 103 | 2.8592 × 103 | 2.7433 × 103 | 2.7979 × 103 | 2.4000 × 103 | 2.7527 × 103 | 2.5000 × 103 | 2.4000 × 103 |
Max | 2.7698 × 103 | 3.3082 × 103 | 2.7753 × 103 | 3.1470 × 103 | 2.7677 × 103 | 2.8258 × 103 | 2.7668 × 103 | 2.7597 × 103 | |
Mean | 2.7557 × 103 | 3.0335 × 103 | 2.7571 × 103 | 2.9184 × 103 | 2.6812 × 103 | 2.7776 × 103 | 2.6820 × 103 | 2.6723 × 103 | |
Std | 1.2156 × 101 | 1.0545 × 102 | 9.2128 × 100 | 7.6362 × 101 | 1.2122 × 102 | 2.0095 × 101 | 1.1194 × 102 | 8.3901 × 101 | |
Rank | 3 | 8 | 2 | 6 | 7 | 4 | 5 | 1 | |
p-value | 1.2018 × 10−8 | 3.0180 × 10−11 | 6.7634 × 10−5 | 2.3701 × 10−10 | 2.1322 × 10−5 | 2.9201 × 10−9 | 6.9113 × 10−4 | - | |
F10 | Min | 2.8979 × 103 | 3.1575 × 103 | 2.8982 × 103 | 3.0391 × 103 | 2.8979 × 103 | 2.6443 × 103 | 2.8979 × 103 | 2.6000 × 103 |
Max | 2.9460 × 103 | 7.1006 × 103 | 3.0242 × 103 | 5.1923 × 103 | 2.9500 × 103 | 2.9723 × 103 | 2.9489 × 103 | 2.9495 × 103 | |
Mean | 2.9392 × 103 | 4.8641 × 103 | 2.9384 × 103 | 3.8670 × 103 | 2.9220 × 103 | 2.9354 × 103 | 2.9349 × 103 | 2.9015 × 103 | |
Std | 9.7289 × 100 | 8.7925 × 102 | 2.8954 × 101 | 5.8024 × 102 | 2.3653 × 101 | 7.1523 × 101 | 1.9938 × 101 | 2.2267 × 101 | |
Rank | 2 | 8 | 4 | 7 | 3 | 5 | 6 | 1 | |
p-value | 5.7929 × 10−1 | 3.0199 × 10−11 | 1.3272 × 10−2 | 3.0199 × 10−11 | 9.3519 × 10−1 | 2.0152 × 10−8 | 4.5726 × 10−9 | - | |
+/=/− | 7/0/3 | 10/0/0 | 9/0/1 | 9/0/1 | 7/0/3 | 10/0/0 | 10/0/0 | - |
Function | ABC | ACO | SMA | GA | PSO [53] | WOA | MRFO | AMRFOCS | |
---|---|---|---|---|---|---|---|---|---|
F1 | Min | 8.9182 × 103 | 1.8080 × 1010 | 3.0812 × 102 | 1.1723 × 1010 | 1.5726 × 106 | 5.5228 × 107 | 1.0003 × 102 | 1.0919 × 102 |
Max | 3.0062 × 106 | 6.3113 × 1010 | 2.5958 × 104 | 4.3013 × 1010 | 4.3153 × 106 | 1.1845 × 109 | 2.5394 × 104 | 1.9760 × 104 | |
Mean | 2.0499 × 105 | 3.9588 × 1010 | 1.1066 × 104 | 2.4697 × 1010 | 2.8600 × 108 | 3.5501 × 108 | 8.3197 × 103 | 6.2404 × 103 | |
Std | 5.7480 × 105 | 1.0666 × 1010 | 9.1622 × 103 | 7.0715 × 109 | 6.5900 × 108 | 2.6468 × 108 | 8.0391 × 103 | 5.8357 × 103 | |
Rank | 3 | 8 | 2 | 7 | 4 | 5 | 6 | 1 | |
p-value | 1.6132 × 10−10 | 3.0199 × 10−11 | 1.3272 × 10−2 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F2 | Min | 3.3808 × 103 | 4.1367 × 103 | 1.3889 × 103 | 3.9989 × 103 | 1.9509 × 103 | 2.4380 × 103 | 1.7015 × 103 | 1.2364 × 103 |
Max | 4.3815 × 103 | 6.0406 × 103 | 3.3464 × 103 | 5.5303 × 103 | 3.5246 × 103 | 4.1739 × 103 | 3.0513 × 103 | 2.7292 × 103 | |
Mean | 4.0746 × 103 | 5.4222 × 103 | 2.0896 × 103 | 4.7553 × 103 | 3.9700 × 102 | 3.3124 × 103 | 2.2987 × 103 | 1.9570 × 103 | |
Std | 2.6396 × 102 | 4.1989 × 102 | 4.0949 × 102 | 4.0296 × 102 | 1.9500 × 102 | 4.7882 × 102 | 3.4635 × 102 | 3.6533 × 102 | |
Rank | 4 | 8 | 3 | 6 | 2 | 5 | 7 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 1.3345 × 10−1 | 3.0199 × 10−11 | 2.0023 × 10−6 | 4.1997 × 10−10 | 9.9186 × 10−11 | - | |
F3 | Min | 7.7125 × 102 | 1.3751 × 103 | 7.3112 × 102 | 1.2423 × 103 | 7.8084 × 102 | 7.9357 × 102 | 7.5401 × 102 | 7.3690 × 102 |
Max | 8.1444 × 102 | 2.0440 × 103 | 7.5919 × 102 | 1.6998 × 103 | 9.2097 × 102 | 9.6361 × 102 | 9.0212 × 102 | 8.0621 × 102 | |
Mean | 7.9919 × 102 | 1.7320 × 103 | 7.4427 × 102 | 1.4555 × 103 | 2.2800 × 101 | 8.7867 × 102 | 8.0701 × 102 | 7.6385 × 102 | |
Std | 9.3785 × 100 | 1.7168 × 102 | 8.4538 × 100 | 1.2329 × 102 | 3.3400 × 100 | 4.3156 × 101 | 3.6815 × 101 | 1.8231 × 101 | |
Rank | 2 | 8 | 1 | 7 | 4 | 5 | 6 | 3 | |
p-value | 8.5641 × 10−4 | 3.0199 × 10−11 | 1.4294 × 10−8 | 3.0199 × 10−11 | 4.9426 × 10−5 | 3.6897 × 10−11 | 4.5043 × 10−11 | - | |
F4 | Min | 1.9062 × 103 | 5.0856 × 105 | 1.9012 × 103 | 5.5274 × 104 | 1.9048 × 103 | 1.9173 × 103 | 1.9015 × 103 | 1.9009 × 103 |
Max | 1.9101 × 103 | 1.4279 × 107 | 1.9053 × 103 | 1.0775 × 107 | 1.9093 × 103 | 2.3598 × 103 | 1.9102 × 103 | 1.9044 × 103 | |
Mean | 1.9083 × 103 | 5.7404 × 106 | 1.9025 × 103 | 2.6295 × 106 | 7.5000 × 101 | 2.0594 × 103 | 1.9038 × 103 | 1.9022 × 103 | |
Std | 8.4822 × 10−1 | 4.0652 × 106 | 9.5245 × 10−1 | 2.3108 × 106 | 4.0000 × 102 | 1.1233 × 102 | 1.8716 × 100 | 9.6539 × 10−1 | |
Rank | 3 | 8 | 4 | 7 | 2 | 5 | 6 | 1 | |
p-value | 5.4941 × 10−11 | 3.0199 × 10−11 | 1.4128 × 10−1 | 3.0199 × 10−11 | 4.5043 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F5 | Min | 9.8935 × 104 | 8.4389 × 106 | 3.3567 × 103 | 6.2312 × 106 | 1.7109 × 104 | 9.1560 × 103 | 2.7053 × 103 | 1.8091 × 103 |
Max | 1.4449 × 106 | 3.6071 × 108 | 1.0135 × 106 | 2.9321 × 108 | 3.9436 × 105 | 3.0431 × 107 | 1.7649 × 105 | 4.9794 × 103 | |
Mean | 6.2043 × 105 | 1.4181 × 108 | 3.4353 × 105 | 5.0984 × 107 | 2.6300 × 104 | 4.5353 × 106 | 1.9206 × 104 | 3.2198 × 103 | |
Std | 3.5873 × 105 | 1.0360 × 108 | 3.7205 × 105 | 6.1107 × 107 | 1.0100 × 105 | 6.1643 × 106 | 3.1836 × 104 | 7.2998 × 102 | |
Rank | 4 | 8 | 3 | 7 | 2 | 6 | 5 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 2.5721 × 10−7 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F6 | Min | 1.7276 × 103 | 1.7276 × 103 | 1.7276 × 103 | 1.7276 × 103 | 1.7276 × 103 | 1.7276 × 103 | 1.7276 × 103 | 1.6025 × 103 |
Max | 1.7276 × 103 | 1.7934 × 103 | 1.7276 × 103 | 1.7350 × 103 | 1.7276 × 103 | 1.7276 × 103 | 1.7276 × 103 | 1.6025 × 103 | |
Mean | 1.7276 × 103 | 1.7359 × 103 | 1.7276 × 103 | 1.7285 × 103 | 1.2800 × 102 | 1.7276 × 103 | 1.7276 × 103 | 1.6025 × 103 | |
Std | 5.5011 × 10−6 | 1.4801 × 101 | 1.0386 × 10−8 | 1.6969 × 100 | 8.9900 × 101 | 3.2909 × 10−11 | 3.2043 × 10−7 | 8.5918 × 10−8 | |
Rank | 4 | 7 | 2 | 8 | 6 | 1 | 5 | 3 | |
p-value | 7.6171 × 10−3 | 3.8461 × 10−3 | 2.5296 × 10−4 | 3.3384 × 10−11 | 2.0762 × 10−6 | 7.1086 × 10−12 | 6.2828 × 10−6 | - | |
F7 | Min | 1.3476 × 105 | 4.2064 × 106 | 3.0138 × 103 | 2.8154 × 106 | 8.4201 × 103 | 1.6493 × 105 | 2.5435 × 103 | 2.3344 × 103 |
Max | 1.1855 × 106 | 3.7604 × 1008 | 4.0915 × 105 | 6.3958 × 107 | 5.6134 × 105 | 3.2858 × 107 | 8.9311 × 103 | 3.8247 × 103 | |
Mean | 5.9020 × 105 | 5.8754 × 107 | 1.4061 × 105 | 2.4985 × 107 | 4.9000 × 102 | 8.3051 × 106 | 4.3069 × 103 | 2.7756 × 103 | |
Std | 3.2196 × 105 | 6.6206 × 107 | 1.3538 × 105 | 1.7097 × 107 | 4.1000 × 102 | 8.8725 × 106 | 1.5006 × 103 | 3.7423 × 102 | |
Rank | 5 | 8 | 3 | 7 | 2 | 6 | 4 | 1 | |
h-value | 1 | 1 | 1 | 1 | 1 | 1 | 1 | - | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.1589 × 10−10 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F8 | Min | 2.5928 × 103 | 4.9297 × 103 | 2.3002 × 103 | 2.7897 × 103 | 2.3105 × 103 | 2.3194 × 103 | 2.2744 × 1003 | 2.2628 × 103 |
Max | 5.5346 × 103 | 7.4795 × 103 | 3.7248 × 103 | 6.6078 × 103 | 4.5823 × 103 | 5.1608 × 103 | 2.3017 × 103 | 2.3020 × 103 | |
Mean | 3.4110 × 103 | 6.4724 × 103 | 2.6974 × 103 | 5.2093 × 103 | 1.2300 × 102 | 3.3445 × 103 | 2.2998 × 103 | 2.2983 × 103 | |
Std | 7.7193 × 102 | 6.6794 × 102 | 5.4439 × 102 | 9.0966 × 102 | 3.4200 × 101 | 1.1929 × 103 | 4.8385 × 100 | 1.1649 × 100 | |
Rank | 4 | 8 | 2 | 7 | 3 | 6 | 5 | 1 | |
p-value | 2.9710 × 10−11 | 2.9710 × 10−11 | 1.0531 × 10−3 | 2.9710 × 10−11 | 5.4938 × 10−10 | 2.9710 × 10−11 | 2.9710 × 10−11 | - | |
F9 | Min | 2.8564 × 103 | 3.2944 × 103 | 2.7970 × 103 | 3.0641 × 103 | 2.5057 × 103 | 2.8417 × 103 | 2.5000 × 103 | 2.7944 × 103 |
Max | 2.8918 × 103 | 4.4273 × 103 | 2.8337 × 103 | 3.8402 × 103 | 3.2787 × 103 | 3.0317 × 103 | 2.8648 × 103 | 2.8275 × 103 | |
Mean | 2.8760 × 103 | 3.7546 × 103 | 2.8108 × 103 | 3.3587 × 103 | 4.0600 × 102 | 2.9344 × 103 | 2.8016 × 103 | 2.8082 × 103 | |
Std | 7.7323 × 100 | 2.5499 × 102 | 9.3661 × 100 | 2.2100 × 102 | 8.7800 × 101 | 5.3179 × 101 | 5.8581 × 101 | 7.3602 × 100 | |
Rank | 3 | 8 | 1 | 7 | 6 | 4 | 5 | 2 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 9.7052 × 10−01 | 3.0199 × 10−11 | 6.5277 × 10−8 | 4.6159 × 10−10 | 4.6159 × 10−10 | - | |
F10 | Min | 2.9382 × 103 | 5.7203 × 103 | 2.9002 × 103 | 4.3186 × 103 | 2.9065 × 103 | 3.1705 × 103 | 2.9000 × 103 | 2.9000 × 103 |
Max | 3.1275 × 103 | 1.9135 × 104 | 3.1655 × 103 | 1.2221 × 104 | 3.1546 × 103 | 3.5295 × 103 | 3.1396 × 103 | 3.1525 × 103 | |
Mean | 3.0845 × 103 | 9.9196 × 103 | 2.9642 × 103 | 6.7857 × 103 | 2.2100 × 104 | 3.2974 × 103 | 2.9296 × 103 | 2.9175 × 103 | |
Std | 3.6737 × 101 | 2.3530 × 103 | 9.8522 × 101 | 1.7801 × 103 | 6.9600 × 101 | 9.7382 × 101 | 7.7440 × 101 | 6.6683 × 101 | |
Rank | 3 | 8 | 4 | 7 | 1 | 5 | 6 | 2 | |
p-value | 5.0650 × 10−9 | 9.4001 × 10−12 | 1.7736 × 10−8 | 9.4001 × 10−12 | 2.5168 × 10−8 | 2.4067 × 10−11 | 1.0445 × 10−11 | - | |
+/=/− | 10/0/0 | 10/0/0 | 7/0/3 | 10/0/0 | 10/0/0 | 10/0/0 | 10/0/0 | - |
Function | ABC | ACO | SMA [50] | GA | PSO [49,54] | WOA | MRFO [50,54] | AMRFOCS | |
---|---|---|---|---|---|---|---|---|---|
F1 | Min | 6.6991 × 102 | 4.0563 × 1010 | 1.6574 × 102 | 2.5636 × 1010 | 1.0001 × 102 | 6.3265 × 107 | 8.3778 × 109 | 1.0000 × 102 |
Max | 1.2555 × 107 | 8.4887 × 1010 | 1.2154 × 104 | 6.7598 × 1010 | 3.3223 × 102 | 6.1524 × 108 | 3.7434 × 1010 | 5.8159 × 103 | |
Mean | 5.5245 × 105 | 6.6290 × 1010 | 7.0214 × 103 | 4.3889 × 1010 | 1.6732 × 102 | 1.7326 × 108 | 2.1385 × 1010 | 1.8646 × 103 | |
Std | 2.2918 × 106 | 1.0292 × 1010 | 3.4661 × 103 | 9.5270 × 109 | 7.3804 × 101 | 1.3456 × 108 | 6.9336 × 109 | 1.9147 × 103 | |
Rank | 4 | 8 | 3 | 7 | 2 | 5 | 6 | 1 | |
p-value | 9.9410 × 10−01 | 3.0199 × 10−11 | 1.7290 × 10−06 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F2 | Min | 5.1957 × 103 | 5.8815 × 103 | 1.1262 × 103 | 5.0471 × 103 | 1.1203 × 103 | 3.1463 × 103 | 1.7867 × 103 | 1.7736 × 103 |
Max | 5.9571 × 103 | 7.7571 × 103 | 2.0288 × 103 | 6.8063 × 103 | 2.0631 × 103 | 5.0027 × 103 | 3.6937 × 103 | 3.3548 × 103 | |
Mean | 5.5760 × 103 | 7.0582 × 103 | 1.5103 × 103 | 6.2467 × 103 | 1.4822 × 103 | 3.9622 × 103 | 2.6240 × 103 | 2.5471 × 103 | |
Std | 1.9190 × 102 | 4.4158 × 102 | 2.3456 × 102 | 4.2793 × 102 | 2.2322 × 1002 | 4.6842 × 102 | 5.0980 × 102 | 4.1138 × 102 | |
Rank | 6 | 8 | 1 | 7 | 4 | 3 | 5 | 2 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.8249 × 10−9 | 3.0199 × 10−11 | 4.4205 × 10−6 | 5.4620 × 10−6 | 3.0199 × 10−11 | - | |
F3 | Min | 8.2806 × 102 | 1.8443 × 103 | 7.2316 × 102 | 1.4839 × 103 | 7.0266 × 102 | 8.4704 × 102 | 7.5771 × 102 | 7.6226 × 102 |
Max | 8.7007 × 102 | 2.6296 × 103 | 7.3664 × 102 | 2.4308 × 103 | 7.3323 × 102 | 1.0022 × 103 | 9.2576 × 102 | 9.3443 × 102 | |
Mean | 8.4879 × 102 | 2.2196 × 103 | 7.2929 × 102 | 1.9061 × 103 | 7.2179 × 102 | 9.3951 × 102 | 8.4981 × 102 | 8.4617 × 102 | |
Std | 9.4200 × 100 | 1.8780 × 102 | 3.6765 × 100 | 2.2344 × 102 | 1.0121 × 101 | 3.6276 × 101 | 3.8601 × 101 | 4.0698 × 101 | |
Rank | 3 | 8 | 2 | 7 | 1 | 5 | 6 | 4 | |
p-value | 5.2014 × 10−1 | 3.0199 × 10−11 | 3.3384 × 10−11 | 3.0199 × 10−11 | 4.9426 × 10−05 | 2.0152 × 10−08 | 4.0772 × 10−11 | - | |
F4 | Min | 1.9111 × 103 | 1.2382 × 106 | 1.9007 × 103 | 4.3264 × 105 | 1.9005 × 103 | 1.9198 × 103 | 1.9017 × 103 | 1.9016 × 103 |
Max | 1.9170 × 103 | 2.2397 × 107 | 1.9016 × 103 | 1.2404 × 107 | 1.9025 × 103 | 2.6053 × 103 | 1.9072 × 103 | 1.9091 × 103 | |
Mean | 1.9136 × 103 | 1.0108 × 107 | 1.9012 × 103 | 4.4157 × 106 | 1.9015 × 103 | 2.0567 × 103 | 1.9043 × 103 | 1.9046 × 103 | |
Std | 1.5087 × 100 | 6.3959 × 106 | 2.3298 × 100 | 3.1502 × 106 | 4.0505 ×10−1 | 1.8873 × 102 | 1.2803 × 100 | 2.0092 × 100 | |
Rank | 4 | 8 | 2 | 7 | 1 | 5 | 6 | 3 | |
p-value | 2.9215 × 10−9 | 3.0199 × 10−11 | 1.1077 × 10−06 | 3.0199 × 10−11 | 2.7829 × 10−07 | 4.0772 × 10−11 | 3.0199 × 10−11 | - | |
F5 | Min | 8.0766 × 105 | 1.7852 × 107 | 3.7210 × 103 | 4.4310 × 106 | 2.6626 × 103 | 2.0301 × 105 | 1.8919 × 103 | 2.8351 × 103 |
Max | 5.1985 × 106 | 2.6166 × 108 | 1.6802 × 104 | 2.4465 × 108 | 1.4404 × 105 | 5.2724 × 106 | 3.0040 × 103 | 1.8735 × 104 | |
Mean | 2.4414 × 106 | 1.3021 × 108 | 1.3273 × 104 | 6.2227 × 107 | 1.2921 × 104 | 2.2840 × 106 | 2.4118 × 103 | 6.1639 × 103 | |
Std | 9.3740 × 105 | 6.5744 × 107 | 4.0755 × 103 | 4.8280 × 107 | 2.5004 × 104 | 1.5022 × 106 | 2.9496 × 102 | 4.1052 × 103 | |
Rank | 5 | 8 | 3 | 7 | 2 | 4 | 6 | 1 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.3384 × 10−11 | 3.0199 × 10−11 | 9.9186 × 10−11 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F6 | Min | 2.0209 × 103 | 2.0209 × 103 | 1.6025 × 103 | 2.0209 × 103 | 1.6025 × 103 | 2.0209 × 103 | 1.6025 × 103 | 1.6622 × 103 |
Max | 2.0209 × 103 | 2.0209 × 103 | 2.3267 × 103 | 2.0209 × 103 | 2.3267 × 103 | 2.0209 × 103 | 2.3267 × 103 | 1.6622 × 103 | |
Mean | 2.0209 × 103 | 2.0209 × 103 | 1.8192 × 103 | 2.0209 × 103 | 1.8192 × 103 | 2.0209 × 103 | 1.8192 × 103 | 1.6622 × 103 | |
Std | 2.3126 × 10−13 | 2.3126 × 10−13 | 2.1374 × 102 | 2.3126 × 10−13 | 2.1374 × 102 | 2.3126 × 10−13 | 2.1374 × 102 | 2.3126 × 10-13 | |
Rank | 5 | 6 | 2 | 7 | 3 | 8 | 4 | 1 | |
p-value | NaN | NaN | NaN | NaN | NaN | NaN | NaN | - | |
F7 | Min | 2.2983 × 105 | 7.5943 × 106 | 2.3186 × 103 | 1.9998 × 106 | 2.1388 × 103 | 4.2518 × 104 | 2.1809 × 103 | 2.3988 × 103 |
Max | 1.5042 × 106 | 6.5444 × 108 | 6.4946 × 103 | 8.0646 × 107 | 3.8441 × 103 | 2.8797 × 106 | 3.2587 × 103 | 5.8574 × 103 | |
Mean | 7.9336 × 105 | 1.2540 × 108 | 3.8725 × 103 | 2.7422 × 107 | 2.5657 × 103 | 8.9956 × 105 | 2.6459 × 103 | 3.7674 × 103 | |
Std | 3.4751 × 105 | 1.2646 × 108 | 1.3768 × 103 | 2.3393 × 107 | 3.5521 × 102 | 8.6057 × 105 | 2.4382 × 102 | 1.0698 × 103 | |
Rank | 6 | 8 | 3 | 7 | 1 | 4 | 5 | 2 | |
p-value | 3.0199 × 10−11 | 3.0199 × 10−11 | 3.3384 × 10−11 | 3.0199 × 10−11 | 2.1544 × 10−10 | 3.0199 × 10−11 | 3.0199 × 10−11 | - | |
F8 | Min | 4.1639 × 103 | 6.3323 × 103 | 2.3000 × 103 | 5.1673 × 103 | 2.3000 × 1003 | 2.3252 × 103 | 2.3000 × 103 | 2.3000 × 103 |
Max | 7.4706 × 103 | 9.6924 × 103 | 4.4908 × 103 | 8.6986 × 103 | 3.8809 × 1003 | 7.0329 × 103 | 2.3028 × 103 | 2.3025 × 103 | |
Mean | 6.6378 × 103 | 8.6618 × 103 | 3.9746 × 103 | 7.4038 × 103 | 2.9396 × 1003 | 4.4362 × 103 | 2.3011 × 103 | 2.3007 × 103 | |
Std | 9.3263 × 102 | 7.3792 × 102 | 4.3257 × 102 | 7.4140 × 102 | 4.8483 × 1002 | 1.8870 × 103 | 6.9236 × 10−1 | 7.8838 × 10 -1 | |
Rank | 6 | 8 | 2 | 7 | 3 | 4 | 5 | 1 | |
p-value | 2.6203 × 10−11 | 2.6203 × 10−11 | 3.8409 × 10−06 | 2.6203 × 10−11 | 2.6203 × 10−11 | 2.6203 × 10−11 | 2.6203 × 10−11 | - | |
F9 | Min | 2.9048 × 103 | 3.3682 × 103 | 2.8289 × 103 | 3.2094 × 103 | 2.8125 × 103 | 2.8789 × 103 | 2.4379 × 103 | 2.5000 × 103 |
Max | 2.9581 × 103 | 4.2698 × 103 | 2.8727 × 103 | 3.8063 × 103 | 2.8470 × 103 | 3.1286 × 103 | 3.0148 × 103 | 2.9151 × 103 | |
Mean | 2.9416 × 103 | 3.8519 × 103 | 2.8507 × 103 | 3.4810 × 103 | 2.8207 × 103 | 3.0257 × 103 | 2.9098 × 103 | 2.8505 × 103 | |
Std | 1.0805 × 101 | 2.3544 × 102 | 1.2047 × 101 | 1.6779 × 102 | 9.6248 × 100 | 5.2418 × 101 | 1.1079 × 102 | 2.1817 × 101 | |
Rank | 3 | 8 | 1 | 7 | 5 | 4 | 6 | 2 | |
p-value | 3.6897 × 10−11 | 3.0199 × 10−11 | 1.8577 × 10−1 | 3.0199 × 10−11 | 3.0199 × 10−11 | 6.0658 × 10−11 | 3.0199 × 10−11 | - | |
F10 | Min | 2.9067 × 103 | 6.2467 × 103 | 2.9100 × 103 | 5.2774 × 103 | 2.8992 × 103 | 2.9798 × 103 | 2.9114 × 103 | 2.8997 × 103 |
Max | 3.0033 × 103 | 2.4861 × 104 | 2.9139 × 103 | 1.6018 × 104 | 2.9605 × 103 | 3.2326 × 103 | 3.0078 × 103 | 3.0024 × 103 | |
Mean | 2.9211 × 103 | 1.4171 × 104 | 2.9132 × 103 | 8.7877 × 103 | 2.9193 × 103 | 3.0608 × 103 | 2.9654 × 103 | 2.9570 × 103 | |
Std | 2.6124 × 101 | 4.2631 × 103 | 1.4034 × 100 | 2.9286 × 103 | 1.3624 × 101 | 4.9901 × 101 | 3.2780 × 101 | 3.1937 × 101 | |
Rank | 1 | 8 | 2 | 7 | 3 | 5 | 6 | 4 | |
p-value | 5.5727 × 10−10 | 3.0199 × 10−11 | 1.1567 × 10−07 | 3.0199 × 10−11 | 2.7086 × 10−02 | 4.1127 × 10−07 | 3.0199 × 10−11 | - | |
+/=/− | 7/0/3 | 9/0/1 | 8/0/2 | 9/0/1 | 9/0/1 | 9/0/1 | 9/0/1 | - |
4.2.2. Convergence Behavior Analysis
5. AMRFOCS for Wireless Sensor Network (WSN)
5.1. WSN Coverage Model
5.2. WSN Deployment on 3D Surface
5.3. Results and Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuila, P.; Jana, P.K. A novel differential evolution based clustering algorithm for wireless sensor networks. Appl. Soft Comput. 2014, 25, 414–425. [Google Scholar] [CrossRef]
- Almalki, K.J.; Jabbari, A.; Ayinala, K.; Sung, S.; Choi, B.-Y.; Song, S. ELSA: Energy-Efficient Linear Sensor Architecture for Smart City Applications. IEEE Sens. J. 2022, 22, 7074–7083. [Google Scholar] [CrossRef]
- Pu, Y.; Song, J.; Wu, M.; Xu, X.; Wu, W. Node location using cuckoo search algorithm with grouping and drift strategy for WSN. Phys. Commun. 2023, 59, 102088. [Google Scholar] [CrossRef]
- Amodu, O.A.; Bukar, U.A.; Mahmood, R.A.R.; Jarray, C.; Othman, M. Age of Information minimization in UAV-aided data collection for WSN and IoT applications: A systematic review. J. Netw. Comput. Appl. 2023, 216, 103652. [Google Scholar] [CrossRef]
- Zulfiqar, R.; Javid, T.; Ali, Z.A.; Uddin, V. Novel metaheuristic routing algorithm with optimized energy and enhanced coverage for WSNs. Ad Hoc Netw. 2023, 144, 103133. [Google Scholar] [CrossRef]
- Alam, S.M.N.; Haas, Z.J. Coverage and connectivity in three-dimensional networks with random node deployment. Ad Hoc Netw. 2015, 34, 157–169. [Google Scholar] [CrossRef]
- Nazarzehi, V.; Savkin, A.V. Decentralized control of mobile three-dimensional sensor networks for complete coverage self-deployment and forming specific shapes. In Proceedings of the 2015 IEEE Conference on Control Applications (CCA), Sydney, NSW, Australia, 21–23 September 2015; pp. 127–132. [Google Scholar] [CrossRef]
- Pacini, E.; Mateos, C.; Garino, C.G. Distributed job scheduling based on Swarm Intelligence: A survey. Comput. Electr. Eng. 2014, 40, 252–269. [Google Scholar] [CrossRef]
- Krause, J.; Cordeiro, J.; Parpinelli, R.S.; Lopes, H.S. A Survey of Swarm Algorithms Applied to Discrete Optimization Problems. Swarm Intell. Bio-Inspired Comput. 2013, 4, 169–191. [Google Scholar] [CrossRef]
- Kennedy’, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1996, 26, 29–41. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Eng. Comput. 2013, 29, 17–35. [Google Scholar] [CrossRef]
- Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical report-tr06; Erciyes University: Kayseri, Turkey, 2005. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Qi, X.; Zhu, Y.; Zhang, H. A new meta-heuristic butterfly-inspired algorithm. J. Comput. Sci. 2017, 23, 226–239. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Z.; Wang, L. Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications. Eng. Appl. Artif. Intell. 2020, 87, 103300. [Google Scholar] [CrossRef]
- Chou, J.S.; Truong, D.N. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl. Math. Comput. 2021, 389, 125535. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 2022, 192, 84–110. [Google Scholar] [CrossRef]
- Seyyedabbasi, A.; Kiani, F. Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems. Eng. Comput. 2022, 39, 2627–2651. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, T.; Ma, S.; Chen, M. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications. Eng. Appl. Artif. Intell. 2022, 114, 105075. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Trojovská, E.; Trojovský, P. Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl.-Based Syst. 2023, 259, 110011. [Google Scholar] [CrossRef]
- Azizi, M.; Talatahari, S.; Gandomi, A.H. Fire Hawk Optimizer: A novel metaheuristic algorithm. Artif. Intell. Rev. 2023, 56, 287–363. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, T.; Ma, S.; Wang, M. Sea-horse optimizer: A novel nature-inspired meta-heuristic for global optimization problems. Appl. Intell. 2023, 53, 11833–11860. [Google Scholar] [CrossRef]
- Hassan, M.H.; Houssein, E.H.; Mahdy, M.A.; Kamel, S. An improved Manta ray foraging optimizer for cost-effective emission dispatch problems. Eng. Appl. Artif. Intell. 2021, 100, 104155. [Google Scholar] [CrossRef]
- Asteris, P.G.; Mamou, A.; Ferentinou, M.; Tran, T.-T.; Zhou, J. Predicting clay compressibility using a novel Manta ray foraging optimization-based extreme learning machine model. Transp. Geotech. 2022, 37, 100861. [Google Scholar] [CrossRef]
- Elaziz, M.A.; Yousri, D.; Al-Qaness, M.A.; AbdelAty, A.M.; Radwan, A.G.; Ewees, A.A. A Grunwald–Letnikov based Manta ray foraging optimizer for global optimization and image segmentation. Eng. Appl. Artif. Intell. 2021, 98, 104105. [Google Scholar] [CrossRef]
- Houssein, E.H.; Zaki, G.N.; Diab, A.A.Z.; Younis, E.M. An efficient Manta Ray Foraging Optimization algorithm for parameter extraction of three-diode photovoltaic model. Comput. Electr. Eng. 2021, 94, 107304. [Google Scholar] [CrossRef]
- Kurni, M.; Mujeeb, S.M.; Yannam, B.B.; Singh, A. MRPO-Deep maxout: Manta ray political optimization based Deep maxout network for big data intrusion detection using spark architecture. Adv. Eng. Softw. 2022, 174, 103324. [Google Scholar] [CrossRef]
- Zouache, D.; Abdelaziz, F.B. Guided Manta Ray foraging optimization using epsilon dominance for multi-objective optimization in engineering design. Expert Syst. Appl. 2022, 189, 116126. [Google Scholar] [CrossRef]
- Ma, B.J.; Pereira, J.L.J.; Oliva, D.; Liu, S.; Kuo, Y.-H. Manta ray foraging optimizer-based image segmentation with a two-strategy enhancement. Knowl.-Based Syst. 2023, 262, 110247. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Hao, W.-K.; Wang, J.-S.; Zhu, J.-H.; Zhao, X.-R.; Zheng, Y. Manta ray foraging optimization algorithm with mathematical spiral foraging strategies for solving economic load dispatching problems in power systems. Alex. Eng. J. 2023, 70, 613–640. [Google Scholar] [CrossRef]
- Deepa, R.; Venkataraman, R. Enhancing Whale Optimization Algorithm with Levy Flight for coverage optimization in wireless sensor networks. Comput. Electr. Eng. 2021, 94, 107359. [Google Scholar] [CrossRef]
- Miao, Z.; Yuan, X.; Zhou, F.; Qiu, X.; Song, Y.; Chen, K. Grey wolf optimizer with an enhanced hierarchy and its application to the wireless sensor network coverage optimization problem. Appl. Soft Comput. 2020, 96, 106602. [Google Scholar] [CrossRef]
- Kokilavani, S.; Kumar, N.S. Modified squirrel search algorithm based data aggregation framework for improved network lifetime in wireless sensor network. Optik 2023, 281, 170468. [Google Scholar] [CrossRef]
- Barshandeh, S.; Koulaeizadeh, S.; Masdari, M.; AbdollahZadeh, B.; Ghasembaglou, M. A learning-based metaheuristic administered positioning model for 3D IoT networks. Appl. Soft Comput. 2023, 136, 110113. [Google Scholar] [CrossRef]
- Santhosh, G.; Prasad, K. Energy optimization routing for hierarchical cluster based WSN using artificial bee colony. Meas. Sens. 2023, 29, 100848. [Google Scholar] [CrossRef]
- Asha, A.; Arunachalam, R.; Poonguzhali, I.; Urooj, S.; Alelyani, S. Optimized RNN-based performance prediction of IoT and WSN-oriented smart city application using improved honey badger algorithm. Measurement 2023, 210, 112505. [Google Scholar] [CrossRef]
- Amutha, J.; Sharma, S.; Sharma, S.K. An energy efficient cluster based hybrid optimization algorithm with static sink and mobile sink node for Wireless Sensor Networks. Expert Syst. Appl. 2022, 203, 117334. [Google Scholar] [CrossRef]
- Yin, J.; Deng, N.; Zhang, J. Wireless Sensor Network coverage optimization based on Yin–Yang pigeon-inspired optimization algorithm for Internet of Things. Internet Things 2022, 19, 100546. [Google Scholar] [CrossRef]
- Eluri, R.K.; Devarakonda, N. Binary Golden Eagle Optimizer with Time-Varying Flight Length for feature selection. Knowl.-Based Syst. 2022, 247, 108771. [Google Scholar] [CrossRef]
- Sun, P.; Liu, H.; Zhang, Y.; Meng, Q.; Tu, L.; Zhao, J. An improved atom search optimization with dynamic opposite learning and heterogeneous comprehensive learning. Appl. Soft Comput. 2021, 103, 107140. [Google Scholar] [CrossRef]
- Hu, G.; Yang, R.; Qin, X.; Wei, G. MCSA: Multi-strategy boosted chameleon-inspired optimization algorithm for engineering applications. Comput. Methods Appl. Mech. Eng. 2023, 403, 115676. [Google Scholar] [CrossRef]
- Aydilek, I.B. A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Appl. Soft Comput. J. 2018, 66, 232–249. [Google Scholar] [CrossRef]
- Elaziz, M.A.; Lu, S.; He, S. A multi-leader whale optimization algorithm for global optimization and image segmentation. Expert Syst. Appl. 2021, 175, 114841. [Google Scholar] [CrossRef]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
- Awad, N.H.; Ali, M.Z.; Liang, J.J.; Qu, B.Y.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization; Technical Report; Nanyang Technological University: Singapore, 2016. [Google Scholar]
- Yue, C.T.; Price, K.V.; Suganthan, P.N.; Liang, J.J.; Ali, M.Z.; Qu, B.Y.; Awad, N.H.; Partha, P. Biswas Problem Definitions and Evaluation Criteria for the CEC 2020 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization; Technical Report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report; Nanyang Technological University: Singapore; Glasgow, UK, 2020. [Google Scholar]
- Yousri, D.; Elaziz, M.A.; Oliva, D.; Abraham, A.; Alotaibi, M.A.; Hossain, A. Fractional-order comprehensive learning marine predators algorithm for global optimization and feature selection. Knowl.-Based Syst. 2022, 235, 107603. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Mostafa, R.R.; Ewees, A.A.; Ghoniem, R.M.; Abualigah, L.; Hashim, F.A. Hashim Boosting chameleon swarm algorithm with consumption AEO operator for global optimization and feature selection. Knowl.-Based Syst. 2022, 246, 108743. [Google Scholar] [CrossRef]
- Cao, Z.; Li, J.; Fu, Y.; Wang, Z.; Jia, H.; Tian, F. An adaptive biogeography-based optimization with cumulative covariance matrix for rule-based network intrusion detection. Swarm Evol. Comput. 2022, 75, 101199. [Google Scholar] [CrossRef]
- Yousri, D.; AbdelAty, A.M.; Al-Qaness, M.A.; Ewees, A.A.; Radwan, A.G.; Elaziz, M.A. Discrete fractional-order Caputo method to overcome trapping in local optima: Manta Ray Foraging Optimizer as a case study. Expert Syst. Appl. 2022, 192, 116355. [Google Scholar] [CrossRef]
- Gao, M.; Pan, J.-S.; Li, J.-P.; Zhang, Z.-P.; Chai, Q.-W. 3-D Terrains Deployment of Wireless Sensors Network by Utilizing Parallel Gases Brownian Motion Optimization. J. Internet Technol. 2021, 22, 13–29. [Google Scholar]
- Ru, J.; Jia, Z.; Yang, Y.; Yu, X.; Wu, C.; Xu, M. A 3D Coverage Algorithm Based on Complex Surfaces for UAVs in Wireless Multimedia Sensor Networks. Sensors 2019, 19, 1902. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xie, H.; He, D.; Chan, S. Wireless Sensor Network Deployment Optimization Based on Two Flower Pollination Algorithms. IEEE Access 2019, 7, 180590–180608. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, H. Wireless Sensor Network Deployment of 3D Surface Based on Enhanced Grey Wolf Optimizer. IEEE Access 2020, 8, 57229–57251. [Google Scholar] [CrossRef]
- Hang, Z.Y.; Xunbo, L.; Zhenlin, W.; Wenjie, Y.; Bo, H. A Novel Sensor Deployment Method Based on Image Processing and Wavelet Transform to Optimize the Surface Coverage in WSNs. Chin. J. Electron. 2016, 25, 8. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Luo, Q.; Wei, Y.; Zhou, Y. Hybrid Manta Ray Foraging Algorithm with Cuckoo Search for Global Optimization and Three-Dimensional Wireless Sensor Network Deployment Problem. Biomimetics 2023, 8, 411. https://doi.org/10.3390/biomimetics8050411
Wang M, Luo Q, Wei Y, Zhou Y. Hybrid Manta Ray Foraging Algorithm with Cuckoo Search for Global Optimization and Three-Dimensional Wireless Sensor Network Deployment Problem. Biomimetics. 2023; 8(5):411. https://doi.org/10.3390/biomimetics8050411
Chicago/Turabian StyleWang, Meiyan, Qifang Luo, Yuanfei Wei, and Yongquan Zhou. 2023. "Hybrid Manta Ray Foraging Algorithm with Cuckoo Search for Global Optimization and Three-Dimensional Wireless Sensor Network Deployment Problem" Biomimetics 8, no. 5: 411. https://doi.org/10.3390/biomimetics8050411
APA StyleWang, M., Luo, Q., Wei, Y., & Zhou, Y. (2023). Hybrid Manta Ray Foraging Algorithm with Cuckoo Search for Global Optimization and Three-Dimensional Wireless Sensor Network Deployment Problem. Biomimetics, 8(5), 411. https://doi.org/10.3390/biomimetics8050411