Lightweight Soft Robotic Glove with Whole-Hand Finger Motion Tracking for Hand Rehabilitation in Virtual Reality
Abstract
:1. Introduction
2. Glove System Design and Experimental Testing
2.1. Overview
2.2. Hardware Design of TSA System
2.3. Twisted String Actuator Testing
2.4. Rehabilitation Training Gloves Testing
2.4.1. Grip Force Test
2.4.2. Time Duration for Full ROM Test
3. Sensing and Control
3.1. Software Control Flow
3.2. IMU System and Tracking Algorithm
3.2.1. Static Threshold Correction
3.2.2. Complementary Filter
3.3. Real-Time VR Application
4. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lucas, L.; DiCicco, M.; Matsuoka, Y. An EMG-controlled hand exoskeleton for natural pinching. J. Robot. Mechatron. 2004, 16, 482–488. [Google Scholar] [CrossRef]
- Cempini, M.; Cortese, M.; Vitiello, N. A powered finger–thumb wearable hand exoskeleton with self-aligning joint axes. IEEE/ASME Trans. Mechatron. 2014, 20, 705–716. [Google Scholar] [CrossRef]
- Dragusanu, M.; Iqbal, M.Z.; Baldi, T.L.; Prattichizzo, D.; Malvezzi, M. Design, development, and control of a hand/wrist exoskeleton for rehabilitation and training. IEEE Trans. Robot. 2022, 38, 1472–1488. [Google Scholar] [CrossRef]
- Feng, M.; Yang, D.; Gu, G. High-force fabric-based pneumatic actuators with asymmetric chambers and interference-reinforced structure for soft wearable assistive gloves. IEEE Robot. Autom. Lett. 2021, 6, 3105–3111. [Google Scholar] [CrossRef]
- Tang, Z.Q.; Heung, H.L.; Shi, X.Q.; Tong, K.Y.; Li, Z. Probabilistic model-based learning control of a soft pneumatic glove for hand rehabilitation. IEEE Trans. Biomed. Eng. 2021, 69, 1016–1028. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, Z.; Wen, Y. A soft exoskeleton glove for hand bilateral training via surface EMG. Sensors 2021, 21, 578. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wu, C.; Lin, S.; Chen, Y.; Hu, Y.; Xu, T.; Yuan, W.; Li, Y. Finger Flexion and Extension Driven by a Single Motor in Robotic Glove Design. Adv. Intell. Syst. 2023, 5, 2200274. [Google Scholar] [CrossRef]
- Kim, S.H.; Jeong, U.; Cho, K.J. Multiparameter Remote Contact Force Sensor with Embedded Bend Sensing for Tendon-Driven Hand Robots. IEEE/ASME Trans. Mechatron. 2023, 1–10. [Google Scholar] [CrossRef]
- Deng, L.; Shen, Y.; Hong, Y.; Dong, Y.; He, X.; Yuan, Y.; Li, Z.; Ding, H. Sen-Glove: A Lightweight Wearable Glove for Hand Assistance with Soft Joint Sensing. In Proceedings of the IEEE 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 5170–5175. [Google Scholar]
- Bombara, D.; Fowzer, S.; Zhang, J. Compliant, large-strain, and self-sensing twisted string actuators. Soft Robot. 2022, 9, 72–88. [Google Scholar] [CrossRef] [PubMed]
- Gaponov, I.; Popov, D.; Ryu, J.H. Twisted string actuation systems: A study of the mathematical model and a comparison of twisted strings. IEEE/ASME Trans. Mechatron. 2013, 19, 1331–1342. [Google Scholar] [CrossRef]
- Tsabedze, T.; Hartman, E.; Abrego, E.; Brennan, C.; Zhang, J. TSA-BRAG: A twisted string actuator-powered biomimetic robotic assistive glove. In Proceedings of the IEEE 2020 International Symposium on Medical Robotics (ISMR), Atlanta, GA, USA, 18–20 November 2020; pp. 159–165. [Google Scholar]
- Tsabedze, T.; Hartman, E.; Zhang, J. A compact, compliant, and biomimetic robotic assistive glove driven by twisted string actuators. Int. J. Intell. Robot. Appl. 2021, 5, 381–394. [Google Scholar] [CrossRef]
- Hosseini, M.; Sengül, A.; Pane, Y.; De Schutter, J.; Bruyninck, H. Exoten-glove: A force-feedback haptic glove based on twisted string actuation system. In Proceedings of the IEEE 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Nanjing, China, 27–31 August 2018; pp. 320–327. [Google Scholar]
- Gerboni, G.; Diodato, A.; Ciuti, G.; Cianchetti, M.; Menciassi, A. Feedback control of soft robot actuators via commercial flex bend sensors. IEEE/ASME Trans. Mechatron. 2017, 22, 1881–1888. [Google Scholar] [CrossRef]
- Shenoy, P.; Gupta, A.; Varadhan, S. Design and Validation of an IMU Based Full Hand Kinematic Measurement System. IEEE Access 2022, 10, 93812–93830. [Google Scholar] [CrossRef]
- Connolly, J.; Condell, J.; O’Flynn, B.; Sanchez, J.T.; Gardiner, P. IMU sensor-based electronic goniometric glove for clinical finger movement analysis. IEEE Sens. J. 2017, 18, 1273–1281. [Google Scholar] [CrossRef]
- Cerqueira, T.; Ribeiro, F.M.; Pinto, V.H.; Lima, J.; Gonçalves, G. Glove Prototype for Feature Extraction Applied to Learning by Demonstration Purposes. Appl. Sci. 2022, 12, 10752. [Google Scholar] [CrossRef]
- Li, F.; Chen, J.; Ye, G.; Dong, S.; Gao, Z.; Zhou, Y. Soft Robotic Glove with Sensing and Force Feedback for Rehabilitation in Virtual Reality. Biomimetics 2023, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gong, L.; Wei, L.; Yeh, S.C.; Da Xu, L.; Zheng, L.; Zou, Z. A wearable hand rehabilitation system with soft gloves. IEEE Trans. Ind. Inform. 2020, 17, 943–952. [Google Scholar] [CrossRef]
- Mousavi Hondori, H.; Khademi, M.; Dodakian, L.; Cramer, S.C.; Lopes, C.V. A spatial augmented reality rehab system for post-stroke hand rehabilitation. In Medicine Meets Virtual Reality 20; IOS Press: Amsterdam, The Netherlands, 2013; pp. 279–285. [Google Scholar]
- Pereira, M.F.; Prahm, C.; Kolbenschlag, J.; Oliveira, E.; Rodrigues, N.F. A virtual reality serious game for hand rehabilitation therapy. In Proceedings of the 2020 IEEE 8th International Conference on Serious Games and Applications for Health (SeGAH), Vancouver, BC, Canada, 12–14 August 2020; pp. 1–7. [Google Scholar]
- Polygerinos, P.; Wang, Z.; Galloway, K.C.; Wood, R.J.; Walsh, C.J. Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 2015, 73, 135–143. [Google Scholar] [CrossRef]
- Mohammadi, A.; Lavranos, J.; Choong, P.; Oetomo, D. Flexo-glove: A 3D Printed Soft Exoskeleton Robotic Glove for Impaired Hand Rehabilitation and Assistance. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 2120–2123. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, M.; Li, Z. Design and Control of a Wearable Hand Rehabilitation Robot. IEEE Access 2018, 6, 74039–74050. [Google Scholar] [CrossRef]
- Zhou, Y.; Desplenter, T.; Chinchalkar, S.; Trejos, A.L. A Wearable Mechatronic Glove for Resistive Hand Therapy Exercises. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 1097–1102. [Google Scholar] [CrossRef]
- Ullah, M.M.; Hafeez, U.; Shehzad, M.N.; Awais, M.N.; Elahi, H. A soft robotic glove for assistance and rehabilitation of stroke affected patients. In Proceedings of the IEEE 2019 International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 16–18 December 2019; pp. 110–1105. [Google Scholar]
- Humanoid Robotic Hand (3D-Printable). 2020. Available online: https://www.ligongku.com/resource/2 (accessed on 31 March 2023).
- Sun, Y.; Lueth, T.C. Enhancing Torsional Stiffness of Continuum Robots Using 3-D Topology Optimized Flexure Joints. IEEE/ASME Trans. Mechatron. 2023, 28, 1844–1852. [Google Scholar] [CrossRef]
References | Year | Hand (g) | Arm (g) | Total Weight on Upper Limb (g) | Driven Method | Actuation Degree of Freedom 1 | Finger Motion Tracking |
---|---|---|---|---|---|---|---|
Mohammadi et al. [24] | 2018 | - | - | 330 | Cable+spool | 4 | Motion classification (sEMG sensor) |
Cheng et al. [25] | 2018 | 206 | - | 206 | Cable+spool | 5 | Index finger (curvature sensor) |
Zhou et al. [26] | 2019 | - | - | 500 | Cable+spool | 2 | Thumb and index fingers (IMU) |
Tsabedze et al. [13] | 2021 | 186 | - | - | TSA | 4 | Four larger fingers (SCP strings displacement sensing) |
This study | 2023 | 110 | 180 | 290 | TSA | 5 | All fingers (IMU) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Chen, J.; Zhou, Z.; Xie, J.; Gao, Z.; Xiao, Y.; Dai, P.; Xu, C.; Wang, X.; Zhou, Y. Lightweight Soft Robotic Glove with Whole-Hand Finger Motion Tracking for Hand Rehabilitation in Virtual Reality. Biomimetics 2023, 8, 425. https://doi.org/10.3390/biomimetics8050425
Li F, Chen J, Zhou Z, Xie J, Gao Z, Xiao Y, Dai P, Xu C, Wang X, Zhou Y. Lightweight Soft Robotic Glove with Whole-Hand Finger Motion Tracking for Hand Rehabilitation in Virtual Reality. Biomimetics. 2023; 8(5):425. https://doi.org/10.3390/biomimetics8050425
Chicago/Turabian StyleLi, Fengguan, Jiahong Chen, Zhitao Zhou, Jiefeng Xie, Zishu Gao, Yuxiang Xiao, Pei Dai, Chanchan Xu, Xiaojie Wang, and Yitong Zhou. 2023. "Lightweight Soft Robotic Glove with Whole-Hand Finger Motion Tracking for Hand Rehabilitation in Virtual Reality" Biomimetics 8, no. 5: 425. https://doi.org/10.3390/biomimetics8050425
APA StyleLi, F., Chen, J., Zhou, Z., Xie, J., Gao, Z., Xiao, Y., Dai, P., Xu, C., Wang, X., & Zhou, Y. (2023). Lightweight Soft Robotic Glove with Whole-Hand Finger Motion Tracking for Hand Rehabilitation in Virtual Reality. Biomimetics, 8(5), 425. https://doi.org/10.3390/biomimetics8050425