Effect of Bacterial Amyloid Protein Phenol−Soluble Modulin Alpha 3 on the Aggregation of Amyloid Beta Protein Associated with Alzheimer’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Aβ40 and PSMα3 Monomers
2.3. Preparation of PSMα3 Seeds
2.4. ThT Fluorescence Assay
2.5. AFM Experiments
2.6. CD Experiments
2.7. Dot−Blot Assays
2.8. MD Simulations
3. Results and Discussion
3.1. Effects of the PSMα3 Monomer on Aβ40 Aggregation
3.2. Effect of PSMα3 Seeds on Aβ40 Aggregation
3.3. Molecular Docking of PSMα3 and Aβ40 Monomer
3.4. MD Simulations on PSMα3 and Aβ40 Monomers and Their Complex
3.5. MD Simulations on Interactions between PSMα3 Oligomer and Aβ40 Monomer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Long, J.M.; Holtzman, D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019, 179, 312–339. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ng, K.P.; Therriault, J.; Kang, M.S.; Pascoal, T.A.; Rosa−Neto, P.; Gauthier, S. Cerebrospinal fluid phosphorylated tau, visinin-like protein-1, and chitinase-3-like protein 1 in mild cognitive impairment and Alzheimer’s disease. Transl. Neurodegener. 2018, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- D’Arrigo, J.S. Targeting early dementia: Using lipid cubic phase nanocarriers to cross the blood-brain barrier. Biomimetics 2018, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- Karran, E.; Mercken, M.; De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 2011, 10, 698–712. [Google Scholar] [CrossRef]
- Du, X.G.; Wang, X.Y.; Geng, M.Y. Alzheimer’s disease hypothesis and related therapies. Transl. Neurodegener. 2018, 7, 2. [Google Scholar] [CrossRef]
- Jiang, C.M.; Huang, P.R.; Liu, Z.; Zhao, B. The gut microbiota and Alzheimer’s disease. Alzheimers Dis. 2017, 58, 1–15. [Google Scholar] [CrossRef]
- Feng, M.; Hou, T.S.; Zhou, M.Z.; Cen, Q.Y.; Yi, T.; Bai, J.F.; Zeng, Y.; Liu, Q.; Zhang, C.S.; Zhang, Y.J. Gut microbiota may be involved in Alzheimer’s disease pathology by dysregulating pyrimidine metabolism in APP/PS1 mice. Front. Aging Neurosci. 2022, 14, 967747. [Google Scholar] [CrossRef]
- Szablewski, L. Human gut microbiota in health and Alzheimer’s disease. Alzheimers Dis. 2018, 62, 549–559. [Google Scholar] [CrossRef]
- Chandra, S.; Alam, M.T.; Dey, J.; Sasidharan, B.C.P.; Ray, U.; Srivastava, A.K.; Gandhi, S.; Tripathi, P.P. Healthy gut, healthy brain: The gut microbiome in neurodegenerative disorders. Curr. Top. Med. Chem. 2020, 20, 1142–1153. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The microbiota-gut-brain axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Sasmita, A.O. Modification of the gut microbiome to combat neurodegeneration. Rev. Neurosci. 2019, 30, 795–805. [Google Scholar] [CrossRef]
- Chen, S.G.; Stribinskis, V.; Rane, M.J.; Demuth, D.R.; Gozal, E.; Roberts, A.M.; Jagadapillai, R.; Liu, R.L.; Choe, K.W.; Shivakumar, B.; et al. Exposure to the functional bacterial amyloid protein curli enhances alpha-Synuclein aggregation in aged fischer 344 rats and caenorhabditis elegans. Sci. Rep. 2016, 6, 34477. [Google Scholar] [CrossRef] [PubMed]
- Friedland, R.P.; Chapman, M.R. The role of microbial amyloid in neurodegeneration. PLoS Pathog. 2017, 13, e1006654. [Google Scholar] [CrossRef] [PubMed]
- Perov, S.; Lidor, O.; Salinas, N.; Golan, N.; Tayeb-Fligelman, E.; Deshmukh, M.; Willbold, D.; Landau, M. Structural insights into curli CsgA cross-beta fibril architecture inspire repurposing of anti-amyloid compounds as anti-biofilm agents. PLoS Pathog. 2019, 15, e1007978. [Google Scholar] [CrossRef]
- Javed, I.; Zhang, Z.Z.; Adamcik, J.; Andrikopoulos, N.; Li, Y.H.; Otzen, D.E.; Lin, S.J.; Mezzenga, R.; Davis, T.P.; Ding, F.; et al. Accelerated amyloid beta pathogenesis by bacterial amyloid FapC. Adv. Sci. 2020, 7, 2001299. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, K.; Syed, A.K.; Stephenson, R.E.; Rickard, A.H.; Boles, B.R. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog. 2012, 8, e1002744. [Google Scholar] [CrossRef]
- Cheung, G.Y.C.; Kretschmer, D.; Queck, S.Y.; Joo, H.S.; Wang, R.; Duong, A.C.; Nguyen, T.H.; Bach, T.H.L.; Porter, A.R.; DeLeo, F.R.; et al. Insight into structure-function relationship in phenol-soluble modulins using an alanine screen of the phenol-soluble modulin (PSM) α3 peptide. Faseb. J. 2014, 28, 153–161. [Google Scholar] [CrossRef]
- Laabei, M.; Jamieson, W.D.; Yang, Y.; van den Eisen, J.; Jenkins, A.T.A. Investigating the lytic activity and structural properties of Staphylococcus aureus phenol soluble modulin (PSM) peptide toxins. Biochim. Biophys. Acta-Biomembr. 2014, 1838, 3153–3161. [Google Scholar] [CrossRef]
- Tayeb-Fligelman, E.; Tabachnikov, O.; Moshe, A.; Goldshmidt-Tran, O.; Sawaya, M.R.; Coquelle, N.; Colletier, J.P.; Landau, M. The cytotoxic Staphylococcus aureus PSMα3 reveals a cross-α amyloid-like fibril. Science 2017, 355, 831–833. [Google Scholar] [CrossRef]
- Zaman, M.; Andreasen, M. Cross-talk between individual phenol-soluble modulins in Staphylococcus aureus biofilm enables rapid and efficient amyloid formation. Elife 2020, 9, e59776. [Google Scholar] [CrossRef]
- Festa, G.; Mallamace, F.; Sancesario, G.M.; Corsaro, C.; Mallamace, D.; Fazio, E.; Arcidiacono, L.; Garcia Sakai, V.; Senesi, R.; Preziosi, E. Aggregation states of Aβ1–40, Aβ1–42 and Aβp3–42 amyloid beta peptides: A SANS Study. Int. J. Mol. Sci. 2019, 20, 4126. [Google Scholar] [CrossRef] [PubMed]
- Boopathi, S.; Kolandaivel, P. Role of zinc and copper metal ions in amyloid beta-peptides Abeta(1-40) and Abeta(1-42) aggregation. RSC Adv. 2014, 4, 38951–38965. [Google Scholar] [CrossRef]
- Das, M.; Dash, S.; Bhargava, B.L. Computational studies of fibrillation induced selective cytotoxicity of cross-alpha amyloid—Phenol soluble modulin α3. Chem. Phys. 2020, 535, 110777. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Comput Chem. 2010, 31, 455–461. [Google Scholar]
- Pronk, S.; Pall, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinf. 2013, 29, 845–854. [Google Scholar] [CrossRef]
- Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins Struct. Funct. Bioinf. 2006, 65, 712–725. [Google Scholar] [CrossRef]
- Steinczinger, Z.; Jovari, P.; Pusztai, L. Comparison of 9 classical interaction potentials of liquid water: Simultaneous reverse monte carlo modeling of X-ray and neutron diffraction results and partial radial distribution functions from computer simulations. J. Mol. Liq. 2017, 228, 19–24. [Google Scholar] [CrossRef]
- Dzubiella, J. Salt-specific stability and denaturation of a short salt-bridge forming α-helix. J. Am. Chem. Soc. 2008, 130, 14000–14007. [Google Scholar] [CrossRef]
- Triguero, L.; Singh, R.; Prabhakar, R. Comparative molecular dynamics studies of wild-type and oxidized forms of full-length Alzheimer amyloid-β peptides Aβ(1-40) and Aβ(1-42). J. Phys. Chem. B 2008, 112, 7123–7131. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014, 54, 1951–1962. [Google Scholar] [CrossRef]
- Jamasbi, E.; Hossain, M.A.; Tan, M.; Separovic, F.; Ciccotosto, G.D. Fluorescence imaging of the interaction of amyloid beta 40 peptides with live cells and model membrane. Biochim. Biophys. Acta-Biomembr. 2018, 1860, 1609–1615. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Lin, T.Y.W.; Chang, D.; Guo, Z.F. Thioflavin T as an amyloid dye: Fibril quantification, optimal concentration and effect on aggregation. Soc. Open Sci. 2017, 4, 160696. [Google Scholar] [CrossRef] [PubMed]
- Le, K.Y.; Villaruz, A.E.; Zheng, Y.; He, L.; Fisher, E.L.; Nguyen, T.H.; Ho, T.V.; Yeh, A.J.; Joo, H.S.; Cheung, G.Y.C.; et al. Role of phenol-soluble modulins in Staphylococcus epidermidis biofilm formation and infection of indwelling medical devices. J. Mol. Biol. 2019, 431, 3015–3027. [Google Scholar] [CrossRef]
- Tayeb-Fligelman, E.; Salinas, N.; Tabachnikov, O.; Landau, M. Staphylococcus aureus PSMα3 cross-α fibril polymorphism and determinants of cytotoxicity. Structure 2020, 28, 301–313. [Google Scholar] [CrossRef]
- Bertini, I.; Gonnelli, L.; Luchinat, C.; Mao, J.F.; Nesi, A. A new structural model of Abeta(40) fibrils. J. Am. Chem. Soc. 2011, 133, 16013–16022. [Google Scholar] [CrossRef]
- Meisl, G.; Kirkegaard, J.; Arosio, P.; Michaels, T.; Vendruscolo, M.; Dobson, C.; Linse, S.; Knowles, T. Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat. Protoc. 2016, 11, 252–272. [Google Scholar] [CrossRef]
- Du, W.J.; Guo, J.J.; Gao, M.T.; Hu, S.Q.; Dong, X.Y.; Han, Y.F.; Liu, F.F.; Jiang, S.; Sun, Y. Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity. Sci. Rep. 2015, 5, 7992. [Google Scholar] [CrossRef] [PubMed]
- Pryor, N.E.; Moss, M.A.; Hestekin, C.N. Capillary electrophoresis for the analysis of the effect of sample preparation on early stages of Abeta(1-40) aggregation. Electrophoresis 2014, 35, 1814–1820. [Google Scholar] [CrossRef] [PubMed]
- Adem, K.; Shanti, A.; Srivastava, A.; Homouz, D.; Thomas, S.; Khair, M.; Stefanini, C.; Chan, V.; Kim, T.; Lee, S. Linking Alzheimer’s disease and type 2 diabetes: Characterization and inhibition of cytotoxic Aβ and IAPP hetero-aggregates. Front. Mol. Biosci. 2022, 9, 842582. [Google Scholar] [CrossRef]
- Ge, X.W.; Yang, Y.; Sun, Y.X.; Cao, W.G.; Ding, F. Islet amyloid polypeptide promotes amyloid-beta aggregation by binding-induced helix-unfolding of the amyloidogenic core. ACS Chem. Neurosci. 2018, 9, 967–975. [Google Scholar] [CrossRef]
- Ilitchev, A.I.; Giarnmona, M.J.; Schwarze, J.N.; Buratto, S.K.; Bowers, M.T. Zinc-induced conformational transitions in human islet amyloid polypeptide and their role in the inhibition of amyloidosis. J. Phys. Chem. B 2018, 122, 9852–9859. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.P.; Zhang, Y.X.; Zhang, M.Z.; Liu, Y.L.; Zhang, D.; Gong, X.; Feng, Z.Q.; Tang, J.X.; Chang, Y.; Zheng, J. Fundamentals of cross-seeding of amyloid proteins: An introduction. J. Phys. Chem. B 2019, 7, 7267–7282. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.I.A.; Linse, S.; Luheshi, L.M.; Hellstrand, E.; White, D.A.; Rajah, L.; Otzen, D.E.; Vendruscolo, M.; Dobson, C.M.; Knowles, T.P.J. Proliferation of amyloid-beta 42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl. Acad. Sci. USA 2013, 110, 9758–9763. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, P.; Solomon, T.; Sahoo, B.R. Amylin and beta amyloid proteins interact to form amorphous heterocomplexes with enhanced toxicity in neuronal cells. Sci. Rep. 2020, 10, 10356. [Google Scholar] [CrossRef]
- Guo, J.P.; Arai, T.; Miklossy, J.; McGeer, P.L. Abeta and tau form soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2006, 103, 1953–1958. [Google Scholar] [CrossRef]
- Mandal, P.K.; Pettegrew, J.W.; Masliah, E.; Hamilton, R.L.; Mandal, R. Interaction between A beta peptide and alpha synuclein: Molecular mechanisms in overlapping pathology of Alzheimer’s and Parkinson’s in dementia with Lewy body disease. Neurosci. Res. 2006, 31, 1153–1162. [Google Scholar]
- Sampson, T.R.; Challis, C.; Jain, N.; Moiseyenko, A.; Ladinsky, M.S.; Shastri, G.G.; Thron, T.; Needham, B.D.; Horvath, I.; Debelius, J.W.; et al. A gut bacterial amyloid promotes alpha-synuclein aggregation and motor impairment in mice. Elife 2020, 9, e53111. [Google Scholar] [CrossRef]
- Li, X.H.; Lao, Z.H.; Zou, Y.; Dong, X.W.; Li, L.; Wei, G.H. Mechanistic Insights into the co-aggregation of Aβ and hIAPP: An all-atom molecular dynamic study. J. Phys. Chem. B 2021, 125, 2050–2060. [Google Scholar] [CrossRef]
- Raz, Y.; Miller, Y. Interactions between Aβ and mutated tau lead to polymorphism and induce aggregation of Aβ-mutated tau oligomeric complexes. PLoS ONE 2013, 8, e73303. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Xu, L.; Thompson, D. Molecular simulations reveal terminal group mediated stabilization of helical conformers in both amyloid-beta 42 and α-Synuclein. ACS Chem. Neurosci. 2019, 10, 2830–2842. [Google Scholar] [CrossRef]
- Hou, S.; Gu, R.X.; Wei, D.Q. Inhibition of beta-amyloid channels with a drug candidate wgx-50 revealed by molecular dynamics simulations. J. Chem. Inf. Model. 2017, 57, 2811–2821. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.Y.; Wang, W.J.; Dong, X.Y.; Sun, Y. Molecular insight into Cu2+-induced conformational transitions of amyloid beta-protein from fast kinetic analysis and molecular dynamics simulations. ACS Chem. Neurosci. 2021, 12, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Nie, R.Z.; Dang, M.Z.; Li, K.K.; Peng, J.M.; Du, J.; Zhang, M.Y.; Li, C.M. A-type EGCG dimer, a new proanthocyanidins dimer from persimmon fruits, interacts with the amino acid residues of Abeta(40) which possessed high aggregation-propensity and strongly inhibits its amyloid fibrils formation. J. Funct. Foods 2019, 52, 492–504. [Google Scholar] [CrossRef]
- Carter, P.; Andersen, C.A.F.; Rost, B. DSSPcont: Continuous secondary structure assignments for proteins. Nucleic Acids Res. 2003, 31, 3293–3295. [Google Scholar] [CrossRef]
- Saini, R.K.; Thakur, H.; Goyal, B. Effect of piedmont mutation (L34V) on the structure, dynamics, and aggregation of Alzheimer’s abeta(40) peptide. J. Mol. Graphics Modell. 2020, 97, 107571. [Google Scholar] [CrossRef]
- Linh, N.H.; Thu, T.T.M.; Tu, L.; Hu, C.K.; Li, M.S. Impact of mutations at C-terminus on structures and dynamics of Abeta 40 and Abeta 42: A molecular simulation study. J. Phys. Chem. B 2017, 121, 4341–4354. [Google Scholar] [CrossRef]
- Kocis, P.; Tolar, M.; Yu, J.; Sinko, W.; Ray, S.; Blennow, K.; Fillit, H.; Hey, J.A. Elucidating the Abeta 42 anti-aggregation mechanism of action of tramiprosate in Alzheimer’s Disease: Integrating molecular analytical methods, pharmacokinetic and clinical data. CNS Drugs 2017, 31, 495–509. [Google Scholar] [CrossRef]
- Bartling, C.R.O.; Jensen, T.M.T.; Henry, S.M.; Colliander, A.L.; Sereikaite, V.; Wenzler, M.; Jain, P.; Maric, H.M.; Harpsoe, K.; Pedersen, S.W.; et al. Targeting the APP-Mint2 protein-protein interaction with a peptide-based inhibitor reduces amyloid-beta formation. J. Am. Chem. Soc. 2021, 143, 891–901. [Google Scholar] [CrossRef]
- Urbanc, B. Flexible N-termini of amyloid beta-protein oligomers: A link between structure and activity? Isr. J. Chem. 2017, 57, 651–664. [Google Scholar] [CrossRef]
- Miller, Y.; Ma, B.Y.; Nussinov, R. The unique Alzheimer’s beta-amyloid triangular fibril has a cavity along the fibril axis under physiological conditions. J. Am. Chem. Soc. 2011, 133, 2742–2748. [Google Scholar] [CrossRef]
- Andreetto, E.; Yan, L.M.; Caporale, A.; Kapurniotu, A. Dissecting the role of single regions of an IAPP mimic and IAPP in inhibition of Abeta 40 amyloid formation and cytotoxicity. ChemBioChem. 2011, 12, 1313–1322. [Google Scholar] [CrossRef] [PubMed]
- Aftabizadeh, M.; Tatarek-Nossol, M.; Andreetto, E.; El Bounkari, O.; Kipp, M.; Beyer, C.; Kapurniotu, A. Blocking inflammasome activation caused by betaamyloid peptide (Abeta) and islet amyloid polypeptide (IAPP) through an IAPP mimic. ACS Chem. Neurosci. 2019, 10, 3703–3717. [Google Scholar] [CrossRef] [PubMed]
- Belsare, K.D.; Wu, H.; Mondal, D.; Bond, A.; Castillo, E.; Jin, J.; Jo, H.; Roush, A.E.; Pilla, K.B.; Sali, A.; et al. Soluble TREM2 inhibits secondary nucleation of Aβ fibrillization and enhances cellular uptake of fibrillar Aβ. Proc. Natl. Acad. Sci. USA 2022, 119, e2114486119. [Google Scholar] [CrossRef] [PubMed]
Sample (%) | α−Helix | β−Sheet | Turn | Others |
---|---|---|---|---|
Aβ40 | 10 | 74.4 | 3.8 | 11.8 |
with PSMα3 seeds at 1 h | 7.8 | 73.2 | 1.2 | 17.9 |
with PSMα3 seeds at 2.5 h | 29.3 | 63.6 | 7.1 | 0 |
with PSMα3 seeds at 5 h | 14.2 | 81.9 | 3.8 | 0 |
with PSMα3 seeds at 24 h | 18.3 | 79.1 | 2.6 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, B.; Xu, S.; Liang, Y.; Dong, X.; Sun, Y. Effect of Bacterial Amyloid Protein Phenol−Soluble Modulin Alpha 3 on the Aggregation of Amyloid Beta Protein Associated with Alzheimer’s Disease. Biomimetics 2023, 8, 459. https://doi.org/10.3390/biomimetics8060459
Peng B, Xu S, Liang Y, Dong X, Sun Y. Effect of Bacterial Amyloid Protein Phenol−Soluble Modulin Alpha 3 on the Aggregation of Amyloid Beta Protein Associated with Alzheimer’s Disease. Biomimetics. 2023; 8(6):459. https://doi.org/10.3390/biomimetics8060459
Chicago/Turabian StylePeng, Bushu, Shaoying Xu, Yue Liang, Xiaoyan Dong, and Yan Sun. 2023. "Effect of Bacterial Amyloid Protein Phenol−Soluble Modulin Alpha 3 on the Aggregation of Amyloid Beta Protein Associated with Alzheimer’s Disease" Biomimetics 8, no. 6: 459. https://doi.org/10.3390/biomimetics8060459
APA StylePeng, B., Xu, S., Liang, Y., Dong, X., & Sun, Y. (2023). Effect of Bacterial Amyloid Protein Phenol−Soluble Modulin Alpha 3 on the Aggregation of Amyloid Beta Protein Associated with Alzheimer’s Disease. Biomimetics, 8(6), 459. https://doi.org/10.3390/biomimetics8060459