Face Image Segmentation Using Boosted Grey Wolf Optimizer
Abstract
:1. Introduction
- A multi-threshold image segmentation method based on optimization technique and 2D histogram is proposed, which is used to segment face images;
- An enhanced grey wolf optimizer based on cosmic wormhole strategy is proposed that is used to obtain the optimal segmentation threshold for the image.
2. The Proposed WGWO
2.1. Original GWO (a Variant of PSO)
2.2. Improved GWO (WGWO)
3. Multi-Threshold Image Segmentation Method
3.1. The Basic Theory of Multi-Threshold Image Segmentation
3.1.1. NML 2-D Histogram
3.1.2. Kapur’s Entropy
3.2. Image Segmentation Method
Algorithm 1 The flow of image segmentation method |
Step 1: Input digital image I, which has a size of M × N. The grayscale image F is obtained by graying out the image I; Step 2: The grayscale image F is nonlocal mean filtered to obtain the nonlocal mean image G according to Equations (9)–(12); Step 3: A two-dimensional image histogram is constructed using the grayscale values and nonlocal means in F and G; Step 4: Compute the two-dimensional Kapur’s entropy according to Equations (13)–(15); Step 5: Kapur’s entropy of the two-dimensional histogram is optimized using WGWO; Step 6: Multi-threshold image segmentation is performed according to the optimal threshold set to obtain pseudo-color and gray images. |
4. Experiment Simulation and Analysis
4.1. IEEE CEC2020 Benchmark Dataset Experiment
4.2. Multi-Threshold Face Image Segmentation Experiment
4.2.1. Experimental Settings
4.2.2. Image Segmentation Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Abdulhussain, S.H.; Mahmmod, B.M.; AlGhadhban, A.; Flusser, J. Face recognition algorithm based on fast computation of orthogonal moments. Mathematics 2022, 10, 2721. [Google Scholar] [CrossRef]
- Minaee, S.; Luo, P.; Lin, Z.; Bowyer, K. Going deeper into face detection: A survey. arXiv 2021, arXiv:2103.14983. [Google Scholar]
- Mahmmod, B.M.; Abdulhussain, S.H.; Naser, M.A.; Alsabah, M.; Hussain, A.; Al-Jumeily, D. 3D Object Recognition Using Fast Overlapped Block Processing Technique. Sensors 2022, 22, 9209. [Google Scholar] [CrossRef] [PubMed]
- Szczuko, P.; Czyżewski, A.; Hoffmann, P.; Bratoszewski, P.; Lech, M. Validating data acquired with experimental multimodal biometric system installed in bank branches. J. Intell. Inf. Syst. 2019, 52, 1–31. [Google Scholar] [CrossRef]
- Rice, L.M.; Wall, C.A.; Fogel, A.; Shic, F. Computer-assisted face processing instruction improves emotion recognition, mentalizing, and social skills in students with ASD. J. Autism Dev. Disord. 2015, 45, 2176–2186. [Google Scholar] [CrossRef]
- Gul, S.; Bano, S. Smart libraries: An emerging and innovative technological habitat of 21st century. Electron. Libr. 2019, 37, 764–783. [Google Scholar] [CrossRef]
- Rangayya; Virupakshappa; Patil, N. Improved face recognition method using SVM-MRF with KTBD based KCM segmentation approach. Int. J. Syst. Assur. Eng. Manag. 2022, 1–12. [Google Scholar] [CrossRef]
- Khan, K.; Attique, M.; Syed, I.; Gul, A. Automatic gender classification through face segmentation. Symmetry 2019, 11, 770. [Google Scholar] [CrossRef]
- Segundo, M.P.P.; Silva, L.; Bellon, O.R.P.; Queirolo, C.C. Automatic face segmentation and facial landmark detection in range images. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2010, 40, 1319–1330. [Google Scholar] [CrossRef]
- Zhang, M.; Xie, K.; Zhang, Y.-H.; Wen, C.; He, J.-B. Fine Segmentation on Faces With Masks Based on a Multistep Iterative Segmentation Algorithm. IEEE Access 2022, 10, 75742–75753. [Google Scholar] [CrossRef]
- Wu, H.; Miao, Z.; Wang, Y.; Chen, J. Recognition improvement through optimized spatial support methodology. Multimed. Tools Appl. 2016, 75, 5603–5618. [Google Scholar] [CrossRef]
- Lee, Y.W.; Kim, K.W.; Hoang, T.M.; Arsalan, M.; Park, K.R. Deep residual CNN-based ocular recognition based on rough pupil detection in the images by NIR camera sensor. Sensors 2019, 19, 842. [Google Scholar] [CrossRef] [PubMed]
- Mittal, H.; Saraswat, M. An optimum multi-level image thresholding segmentation using non-local means 2D histogram and exponential Kbest gravitational search algorithm. Eng. Appl. Artif. Intell. 2018, 71, 226–235. [Google Scholar] [CrossRef]
- Zhao, X.; Turk, M.; Li, W.; Lien, K.-c.; Wang, G. A multilevel image thresholding segmentation algorithm based on two-dimensional K–L divergence and modified particle swarm optimization. Appl. Soft Comput. 2016, 48, 151–159. [Google Scholar] [CrossRef]
- Huang, Q.; Sun, Y.; Huang, L.; Zhang, P. The liver CT image sequence segmentation based on region growing. In Proceedings of the 2015 International Conference on Advanced Engineering Materials and Technology, Guangzhou, China, 22–23 August 2015; pp. 572–577. [Google Scholar]
- Liu, L.; Li, B.; Wang, Y.; Yang, J. Remote sensing image segmentation based on improved Canny edge detection. Calc. Mech. Eng. Appl. 2019, 12, 56–57. [Google Scholar]
- Wu, J.; Yuan, T.; Zeng, J.; Gou, F. A Medically Assisted Model for Precise Segmentation of Osteosarcoma Nuclei on Pathological Images. IEEE J. Biomed. Health Inform. 2023, 27, 3982–3993. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Qin, Y.; Gou, F.; Wu, J. A Novel Medical Decision-Making System Based on Multi-Scale Feature Enhancement for Small Samples. Mathematics 2023, 11, 2116. [Google Scholar] [CrossRef]
- Xia, X.; Kulis, B. W-net: A deep model for fully unsupervised image segmentation. arXiv 2017, arXiv:1711.08506. [Google Scholar]
- Kim, W.; Kanezaki, A.; Tanaka, M. Unsupervised learning of image segmentation based on differentiable feature clustering. IEEE Trans. Image Process. 2020, 29, 8055–8068. [Google Scholar] [CrossRef]
- Li, Y.; Jiao, L.; Shang, R.; Stolkin, R.J. Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation. Inf. Sci. 2015, 294, 408–422. [Google Scholar] [CrossRef]
- Liu, W.; Shi, H.; He, X.; Pan, S.; Ye, Z.; Wang, Y. An application of optimized Otsu multi-threshold segmentation based on fireworks algorithm in cement SEM image. J. Algorithms Comput. Technol. 2018, 13, 1748301818797025. [Google Scholar] [CrossRef]
- Wei, L.; Xiao-hui, H.; Hong-chuang, W. Two-dimensional cross entropy multi-threshold image segmentation based on improved BBO algorithm. J. Meas. Sci. Instrum. 2018, 9, 42–49. [Google Scholar]
- Dutta, T.; Dey, S.; Bhattacharyya, S.; Mukhopadhyay, S.; Chakrabarti, P. Hyperspectral multi-level image thresholding using qutrit genetic algorithm. Expert Syst. Appl. 2021, 181, 115107. [Google Scholar] [CrossRef]
- Li, B.; Tan, Y.; Wu, A.-G.; Duan, G.-R. A distributionally robust optimization based method for stochastic model predictive control. IEEE Trans. Autom. Control 2021, 67, 5762–5776. [Google Scholar] [CrossRef]
- Xu, X.; Lin, Z.; Li, X.; Shang, C.; Shen, Q. Multi-objective robust optimisation model for MDVRPLS in refined oil distribution. Int. J. Prod. Res. 2022, 60, 6772–6792. [Google Scholar] [CrossRef]
- Cao, B.; Zhao, J.; Gu, Y.; Fan, S.; Yang, P. Security-aware industrial wireless sensor network deployment optimization. IEEE Trans. Ind. Inform. 2019, 16, 5309–5316. [Google Scholar] [CrossRef]
- Cao, B.; Wang, X.; Zhang, W.; Song, H.; Lv, Z. A Many-Objective Optimization Model of Industrial Internet of Things Based on Private Blockchain. IEEE Netw. 2020, 34, 78–83. [Google Scholar] [CrossRef]
- Cao, B.; Dong, W.; Lv, Z.; Gu, Y.; Singh, S.; Kumar, P. Hybrid Microgrid Many-Objective Sizing Optimization with Fuzzy Decision. IEEE Trans. Fuzzy Syst. 2020, 28, 2702–2710. [Google Scholar] [CrossRef]
- Cao, B.; Zhao, J.; Lv, Z.; Yang, P. Diversified personalized recommendation optimization based on mobile data. IEEE Trans. Intell. Transp. Syst. 2020, 22, 2133–2139. [Google Scholar] [CrossRef]
- Cao, B.; Li, M.; Liu, X.; Zhao, J.; Cao, W.; Lv, Z. Many-Objective Deployment Optimization for a Drone-Assisted Camera Network. IEEE Trans. Netw. Sci. Eng. 2021, 8, 2756–2764. [Google Scholar] [CrossRef]
- Qian, L.; Zheng, Y.; Li, L.; Ma, Y.; Zhou, C.; Zhang, D. A new method of inland water ship trajectory prediction based on long short-term memory network optimized by genetic algorithm. Appl. Sci. 2022, 12, 4073. [Google Scholar] [CrossRef]
- Cao, B.; Zhao, J.; Gu, Y.; Ling, Y.; Ma, X. Applying graph-based differential grouping for multiobjective large-scale optimization. Swarm Evol. Comput. 2020, 53, 100626. [Google Scholar] [CrossRef]
- Cao, B.; Gu, Y.; Lv, Z.; Yang, S.; Zhao, J.; Li, Y. RFID reader anticollision based on distributed parallel particle swarm optimization. IEEE Internet Things J. 2020, 8, 3099–3107. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Chen, Y.; Xiong, Y.; Song, Z. Hybrid Method with Parallel-Factor Theory, a Support Vector Machine, and Particle Filter Optimization for Intelligent Machinery Failure Identification. Machines 2023, 11, 837. [Google Scholar] [CrossRef]
- Yu, H.; Song, J.; Chen, C.; Heidari, A.A.; Liu, J.; Chen, H.; Zaguia, A.; Mafarja, M. Image segmentation of Leaf Spot Diseases on Maize using multi-stage Cauchy-enabled grey wolf algorithm. Eng. Appl. Artif. Intell. 2022, 109, 104653. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, D.; Yu, F.; Heidari, A.A.; Bano, Y.; Ibrohimov, A.; Liu, Y.; Cai, Z.; Chen, H.; Chen, X. Boosted machine learning model for predicting intradialytic hypotension using serum biomarkers of nutrition. Comput. Biol. Med. 2022, 147, 105752. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, R.; Zhao, D.; Yu, F.; Huang, C.; Heidari, A.A.; Cai, Z.; Bourouis, S.; Algarni, A.D.; Chen, H. An adaptive quadratic interpolation and rounding mechanism sine cosine algorithm with application to constrained engineering optimization problems. Expert Syst. Appl. 2023, 213, 119041. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, R.; Heidari, A.A.; Wang, X.; Chen, Y.; Wang, M.; Chen, H. Towards augmented kernel extreme learning models for bankruptcy prediction: Algorithmic behavior and comprehensive analysis. Neurocomputing 2021, 430, 185–212. [Google Scholar] [CrossRef]
- Wen, X.; Wang, K.; Li, H.; Sun, H.; Wang, H.; Jin, L. A two-stage solution method based on NSGA-II for Green Multi-Objective integrated process planning and scheduling in a battery packaging machinery workshop. Swarm Evol. Comput. 2021, 61, 100820. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, Y.; Lai, X. An integrated framework with evolutionary algorithm for multi-scenario multi-objective optimization problems. Inf. Sci. 2022, 600, 342–361. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Saha, A.K. A Hybrid Moth Flame Optimization Algorithm for Global Optimization. J. Bionic Eng. 2022, 19, 1522–1543. [Google Scholar] [CrossRef]
- Sharma, S.; Chakraborty, S.; Saha, A.K.; Nama, S.; Sahoo, S.K. mLBOA: A Modified Butterfly Optimization Algorithm with Lagrange Interpolation for Global Optimization. J. Bionic Eng. 2022, 19, 1161–1176. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, W.; Xie, N.; Bao, H.; Maybank, S. A robust tracking system for low frame rate video. Int. J. Comput. Vis. 2015, 115, 279–304. [Google Scholar] [CrossRef]
- Dong, R.; Chen, H.; Heidari, A.A.; Turabieh, H.; Mafarja, M.; Wang, S. Boosted kernel search: Framework, analysis and case studies on the economic emission dispatch problem. Knowl.-Based Syst. 2021, 233, 107529. [Google Scholar] [CrossRef]
- Xue, Y.; Tong, Y.; Neri, F. An ensemble of differential evolution and Adam for training feed-forward neural networks. Inf. Sci. 2022, 608, 453–471. [Google Scholar] [CrossRef]
- Sun, G.; Yang, G.; Zhang, G. Two-level parameter cooperation-based population regeneration framework for differential evolution. Swarm Evol. Comput. 2022, 75, 101122. [Google Scholar] [CrossRef]
- Li, C.; Sun, G.; Deng, L.; Qiao, L.; Yang, G. A population state evaluation-based improvement framework for differential evolution. Inf. Sci. 2023, 629, 15–38. [Google Scholar] [CrossRef]
- Sun, G.; Li, C.; Deng, L. An adaptive regeneration framework based on search space adjustment for differential evolution. Neural Comput. Appl. 2021, 33, 9503–9519. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Chen, H.; Li, C.; Mafarja, M.; Heidari, A.A.; Chen, Y.; Cai, Z. Slime mould algorithm: A comprehensive review of recent variants and applications. Int. J. Syst. Sci. 2022, 54, 204–235. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst. Appl. 2021, 177, 114864. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Tu, J.; Chen, H.; Wang, M.; Gandomi, A.H. The Colony Predation Algorithm. J. Bionic Eng. 2021, 18, 674–710. [Google Scholar] [CrossRef]
- Su, H.; Zhao, D.; Asghar Heidari, A.; Liu, L.; Zhang, X.; Mafarja, M.; Chen, H. RIME: A physics-based optimization. Neurocomputing 2023, 532, 183–214. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Asghar Heidari, A.; Noshadian, S.; Chen, H.; Gandomi, A.H. INFO: An Efficient Optimization Algorithm based on Weighted Mean of Vectors. Expert Syst. Appl. 2022, 195, 116516. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Asghar Heidari, A.; Gandomi, A.H.; Chu, X.; Chen, H. RUN Beyond the Metaphor: An Efficient Optimization Algorithm Based on Runge Kutta Method. Expert Syst. Appl. 2021, 181, 115079. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Wang, Y.; Han, X.; Jin, S. MAP based modeling method and performance study of a task offloading scheme with time-correlated traffic and VM repair in MEC systems. Wirel. Netw. 2023, 29, 47–68. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Yang, X.; Wang, R.; Zhao, D.; Yu, F.; Heidari, A.A.; Xu, Z.; Chen, H.; Algarni, A.D.; Elmannai, H.; Xu, S. Multi-level threshold segmentation framework for breast cancer images using enhanced differential evolution. Biomed. Signal Process. Control 2023, 80, 104373. [Google Scholar] [CrossRef]
- Zhang, J.; Sanderson, A.C. JADE: Adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 2009, 13, 945–958. [Google Scholar] [CrossRef]
- Guo, S.-M.; Tsai, J.S.-H.; Yang, C.-C.; Hsu, P.-H. A self-optimization approach for L-SHADE incorporated with eigenvector-based crossover and successful-parent-selecting framework on CEC 2015 benchmark set. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015; pp. 1003–1010. [Google Scholar]
- Qu, C.; Zeng, Z.; Dai, J.; Yi, Z.; He, W. A modified sine-cosine algorithm based on neighborhood search and greedy levy mutation. Comput. Intell. Neurosci. 2018, 2018, 4231647. [Google Scholar] [CrossRef]
- Han, S.; Xiao, L. An improved adaptive genetic algorithm. SHS Web Conf. 2022, 140, 01044. [Google Scholar] [CrossRef]
- Camacho Villalón, C.L.; Stützle, T.; Dorigo, M. Grey Wolf, Firefly and Bat Algorithms: Three Widespread Algorithms that Do Not Contain Any Novelty. In Proceedings of the Swarm Intelligence, Barcelona, Spain, 26–28 October 2020; pp. 121–133. [Google Scholar]
- Cai, Z.; Gu, J.; Luo, J.; Zhang, Q.; Chen, H.; Pan, Z.; Li, Y.; Li, C. Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy. Expert Syst. Appl. 2019, 138, 112814. [Google Scholar] [CrossRef]
- Choubey, V.; Parkh, K.; Jangid, R. Optimal Design of Power System Stabilizer Using a Gray Wolf Optimization Technique. Int. J. Res. Eng. Sci. Manag. 2019, 2, 2581–5792. [Google Scholar]
- Li, J.; Yang, F. Task assignment strategy for multi-robot based on improved Grey Wolf Optimizer. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 6319–6335. [Google Scholar] [CrossRef]
- Mehmood, K.; Chaudhary, N.I.; Khan, Z.A.; Cheema, K.M.; Raja, M.A.Z. Variants of chaotic grey wolf heuristic for robust identification of control autoregressive model. Biomimetics 2023, 8, 141. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the Eighth IEEE International Conference on Computer Vision, ICCV 2001, Vancouver, BC, Canada, 7–14 July 2001; pp. 416–423. [Google Scholar]
- Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 4401–4410. [Google Scholar]
- Camacho-Villalón, C.L.; Dorigo, M.; Stützle, T. Exposing the grey wolf, moth-flame, whale, firefly, bat, and antlion algorithms: Six misleading optimization techniques inspired by bestial metaphors. Int. Trans. Oper. Res. 2023, 30, 2945–2971. [Google Scholar] [CrossRef]
- Zhang, Z.; Hong, W.-C. Application of variational mode decomposition and chaotic grey wolf optimizer with support vector regression for forecasting electric loads. Knowl.-Based Syst. 2021, 228, 107297. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.; Zamani, H.; Bahreininejad, A. GGWO: Gaze cues learning-based grey wolf optimizer and its applications for solving engineering problems. J. Comput. Sci. 2022, 61, 101636. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
- Kapur, J.N.; Kesavan, H.K. Entropy optimization principles and their applications. In Entropy and Energy Dissipation in Water Resources; Springer: Dordrecht, The Netherlands, 1992; pp. 3–20. [Google Scholar]
- Kadavy, T.; Pluhacek, M.; Viktorin, A.; Senkerik, R. SOMA-CL for competition on single objective bound constrained numerical optimization benchmark: A competition entry on single objective bound constrained numerical optimization at the genetic and evolutionary computation conference (GECCO) 2020. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, Cancún, Mexico, 8–12 July 2020; pp. 9–10. [Google Scholar]
- Chen, X.; Tianfield, H.; Mei, C.; Du, W.; Liu, G. Biogeography-based learning particle swarm optimization. Soft Comput. 2017, 21, 7519–7541. [Google Scholar] [CrossRef]
- Nenavath, H.; Jatoth, R.K. Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Appl. Soft Comput. 2018, 62, 1019–1043. [Google Scholar] [CrossRef]
- Tubishat, M.; Abushariah, M.A.; Idris, N.; Aljarah, I. Improved whale optimization algorithm for feature selection in Arabic sentiment analysis. Appl. Intell. 2019, 49, 1688–1707. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008, 44, 800–801. [Google Scholar] [CrossRef]
- García, S.; Fernández, A.; Luengo, J.; Herrera, F.J. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci. 2010, 180, 2044–2064. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, H.; Chen, H.; Shi, W.; Feng, Y. JAMSNet: A Remote Pulse Extraction Network Based on Joint Attention and Multi-Scale Fusion. IEEE Trans. Circuits Syst. Video Technol. 2022, 33, 2783–2797. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, J.; Wang, D.; Zhao, L. Exemplar-Based Denoising: A Unified Low-Rank Recovery Framework. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 2538–2549. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, J.; Fan, Y.; Wang, J.; Niu, J.; Gu, F.; Shen, S. MSEva: A musculoskeletal rehabilitation evaluation system based on EMG signals. ACM Trans. Sens. Netw. 2022, 19, 1–23. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, J.; Wang, D.; Tang, G.; Zhou, Z.; Lin, Z. Structured Sparsity Optimization With Non-Convex Surrogates of ℓ2,0ℓ2,0-Norm: A Unified Algorithmic Framework. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 6386–6402. [Google Scholar] [CrossRef]
- Chen, J.; Cai, Z.; Chen, H.; Chen, X.; Escorcia-Gutierrez, J.; Mansour, R.F.; Ragab, M. Renal Pathology Images Segmentation Based on Improved Cuckoo Search with Diffusion Mechanism and Adaptive Beta-Hill Climbing. J. Bionic Eng. 2023, 20, 2240–2275. [Google Scholar] [CrossRef] [PubMed]
- Kourou, K.; Manikis, G.; Poikonen-Saksela, P.; Mazzocco, K.; Pat-Horenczyk, R.; Sousa, B.; Oliveira-Maia, A.J.; Mattson, J.; Roziner, I.; Pettini, G.; et al. A machine learning-based pipeline for modeling medical, socio-demographic, lifestyle and self-reported psychological traits as predictors of mental health outcomes after breast cancer diagnosis: An initial effort to define resilience effects. Comput. Biol. Med. 2021, 131, 104266. [Google Scholar] [CrossRef] [PubMed]
- Faruqui, N.; Yousuf, M.A.; Whaiduzzaman, M.; Azad, A.K.M.; Barros, A.; Moni, M.A. LungNet: A hybrid deep-CNN model for lung cancer diagnosis using CT and wearable sensor-based medical IoT data. Comput. Biol. Med. 2021, 139, 104961. [Google Scholar] [CrossRef] [PubMed]
- Hržić, F.; Tschauner, S.; Sorantin, E.; Štajduhar, I. XAOM: A method for automatic alignment and orientation of radiographs for computer-aided medical diagnosis. Comput. Biol. Med. 2021, 132, 104300. [Google Scholar] [CrossRef]
- Lv, J.; Li, G.; Tong, X.; Chen, W.; Huang, J.; Wang, C.; Yang, G. Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction. Comput. Biol. Med. 2021, 134, 104504. [Google Scholar] [CrossRef]
- Cao, X.; Cao, T.; Xu, Z.; Zeng, B.; Gao, F.; Guan, X. Resilience Constrained Scheduling of Mobile Emergency Resources in Electricity-Hydrogen Distribution Network. IEEE Trans. Sustain. Energy 2022, 14, 1269–1284. [Google Scholar] [CrossRef]
Class. | No. | Functions | Fmin |
---|---|---|---|
Unimodal Function | F1 | Shifted and Rotated Bent Cigar Function | 100 |
Basic Functions | F2 | Shifted and Rotated Schwefel’s Function | 1100 |
F3 | Shifted and Rotated Lunacek bi-Rastrigin Function | 700 | |
F4 | Expanded Rosenbrock’s plus Griewangk’s Function | 1900 | |
Hybrid Functions | F5 | Hybrid Function 1 (N = 3) | 1700 |
F6 | Hybrid Function 2 (N = 4) | 1600 | |
F7 | Hybrid Function 3 (N = 5) | 2100 | |
Composition Functions | F8 | Composition Function 1 (N = 3) | 2200 |
F9 | Composition Function 2 (N = 4) | 2400 | |
F10 | Composition Function 3 (N = 5) | 2500 | |
Search range: [–100, 100]D |
No. | WGWO | WGWO1 | WGWO2 | GWO |
---|---|---|---|---|
F1 | 2 | 1 | 3 | 4 |
F2 | 1 | 2 | 3 | 4 |
F3 | 2 | 3 | 1 | 4 |
F4 | 2 | 3 | 1 | 4 |
F5 | 1 | 2 | 3 | 4 |
F6 | 1 | 2 | 3 | 4 |
F7 | 1 | 3 | 2 | 4 |
F8 | 3 | 1 | 2 | 4 |
F9 | 3 | 2 | 1 | 4 |
F10 | 3 | 2 | 1 | 4 |
Result | 1 (1.90) | 3 (2.10) | 2 (2.00) | 4 (4.00) |
No. | [0, 1] | [0.1, 1] | [0.2, 1] | [0.3, 1] | [0.4, 1] | [0.5, 1] | [0.6, 1] | [0.7, 1] | [0.8, 1] | [0.9, 1] |
---|---|---|---|---|---|---|---|---|---|---|
F1 | 6 | 8 | 4 | 10 | 5 | 3 | 1 | 9 | 2 | 7 |
F2 | 7 | 8 | 10 | 6 | 4 | 2 | 5 | 1 | 9 | 3 |
F3 | 9 | 4 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 10 |
F4 | 1 | 2 | 4 | 3 | 5 | 6 | 9 | 7 | 10 | 8 |
F5 | 1 | 2 | 6 | 8 | 5 | 9 | 3 | 4 | 7 | 10 |
F6 | 2 | 4 | 9 | 6 | 7 | 1 | 5 | 3 | 10 | 8 |
F7 | 5 | 1 | 2 | 3 | 10 | 7 | 4 | 6 | 9 | 8 |
F8 | 9 | 5 | 1 | 2 | 4 | 3 | 8 | 6 | 7 | 10 |
F9 | 10 | 8 | 2 | 1 | 3 | 4 | 6 | 5 | 7 | 9 |
F10 | 1 | 4 | 6 | 3 | 9 | 5 | 8 | 10 | 2 | 7 |
Result | 5 (5.1) | 4 (4.6) | 2 (4.5) | 1 (4.4) | 6 (5.5) | 2 (4.5) | 6 (5.5) | 8 (5.8) | 9 (7.1) | 10 (8) |
No. | C (1) | C (2) | C (3) | C (4) | C (5) | C (6) | C (7) | C (8) | C (9) |
---|---|---|---|---|---|---|---|---|---|
F1 | 9 | 8 | 7 | 6 | 5 | 3 | 2 | 4 | 1 |
F2 | 9 | 8 | 7 | 5 | 6 | 3 | 1 | 4 | 2 |
F3 | 8 | 9 | 7 | 6 | 5 | 2 | 4 | 1 | 3 |
F4 | 7 | 9 | 8 | 2 | 3 | 1 | 6 | 4 | 5 |
F5 | 9 | 8 | 7 | 4 | 6 | 1 | 3 | 2 | 5 |
F6 | 9 | 4 | 3 | 7 | 1 | 2 | 6 | 8 | 5 |
F7 | 9 | 7 | 8 | 4 | 5 | 6 | 2 | 3 | 1 |
F8 | 6 | 5 | 3 | 8 | 9 | 4 | 7 | 1 | 2 |
F9 | 5 | 1 | 2 | 4 | 3 | 7 | 6 | 8 | 9 |
F10 | 9 | 8 | 7 | 1 | 3 | 2 | 4 | 6 | 5 |
Result | 9 (8) | 8 (6.7) | 7 (5.9) | 6 (4.7) | 5 (4.6) | 1 (3.1) | 3 (4.1) | 3 (4.1) | 2 (3.8) |
Methods | Parameters | Criteria |
---|---|---|
WGWO | [2 0] | Original paper [61] |
Ada ∈[0.3 1] | Parameter sensitivity analysis (Section 4.1) | |
C = 6 | Parameter sensitivity analysis (Section 4.1) | |
GWO | a ∈[2 0] | Original paper [61] |
PSO | = = 2 | Original paper [50] |
WOA | [−1 −2], b = 1 | Original paper [52] |
BLPSO | c [0.9 0.2] | Original paper [82] |
IGWO | Original paper [70] | |
HLDDE | [0 0.4] | Original paper [64] |
SCADE | a = 0.8 | Original paper [83] |
IWOA | [−1 −2] | Original paper [84] |
Metrics | Formulas | Remarks |
---|---|---|
FSIM [85] | FSIM is an image quality assessment method based on phase consistency features and gradient features complementing each other. | |
SSIM [86] | SSIM is a similarity assessment based on the luminance, contrast, and structure of the original image and the segmented image, which is a full-reference image quality evaluation index more in line with human vision’s judgment of image quality. | |
PSNR [87] | PSNR represents the ratio of the maximum possible power of a signal to the destructive noise power affecting its representation accuracy and is an objective full-reference image quality evaluation index. |
Methods | 5-Level | 8-Level | 15-Level | 18-Level | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
+/−/= | Mean | Rank | +/−/= | Mean | Rank | +/−/= | Mean | Rank | +/−/= | Mean | Rank | |
WGWO | ~ | 1.63 | 1 | ~ | 1.38 | 1 | ~ | 1.63 | 1 | ~ | 1.38 | 1 |
GWO | 2/3/3 | 2.38 | 2 | 2/3/3 | 1.88 | 2 | 2/0/6 | 2 | 2 | 3/0/5 | 2.5 | 2 |
PSO | 6/1/1 | 4 | 4 | 6/0/2 | 3.75 | 3 | 6/0/2 | 3.88 | 4 | 5/0/3 | 3.63 | 4 |
WOA | 5/0/3 | 5.63 | 5 | 6/0/2 | 3.75 | 3 | 4/0/4 | 2.88 | 3 | 2/0/6 | 2.75 | 3 |
BLPSO | 5/0/3 | 6.00 | 7 | 8/0/0 | 7.25 | 7 | 8/0/0 | 7.38 | 8 | 8/0/0 | 7.38 | 8 |
IGWO | 5/0/3 | 3.88 | 3 | 8/0/0 | 5.13 | 5 | 8/0/0 | 6.88 | 7 | 8/0/0 | 6.88 | 7 |
HLDDE | 8/0/0 | 5.63 | 5 | 8/0/0 | 5.38 | 6 | 8/0/0 | 5.00 | 5 | 8/0/0 | 5.13 | 5 |
SCADE | 8/0/0 | 8.50 | 9 | 8/0/0 | 9.00 | 9 | 8/0/0 | 9.00 | 9 | 8/0/0 | 9.00 | 9 |
IWOA | 8/0/0 | 7.38 | 8 | 8/0/0 | 7.50 | 8 | 8/0/0 | 6.38 | 6 | 8/0/0 | 6.38 | 6 |
Methods | 5-Level | 8-Level | 15-Level | 18-Level | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
+/−/= | Mean | Rank | +/−/= | Mean | Rank | +/−/= | Mean | Rank | +/−/= | Mean | Rank | |
WGWO | ~ | 2.00 | 1 | ~ | 1.88 | 1 | ~ | 1.38 | 1 | ~ | 1.63 | 1 |
GWO | 3/2/3 | 2.25 | 2 | 1/2/5 | 2 | 2 | 1/1/6 | 2.13 | 2 | 0/0/8 | 2.38 | 2 |
PSO | 6/1/1 | 3.63 | 3 | 7/0/1 | 4.38 | 4 | 7/0/1 | 4.88 | 5 | 7/0/1 | 5 | 5 |
WOA | 5/0/3 | 4.88 | 5 | 6/0/2 | 4.00 | 3 | 3/0/5 | 2.88 | 3 | 2/0/6 | 2.88 | 3 |
BLPSO | 4/0/4 | 5.25 | 6 | 7/1/0 | 6.00 | 7 | 7/0/1 | 6.63 | 6 | 7/0/1 | 6.00 | 6 |
IGWO | 5/0/3 | 4.75 | 4 | 7/0/1 | 5.25 | 6 | 7/0/1 | 6.75 | 7 | 8/0/0 | 6.88 | 7 |
HLDDE | 5/0/3 | 5.50 | 7 | 7/1/0 | 4.88 | 5 | 8/0/0 | 4.50 | 4 | 5/0/3 | 4.25 | 4 |
SCADE | 8/0/0 | 9.00 | 9 | 7/0/1 | 9.00 | 9 | 8/0/0 | 9.00 | 9 | 8/0/0 | 8.88 | 9 |
IWOA | 8/0/0 | 7.75 | 8 | 8/0/0 | 7.63 | 8 | 8/0/0 | 6.88 | 8 | 8/0/0 | 7.13 | 8 |
Methods | 5-Level | 8-Level | 15-Level | 18-Level | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
+/−/= | Mean | Rank | +/−/= | Mean | Rank | +/−/= | Mean | Rank | +/−/= | Mean | Rank | |
WGWO | ~ | 2.50 | 1 | ~ | 1.63 | 1 | ~ | 1.50 | 1 | ~ | 1.25 | 1 |
GWO | 3/1/4 | 2.63 | 2 | 5/1/2 | 2.63 | 3 | 4/1/3 | 3.00 | 3 | 4/1/3 | 2.88 | 2 |
PSO | 2/2/4 | 2.75 | 3 | 2/2/4 | 2.00 | 2 | 2/0/6 | 2.75 | 2 | 4/0/4 | 3.00 | 3 |
WOA | 4/0/4 | 5.88 | 6 | 6/0/2 | 4.38 | 4 | 3/0/5 | 3.63 | 4 | 3/0/5 | 3.50 | 4 |
BLPSO | 7/0/1 | 5.63 | 5 | 8/0/0 | 7.00 | 8 | 7/0/1 | 6.88 | 7 | 7/0/1 | 7.13 | 8 |
IGWO | 4/0/4 | 3.63 | 4 | 7/0/1 | 4.75 | 5 | 8/0/0 | 6.88 | 7 | 8/0/0 | 7.00 | 7 |
HLDDE | 8/0/0 | 6.50 | 7 | 8/0/0 | 6.88 | 6 | 7/0/1 | 5.00 | 5 | 7/0/1 | 5.25 | 5 |
SCADE | 7/0/1 | 8.00 | 9 | 7/0/1 | 8.88 | 9 | 8/0/0 | 9.00 | 9 | 8/0/0 | 8.75 | 9 |
IWOA | 6/0/2 | 7.50 | 8 | 7/0/1 | 6.88 | 6 | 8/0/0 | 6.38 | 6 | 8/0/0 | 6.25 | 6 |
Metrics | Items | GWO | PSO | WOA | BLPSO | IGWO | HLDDE | SCADE | IWOA | WGWO |
---|---|---|---|---|---|---|---|---|---|---|
FSIM | +/−/= | 7/0/1 | 6/1/1 | 3/1/4 | 8/0/0 | 8/0/0 | 8/0/0 | 8/0/0 | 8/0/0 | ~ |
Mean | 3.75 | 3.00 | 1.75 | 7.63 | 5.88 | 5.38 | 8.88 | 7.13 | 1.63 | |
Rank | 4 | 3 | 2 | 8 | 6 | 5 | 9 | 7 | 1 | |
PSNR | +/−/= | 6/0/2 | 1/1/6 | 3/1/4 | 7/0/1 | 8/0/0 | 6/0/2 | 8/0/0 | 8/0/0 | ~ |
Mean | 4.75 | 2.50 | 2.13 | 6.63 | 5.88 | 4.63 | 8.88 | 7.75 | 1.88 | |
Rank | 5 | 3 | 2 | 7 | 6 | 4 | 9 | 8 | 1 | |
SSIM | +/−/= | 5/1/2 | 4/0/4 | 1/1/6 | 7/0/1 | 7/0/1 | 7/0/1 | 8/0/0 | 8/0/0 | ~ |
Mean | 2.88 | 3.50 | 2.63 | 7.50 | 5.38 | 5.38 | 8.75 | 7.38 | 1.63 | |
Rank | 3 | 4 | 2 | 8 | 5 | 5 | 9 | 7 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Cai, Z.; Xiao, L.; Heidari, A.A.; Chen, H.; Zhao, D.; Wang, S.; Zhang, Y. Face Image Segmentation Using Boosted Grey Wolf Optimizer. Biomimetics 2023, 8, 484. https://doi.org/10.3390/biomimetics8060484
Zhang H, Cai Z, Xiao L, Heidari AA, Chen H, Zhao D, Wang S, Zhang Y. Face Image Segmentation Using Boosted Grey Wolf Optimizer. Biomimetics. 2023; 8(6):484. https://doi.org/10.3390/biomimetics8060484
Chicago/Turabian StyleZhang, Hongliang, Zhennao Cai, Lei Xiao, Ali Asghar Heidari, Huiling Chen, Dong Zhao, Shuihua Wang, and Yudong Zhang. 2023. "Face Image Segmentation Using Boosted Grey Wolf Optimizer" Biomimetics 8, no. 6: 484. https://doi.org/10.3390/biomimetics8060484
APA StyleZhang, H., Cai, Z., Xiao, L., Heidari, A. A., Chen, H., Zhao, D., Wang, S., & Zhang, Y. (2023). Face Image Segmentation Using Boosted Grey Wolf Optimizer. Biomimetics, 8(6), 484. https://doi.org/10.3390/biomimetics8060484