Bioinspired Garra Rufa Optimization-Assisted Deep Learning Model for Object Classification on Pedestrian Walkways
Abstract
:1. Introduction
- An effective BGRODL-OC technique is developed in this study, comprising GhostNet feature extraction, GRO-based hyperparameter tuning, and ALSTM-based classification for pedestrian walkway detection. To the best of the authors’ knowledge, the BRGODL-OC technique has never been mentioned in the literature.
- The GhostNet model is developed to produce a collection of feature vectors. This model is known for its efficiency and effectiveness in deep-learning-based image analysis and in improving the accuracy of object detection.
- The BRGO algorithm is employed for the hyperparameter tuning process, which helps in fine-tuning the model’s parameters to improve its performance in object classification.
- The ALSTM model is presented for the object classification process, which can capture long-term dependencies in video data. The attention mechanism enhances the model’s ability to focus on relevant information, thus further improving the accuracy.
2. Related Works
3. The Proposed Model
3.1. Feature Extraction: GhostNet Model
3.2. Hyperparameter Tuning: GRO Algorithm
Algorithm 1: Pseudocode of the GRO algorithm |
Select the primary values (number of particles, leader number, FF limits) Followers number leaders number Compute FF for of particles, with sort FF While iteration do For to leader counts Upgrade particles for the follower for leaders utilizing optimizer system End for to leader counts Followers(0,followers mobile_fishes) The total amount of mobile_fishes total no. mobile_fishes+ mobile_fishes End for Followers(1) total no. of mobile_fishes Followers(1) Define the performance of sub-global for all the leaders Compute the global solution End while |
3.3. Object Classification: ALSTM Model
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdullah, F.; Abdelhaq, M.; Alsaqour, R.; Alatiyyah, M.H.; Alnowaiser, K.; Alotaibi, S.S.; Park, J. Context-aware crowd tracking and anomaly detection via deep learning and social force model. IEEE Access 2023, 11, 75884–75898. [Google Scholar] [CrossRef]
- Elallid, B.B.; Hamdani, S.E.; Benamar, N.; Mrani, N. Deep learning-based modelling of pedestrian perception and decision-making in Refuge Island for autonomous driving. In Computational Intelligence in Recent Communication Networks; Springer International Publishing: Cham, Switzerland, 2022; pp. 135–146. [Google Scholar] [CrossRef]
- Wong, P.K.-Y.; Luo, H.; Wang, M.; Leung, P.H.; Cheng, J.C.P. Recognition of pedestrian trajectories and attributes with computer vision and deep learning techniques. Adv. Eng. Inform. 2021, 49, 101356. [Google Scholar] [CrossRef]
- Monika; Singh, P.; Chand, S. Computer vision-based framework for pedestrian movement direction recognition. J. Intell. Fuzzy Syst. 2023, 44, 8015–8027. [Google Scholar] [CrossRef]
- Lin, H.W.; Shivanna, V.M.; Chang, H.C.; Guo, J.I. Real-Time Multiple Pedestrian Tracking with Joint Detection and Embedding Deep Learning Model for Embedded Systems. IEEE Access 2022, 10, 51458–51471. [Google Scholar] [CrossRef]
- Fukuda, T.; Arai, I.; Endo, A.; Kakiuchi, M.; Fujikawa, K. Benchmark of Deep Learning Visual and Far-Infrared Videos Toward Weather-tolerant Pedestrian Traffic Monitoring. In Proceedings of the 2023 IEEE International Conference on Smart Mobility (SM), Thuwal, Saudi Arabia, 19–21 March 2023; pp. 45–50. [Google Scholar] [CrossRef]
- Sun, T. A Deep Learning Based Real-Time Pedestrian Recognition System. Doctoral Dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA, 2021. [Google Scholar]
- Ansarnia, M.S.; Tisserand, E.; Schweitzer, P.; Zidane, M.A.; Berviller, Y. Contextual detection of pedestrians and vehicles in orthophotography by fusion of deep learning algorithms. Sensors 2022, 22, 1381. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y. Research on multi-feature and machine learning hierarchical pedestrian detection methods based on deep learning. J. Phys. Conf. Ser. 2021, 1748, 022001. [Google Scholar] [CrossRef]
- Razzok, M.; Badri, A.; El Mourabit, I.; Ruichek, Y.; Sahel, A. Pedestrian Detection and Tracking System Based on Deep-SORT, YOLOv5, and New Data Association Metrics. Information 2023, 14, 218. [Google Scholar] [CrossRef]
- Abdullah, F.; Jalal, A. Multi-Pedestrians Anomaly Detection via Conditional Random Field and Deep Learning. In Proceedings of the 2023 4th International Conference on Advancements in Computational Sciences (ICACS), Lahore, Pakistan, 20–22 February 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Pustokhina, I.V.; Pustokhin, D.A.; Vaiyapuri, T.; Gupta, D.; Kumar, S.; Shankar, K. An automated deep learning based anomaly detection in pedestrian walkways for vulnerable road users safety. Saf. Sci. 2021, 142, 105356. [Google Scholar] [CrossRef]
- Harrou, F.; Dairi, A.; Zeroual, A.; Sun, Y. Forecasting of Bicycle and Pedestrian Traffic Using Flexible and Efficient Hybrid Deep Learning Approach. Appl. Sci. 2022, 12, 4482. [Google Scholar] [CrossRef]
- Al Sulaie, S. Golden Jackal Optimization with Deep Learning-Based Anomaly Detection in Pedestrian Walkways for Road Traffic Safety. In International Conference on Innovative Computing and Communication; Springer Nature: Singapore, 2023; pp. 617–636. [Google Scholar] [CrossRef]
- Jayasuriya, M. Deep Learning Aided Visual Localisation in Urban Pedestrian Environments. Doctoral Dissertation, University of Technology Sydney, Sydney, Australia, 2021. [Google Scholar]
- Alia, A.; Maree, M.; Chraibi, M. A hybrid deep learning and visualization framework for pushing behaviour detection in pedestrian dynamics. Sensors 2022, 22, 4040. [Google Scholar] [CrossRef] [PubMed]
- Kolluri, J.; Das, R. Intelligent multimodal pedestrian detection using hybrid metaheuristic optimization with deep learning model. Image Vis. Comput. 2023, 131, 104628. [Google Scholar] [CrossRef]
- Alsolai, H.; Al-Wesabi, F.N.; Motwakel, A.; Drar, S. Assisting Visually Impaired People Using Deep Learning-based Anomaly Detection in Pedestrian Walkways for Intelligent Transportation Systems on Remote Sensing Images. J. Disabil. Res. 2023, 2, 49–56. [Google Scholar] [CrossRef]
- Li, Z.; Fang, X.; Zhen, T.; Zhu, Y. Detection of Wheat Yellow Rust Disease Severity Based on Improved GhostNetV2. Appl. Sci. 2023, 13, 9987. [Google Scholar] [CrossRef]
- Chillab, R.K.; Smida, M.B.; Jaber, A.S.; Sakly, A. Original Research Article Optimal DG allocation by Garra Rufa optimization for power loss reduction. J. Auton. Intell. 2023, 6, 779. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, C.; Zhao, S.; Zhou, T.; Zhang, D.; Shi, Z.; Liu, S.; Jiang, R.; Yin, M.; Wang, G.; et al. CLAP: Gas Saturation Prediction in Shale Gas Reservoir Using a Cascaded Convolutional Neural Network–Long Short-Term Memory Model with Attention Mechanism. Processes 2023, 11, 2645. [Google Scholar] [CrossRef]
- Available online: http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm (accessed on 18 August 2023).
- Sabir, M.F.S.; Oqaibi, H.; Binyamin, S.S.; Althaqafi, T.; Ragab, M. Colliding Bodies Optimization with Deep Belief Network-based Robust Pedestrian Detection. IEEE Access 2023, 11, 65084–65092. [Google Scholar] [CrossRef]
- Wang, B.; Yang, C. Video anomaly detection based on convolutional recurrent autoencoder. Sensors 2022, 22, 4647. [Google Scholar] [CrossRef] [PubMed]
- Ragab, M.; Farouk, M.; Sabir, S. Arithmetic optimization with deep learning enabled anomaly detection in smart city. Comput. Mater. Contin. 2022, 73, 381–395. [Google Scholar]
Test-004 Accuracy | ||||||
---|---|---|---|---|---|---|
No. of Frames | BGRODL-OC | CBODL-RPD | DLADT-PW | RS-CNN | FR-CNN | MDT |
FR-40 | 97.62 | 98.99 | 98.41 | 97.84 | 86.02 | 86.89 |
FR-42 | 99.45 | 98.98 | 98.23 | 97.65 | 88.90 | 85.67 |
FR-46 | 99.50 | 98.85 | 98.24 | 97.66 | 88.26 | 83.42 |
FR-51 | 99.38 | 99.61 | 99.32 | 97.60 | 85.88 | 86.39 |
FR-75 | 99.37 | 99.95 | 99.06 | 97.63 | 88.61 | 86.02 |
FR-106 | 99.90 | 98.96 | 98.07 | 98.27 | 88.92 | 86.99 |
FR-123 | 99.45 | 98.98 | 98.20 | 97.93 | 86.29 | 82.91 |
FR-135 | 98.93 | 98.93 | 98.06 | 97.89 | 86.25 | 83.26 |
FR-136 | 99.60 | 98.93 | 98.01 | 98.19 | 88.96 | 86.73 |
FR-137 | 99.07 | 98.91 | 98.08 | 98.25 | 87.34 | 86.13 |
FR-149 | 99.82 | 98.90 | 98.04 | 98.10 | 86.00 | 84.86 |
FR-158 | 99.85 | 98.99 | 98.20 | 98.04 | 88.51 | 86.59 |
FR-177 | 98.91 | 98.94 | 98.20 | 97.67 | 86.48 | 84.51 |
FR-178 | 99.51 | 99.00 | 99.09 | 97.78 | 88.79 | 84.05 |
FR-180 | 99.40 | 98.98 | 98.07 | 97.95 | 86.05 | 83.20 |
Test-007 Accuracy | ||||||
No. of Frames | BGRODL-OC | CBODL-RPD | DLADT-PW | RS-CNN | FR-CNN | MDT |
FR-78 | 98.55 | 97.32 | 97.33 | 92.56 | 86.74 | 78.77 |
FR-91 | 100.64 | 100.91 | 98.01 | 93.97 | 87.70 | 77.38 |
FR-92 | 100.45 | 100.16 | 100.68 | 95.52 | 88.72 | 67.78 |
FR-110 | 100.49 | 99.57 | 97.05 | 93.86 | 85.92 | 73.46 |
FR-113 | 97.60 | 96.11 | 94.90 | 90.33 | 86.89 | 76.72 |
FR-115 | 89.41 | 88.27 | 85.81 | 85.24 | 84.60 | 73.46 |
FR-125 | 100.44 | 100.31 | 99.80 | 94.13 | 91.76 | 71.02 |
FR-142 | 100.06 | 99.44 | 99.49 | 97.12 | 84.40 | 71.34 |
FR-146 | 87.11 | 85.98 | 86.62 | 82.64 | 77.18 | 81.28 |
FR-147 | 90.71 | 89.41 | 85.68 | 83.85 | 82.98 | 69.79 |
FR-148 | 77.78 | 76.25 | 71.01 | 56.62 | 55.37 | 70.05 |
FR-150 | 96.80 | 95.91 | 89.89 | 85.40 | 84.29 | 73.55 |
FR-178 | 84.31 | 83.07 | 76.05 | 71.60 | 65.16 | 78.76 |
FR-179 | 82.43 | 81.51 | 74.34 | 65.90 | 63.16 | 75.64 |
FR-180 | 90.88 | 89.82 | 85.89 | 83.00 | 82.71 | 80.10 |
Average Accuracy (%) | ||||||
---|---|---|---|---|---|---|
Methods | BGRODL-OC | CBODL-RPD | DLADT-PW | RS-CNN | FR-CNN | MDT |
Test-004 | 99.32 | 99.06 | 98.35 | 97.90 | 87.42 | 85.17 |
Test-007 | 93.18 | 92.27 | 89.50 | 84.78 | 80.51 | 74.61 |
True Positive Rate (TPR) (Test Sequence-004) | ||||||
---|---|---|---|---|---|---|
False Positive Rate (FPR) | BGRODL-OC | CBODL-RPD | DLADT-PW | RS-CNN | FR-CNN | MDT |
0.00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.05 | 0.2194 | 0.2156 | 0.1921 | 0.1920 | 0.1547 | 0.1211 |
0.10 | 0.5234 | 0.3685 | 0.3637 | 0.3164 | 0.2785 | 0.2272 |
0.15 | 0.6310 | 0.4604 | 0.4927 | 0.4474 | 0.4243 | 0.3380 |
0.20 | 0.7702 | 0.5961 | 0.6093 | 0.5462 | 0.4972 | 0.5149 |
0.25 | 0.9508 | 0.7120 | 0.7166 | 0.6726 | 0.6170 | 0.6559 |
0.30 | 0.9910 | 0.8783 | 0.8579 | 0.8786 | 0.8106 | 0.8008 |
0.35 | 0.9845 | 0.9373 | 0.9019 | 0.9388 | 0.8790 | 0.8631 |
0.40 | 0.9845 | 0.9113 | 0.8760 | 0.9113 | 0.8507 | 0.8381 |
0.45 | 0.9931 | 0.9315 | 0.9340 | 0.9795 | 0.8798 | 0.9278 |
0.50 | 0.9998 | 0.9592 | 0.9517 | 0.9998 | 0.9142 | 0.9693 |
0.55 | 0.9998 | 0.9667 | 0.9719 | 0.9998 | 0.9466 | 0.9899 |
0.60 | 0.9998 | 0.9667 | 0.9869 | 0.9998 | 0.9796 | 0.9950 |
0.65 | 0.9998 | 0.9667 | 0.9844 | 0.9998 | 0.9781 | 0.9939 |
0.70 | 0.9998 | 0.9794 | 0.9920 | 0.9998 | 0.9886 | 0.9863 |
0.75 | 0.9998 | 0.9869 | 0.9931 | 0.9998 | 0.9956 | 0.9941 |
0.80 | 0.9998 | 0.9895 | 0.9941 | 0.9998 | 0.9995 | 0.9940 |
0.85 | 0.9998 | 0.9931 | 0.9931 | 0.9998 | 0.9986 | 0.9939 |
0.90 | 0.9998 | 0.9956 | 0.9941 | 0.9998 | 0.9994 | 0.9958 |
0.95 | 0.9998 | 0.9956 | 0.9931 | 0.9998 | 0.9999 | 0.9939 |
1.00 | 0.9998 | 0.9956 | 0.9931 | 0.9997 | 0.9994 | 0.9950 |
True Positive Rate (Test Sequence-007) | ||||||
---|---|---|---|---|---|---|
False Positive Rate | BGRODL-OC | CBODL-RPD | DLADT-PW | RS-CNN | FR-CNN | MDT |
0.00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.05 | 0.6228 | 0.4448 | 0.3607 | 0.222 | 0.3609 | 0.3034 |
0.10 | 0.6303 | 0.4703 | 0.4006 | 0.3995 | 0.4312 | 0.3429 |
0.15 | 0.8952 | 0.7162 | 0.5475 | 0.5133 | 0.632 | 0.455 |
0.20 | 0.9586 | 0.7936 | 0.5991 | 0.7132 | 0.7568 | 0.5312 |
0.25 | 0.9785 | 0.8235 | 0.849 | 0.7872 | 0.7784 | 0.6676 |
0.30 | 0.956 | 0.8952 | 0.919 | 0.8625 | 0.8965 | 0.788 |
0.35 | 0.9257 | 0.9583 | 0.9499 | 0.9677 | 0.8957 | 0.8363 |
0.40 | 0.926 | 0.9653 | 0.9539 | 0.9597 | 0.9317 | 0.999 |
0.45 | 0.9436 | 0.8146 | 0.8561 | 0.8397 | 0.8626 | 0.831 |
0.50 | 0.9711 | 0.8635 | 0.8791 | 0.8757 | 0.9334 | 0.8591 |
0.55 | 0.9711 | 0.8818 | 0.8911 | 0.8923 | 0.9366 | 0.8576 |
0.60 | 0.9711 | 0.9028 | 0.9136 | 0.8935 | 0.9629 | 0.8584 |
0.65 | 0.9711 | 0.9029 | 0.9225 | 0.9051 | 0.9617 | 0.8771 |
0.70 | 0.9711 | 0.9077 | 0.9567 | 0.9113 | 0.9625 | 0.9147 |
0.75 | 0.9711 | 0.9343 | 0.9827 | 0.9264 | 0.9603 | 0.9397 |
0.80 | 0.9971 | 0.9468 | 0.9822 | 0.9427 | 0.961 | 0.9407 |
0.85 | 0.9971 | 0.9464 | 0.9867 | 0.9675 | 0.9771 | 0.9406 |
0.90 | 0.9971 | 0.9571 | 0.9798 | 0.9908 | 0.968 | 0.9772 |
0.95 | 0.9971 | 0.9932 | 0.9691 | 0.9967 | 0.9602 | 0.9701 |
1.00 | 0.9971 | 0.9940 | 0.9981 | 0.9967 | 0.9857 | 0.9701 |
Methods | AUC Score (%) | Computational Time (s) |
---|---|---|
BGRODL-OC | 97.80 | 1.08 |
CBODL-RPD | 96.54 | 2.90 |
DLADT-PW | 89.24 | 2.75 |
RS-CNN | 90.03 | 3.19 |
FR-CNN | 89.88 | 2.90 |
MDT | 89.28 | 3.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, E.; Shankar, K.; Kumar, S.; Seo, C. Bioinspired Garra Rufa Optimization-Assisted Deep Learning Model for Object Classification on Pedestrian Walkways. Biomimetics 2023, 8, 541. https://doi.org/10.3390/biomimetics8070541
Yang E, Shankar K, Kumar S, Seo C. Bioinspired Garra Rufa Optimization-Assisted Deep Learning Model for Object Classification on Pedestrian Walkways. Biomimetics. 2023; 8(7):541. https://doi.org/10.3390/biomimetics8070541
Chicago/Turabian StyleYang, Eunmok, K. Shankar, Sachin Kumar, and Changho Seo. 2023. "Bioinspired Garra Rufa Optimization-Assisted Deep Learning Model for Object Classification on Pedestrian Walkways" Biomimetics 8, no. 7: 541. https://doi.org/10.3390/biomimetics8070541
APA StyleYang, E., Shankar, K., Kumar, S., & Seo, C. (2023). Bioinspired Garra Rufa Optimization-Assisted Deep Learning Model for Object Classification on Pedestrian Walkways. Biomimetics, 8(7), 541. https://doi.org/10.3390/biomimetics8070541