PhyEffector, the First Algorithm That Identifies Classical and Non-Classical Effectors in Phytoplasmas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Creation of Databases
2.2. In Silico Characterization of Effectors from Phytoplasmas
2.3. Characterization of Different Pipelines to Predict Effectors in Phytoplasmas: Construction of PhyEffector Algorithm
Effector | Accession at GenBank/UNIPROT | Homolog | Phytoplasma | Phenotype or Function | Observations | Dataset | Reference |
---|---|---|---|---|---|---|---|
Canonical, typical or classical | |||||||
TENGU | BAH29766.1/A0A4P6MDK8 | ------ | ‘Ca. Phytoplasma Asteris’, strain Onion yellows phytoplasma OY-M. Group 16SrI. | Dwarfism, witches’ broom symptoms and plant sterility. Pleiotropic effects on auxin and jasmonic acid | First reported witches’ broom-inducing effector. Small protein (70-amino acid preprotein, of which 38 C-terminal amino acids are released into plant host) | Positive set | [28,29] |
SAP05 | 8PFC_A WP_011412316.1 | ------ | Aster Yellows phytoplasma strain Witches’ Broom (AY-WB) | Induces witches’ broom symptoms, Proliferation of vegetative tissue and shoots. | Binds plant SPL and GATA transcription factors and mediates their degradation in a ubiquitin-independent manner | Positive set | [30] |
SAP11 | GI:85057650 | ------ | Aster Yellows phytoplasma strain Witches’ Broom (AY-WB). Crinkled leaves and siliques | CIN-TCP binding and destabilization, and impaired synthesis of jasmonic acid, and increase in leafhopper oviposition activity. | Modular organization; at least three domains are required for efficient CIN-TCP destabilization in plants | Positive set | [31] |
SAP54 | WP_252861407.1 | ------ | Aster Yellows phytoplasma strain Witches’ Broom (AY-WB). Virescence | Degrading MADS-box Proteins; induces phyllody and sterile plants | ------- | Positive set | [32] |
PHYL1 | LC388988.1, LC3889891, LC3889911, LC388990.1, LC388981.1, LC388982.1, LC388983.1, LC388992. 1, LC492887.1, LC388972.1, LC388985.1, LC388987.1 | SAP-54 | “Ca. Phytoplasma” species | Witches’ broom symptoms | Phyllogens (four groups: phyl-A, -B, -C, and -D) | Positive set | [33] |
SWP1 | WP_024563292.1 | SAP11-like | Wheat blue dwarf phytoplasma | witches’ broom symptoms | ------ | Testing set | [17] |
SWP11 | No GenBank accession. Arbitrary authors’ code WBD_0004 | ------ | Wheat blue dwarf phytoplasma | Cell death and defence responses, including H2O2 accumulation and callose deposition. | Up-regulation of HIN1, PR1, PR2 and PR3 | Testing set | [34] |
SWP12 | No GenBank accession. Arbitrary authors´ code WBD_0238 | ------ | Wheat blue dwarf phytoplasma | suppress SWP11-, BAX-, and/or INF1-induced cell death | ------ | Testing set | [34] |
SWP21 | No GenBank accession. Arbitrary authors´ code WBD_0274 | TENGU-like | Wheat blue dwarf phytoplasma | suppress SWP11-, BAX-, and/or INF1-induced cell death | SWP21 has a distinct role in virulence compared with TENGU | Testing set | [29,34] |
Zaofeng3 | AYJ01078.1 | SAP54-like | ‘Ca. Phytoplasma ziziphi’ (JWB phytoplasma) (16SrV-B) | Overexpression showed phytoplasma-like symptoms | 87% identity with SAP54PnWB | Testing set | [35] |
Zaofeng6 | AYJ01297.1 | SAP11-like | JWB phytoplasma | Overexpression resulted in shoot proliferation; triggered hypersensitive response and induced the expression of defense-related genes | 48% identity with SAP11AYWB. | Testing set | [35] |
Non-canonical, atypical or non-classical | |||||||
IdpA | ADD52250.1 | ------ | Poinsettia branch-inducing phytoplasma | Crucial role in plant and insect vector transmission | Immunodominant membrane protein A; transmembrane domain present | Positive set | [36] |
Imp | CBJ17020.1 | ------ | ‘Ca. Phytoplasma mali’ | Binds to plant actin; probably involved in phytoplasma motility in host plants | Immunodominant membrane protein; transmembrane domain present | Positive set | [20] |
VmpA | ULR56812.1 | ------ | Flavescence dorée phytoplasma | Binds the midgut of the insect vector and promotes adhesion to its epithelial cells. | Variable membrane protein A; transmembrane domain present | Testing set | [37] |
Amp | WP071345415.1 | ------ | Rice orange leaf Phytoplasma | Suppresses host defenses. Interacts with actin of its vector; probably involved in vector specificity | Antigenic membrane protein; transmembrane domain present | Positive set | [38] |
ncSecP3 | WP_161554967.1 | ------ | ‘Ca. P. ziziphi’ | Suppresses hypersensitive cell death response (HR) in Nicotiana bentamiana, triggered by the pro-apoptotic mouse protein Bax and the Phytophthora infestans elicitin INF1 | Non-classically secreted proteins (ncSecPs); non-secreted by Sec-pathway | Positive set | [21] |
ncSecP9 | WP_121463838.1 | ------ | ‘Ca. P. ziziphi’ | Suppresses HR in Nicotiana bentamiana, triggered by Bax and INF1 | ncSecPs | Positive set | [21] |
ncSecP12 | WP_161554974.1 | ------ | ‘Ca. P. ziziphi’ | Suppresses HR in Nicotiana bentamiana, triggered by Bax and INF1 | ncSecPs | Testing set | [21] |
ncSecP14 | WP_121463915.1 | ------ | ‘Ca. P. ziziphi’ | Suppresses HR in Nicotiana bentamiana, triggered by Bax and INF1 | ncSecPs | Testing set | [21] |
ncSecP16 | WP_161554978.1 | ------ | ‘Ca. P. ziziphi’ | Suppresses HR in Nicotiana bentamiana, triggered by Bax and INF1 | ncSecPs | Testing set | [21] |
ncSecP22 | WP_121463976.1 | ------ | ‘Ca. P. ziziphi’ | Suppresses HR in Nicotiana bentamiana, triggered by Bax and INF1 | ncSecPs | Testing set | [21] |
2.4. Validation of PhyEffector Algorithm
3. Results
3.1. Construction of Positive Dataset
3.2. Characterization of Phytoplasma Effectors
3.3. Comparison of Multiple Pipelines to Identify Phytoplasma Effectors
- Signalp4.1 + phobius + secretomeP2.0 + TMHMM2.0
- Signalp4.1 + phobius + secretomeP2.0 + TMHMM2.0 + BLASTP+ elimination of false positive
- Signalp4.1 + phobius + TMHMM2.0
- Signalp4.1 + phobius + TMHMM2.0 + BLASTP+ elimination of false positive
- Signalp5.0 + phobius + secretomeP2.0 + TMHMM2.0
- Signalp5.0 + phobius + secretomeP2.0 + TMHMM2.0 + BLASTP+ elimination of false positives
- Signalp5.0 + phobius + TMHMM2.0
- Signalp5.0 + phobius + TMHMM2.0 + BLASTP+ elimination of false positives
3.4. PhyEffector Pipeline
3.5. PhyEffector Performance: Prediction of Effectors on a Testing Dataset and on Phytoplasma Genomes and Comparison with Literature
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertaccini, A. Phytoplasmas: Diversity, Taxonomy, and Epidemiology. Front. Biosci. 2007, 12, 673. [Google Scholar] [CrossRef] [PubMed]
- Hogenhout, S.A.; Oshima, K.; Ammar, E.; Kakizawa, S.; Kingdom, H.N.; Namba, S. Phytoplasmas: Bacteria That Manipulate Plants and Insects. Mol. Plant Pathol. 2008, 9, 403–423. [Google Scholar] [CrossRef] [PubMed]
- Oshima, K.; Maejima, K.; Namba, S. Genomic and Evolutionary Aspects of Phytoplasmas. Front. Microbiol. 2013, 4, 230. [Google Scholar] [CrossRef] [PubMed]
- Kirdat, K.; Tiwarekar, B.; Sathe, S.; Yadav, A. From Sequences to Species: Charting the Phytoplasma Classification and Taxonomy in the Era of Taxogenomics. Front. Microbiol. 2023, 14, 1123783. [Google Scholar] [CrossRef] [PubMed]
- Hemmati, C.; Nikooei, M.; Al-Subhi, A.M.; Al-Sadi, A.M. History and Current Status of Phytoplasma Diseases in the Middle East. Biology 2021, 10, 226. [Google Scholar] [CrossRef]
- Bertaccini, A. Plants and Phytoplasmas: When Bacteria Modify Plants. Plants 2022, 11, 1425. [Google Scholar] [CrossRef]
- Sugio, A.; MacLean, A.M.; Kingdom, H.N.; Grieve, V.M.; Manimekalai, R.; Hogenhout, S.A. Diverse Targets of Phytoplasma Effectors: From Plant Development to Defense Against Insects. Annu. Rev. Phytopathol. 2011, 49, 175–195. [Google Scholar] [CrossRef]
- Rashid, U.; Bilal, S.; Bhat, K.A.; Shah, T.A.; Wani, T.A.; Bhat, F.A.; Mughal, M.N.; Nazir, N. Phytoplasma Effectors and Their Role in Plant-Insect Interaction. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1136–1148. [Google Scholar] [CrossRef]
- Singh, A.; Verma, P.; Lakhanpaul, S. Phytoplasma Effector Molecules and Their Structural Aspects: A Review. Phytopathogenic Mollicutes 2019, 9, 241. [Google Scholar] [CrossRef]
- Padilla-Ramos, R.; Salas-Muñoz, S.; Velásquez-Valle, R.; Reveles-Torres, L.R. Un Nuevo Enfoque Molecular En El Estudio de La Interacción Parásito-Hospedero. Rev. Mex. Fitopatol. Mex. J. Phytopathol. 2019, 37, 1. [Google Scholar] [CrossRef]
- Cho, S.-T.; Kung, H.-J.; Huang, W.; Hogenhout, S.A.; Kuo, C.-H. Species Boundaries and Molecular Markers for the Classification of 16SrI Phytoplasmas Inferred by Genome Analysis. Front. Microbiol. 2020, 11, 1531. [Google Scholar] [CrossRef]
- Debonneville, C.; Mandelli, L.; Brodard, J.; Groux, R.; Roquis, D.; Schumpp, O. The Complete Genome of the “Flavescence Dorée” Phytoplasma Reveals Characteristics of Low Genome Plasticity. Biology 2022, 11, 953. [Google Scholar] [CrossRef]
- Chung, W.-C.; Chen, L.-L.; Lo, W.-S.; Lin, C.-P.; Kuo, C.-H. Comparative Analysis of the Peanut Witches’-Broom Phytoplasma Genome Reveals Horizontal Transfer of Potential Mobile Units and Effectors. PLoS ONE 2013, 8, e62770. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.M.; Lin, Y.-C.; Li, J.-R.; Chien, Y.-Y.; Wang, C.-J.; Chou, L.; Wang, C.-W.; Chiu, Y.-C.; Kuo, C.-H.; Yang, J.-Y. Accelerating Complete Phytoplasma Genome Assembly by Immunoprecipitation-Based Enrichment and MinION-Based DNA Sequencing for Comparative Analyses. Front. Microbiol. 2021, 12, 766221. [Google Scholar] [CrossRef]
- Bai, X.; Correa, V.R.; Toruño, T.Y.; Ammar, E.-D.; Kamoun, S.; Hogenhout, S.A. AY-WB Phytoplasma Secretes a Protein That Targets Plant Cell Nuclei. Mol. Plant-Microbe Interact. 2009, 22, 18–30. [Google Scholar] [CrossRef]
- Anabestani, A.; Izadpanah, K.; Abbà, S.; Galetto, L.; Ghorbani, A.; Palmano, S.; Siampour, M.; Veratti, F.; Marzachì, C. Identification of Putative Effector Genes and Their Transcripts in Three Strains Related to ‘Candidatus Phytoplasma Aurantifolia’. Microbiol. Res. 2017, 199, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Yang, H.; Yin, Z.; Liu, W.; Sun, L.; Wu, Y. Phytoplasma Effector SWP1 Induces Witches’ Broom Symptom by Destabilizing the TCP Transcription Factor BRANCHED1: Phytoplasma Effector SWP1 Destabilizes BRC1. Mol. Plant Pathol. 2018, 19, 2623–2634. [Google Scholar] [CrossRef]
- Music, M.S.; Samarzija, I.; Hogenhout, S.A.; Haryono, M.; Cho, S.-T.; Kuo, C.-H. The Genome of ‘Candidatus Phytoplasma Solani’ Strain SA-1 Is Highly Dynamic and Prone to Adopting Foreign Sequences. Syst. Appl. Microbiol. 2019, 42, 117–127. [Google Scholar] [CrossRef]
- Rashidi, M.; Galetto, L.; Bosco, D.; Bulgarelli, A.; Vallino, M.; Veratti, F.; Marzachì, C. Role of the Major Antigenic Membrane Protein in Phytoplasma Transmission by Two Insect Vector Species. BMC Microbiol. 2015, 15, 193. [Google Scholar] [CrossRef]
- Boonrod, K.; Munteanu, B.; Jarausch, B.; Jarausch, W.; Krczal, G. An Immunodominant Membrane Protein (Imp) of ‘ Candidatus Phytoplasma Mali’ Binds to Plant Actin. Mol. Plant-Microbe Interact. 2012, 25, 889–895. [Google Scholar] [CrossRef]
- Gao, X.; Ren, Z.; Zhao, W.; Li, W. Candidatus Phytoplasma Ziziphi Encodes Non-Classically Secreted Proteins That Suppress Hypersensitive Cell Death Response in Nicotiana Benthamiana. Phytopathol. Res. 2023, 5, 11. [Google Scholar] [CrossRef]
- Bendtsen, J.; Nielsen, H.; Von Heijne, G.; Brunak, S. Improved Prediction of Signal Peptides: SignalP 3.0. J. Mol. Biol. 2004, 340, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.N.; Brunak, S.; Von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating Signal Peptides from Transmembrane Regions. Nat. Methods 2011, 8, 785–786. [Google Scholar] [CrossRef] [PubMed]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; Von Heijne, G.; Nielsen, H. SignalP 5.0 Improves Signal Peptide Predictions Using Deep Neural Networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef] [PubMed]
- Krogh, A.; Larsson, B.; Von Heijne, G.; Sonnhammer, E.L.L. Predicting Transmembrane Protein Topology with a Hidden Markov Model: Application to Complete genomes11Edited by F. Cohen. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Käll, L.; Krogh, A.; Sonnhammer, E.L.L. Advantages of Combined Transmembrane Topology and Signal Peptide Prediction--the Phobius Web Server. Nucleic Acids Res. 2007, 35, W429–W432. [Google Scholar] [CrossRef]
- Bendtsen, J.D.; Kiemer, L.; Fausbøll, A.; Brunak, S. Non-Classical Protein Secretion in Bacteria. BMC Microbiol. 2005, 5, 58. [Google Scholar] [CrossRef]
- Hoshi, A.; Oshima, K.; Kakizawa, S.; Ishii, Y.; Ozeki, J.; Hashimoto, M.; Komatsu, K.; Kagiwada, S.; Yamaji, Y.; Namba, S. A Unique Virulence Factor for Proliferation and Dwarfism in Plants Identified from a Phytopathogenic Bacterium. Proc. Natl. Acad. Sci. USA 2009, 106, 6416–6421. [Google Scholar] [CrossRef]
- Sugawara, K.; Honma, Y.; Komatsu, K.; Himeno, M.; Oshima, K.; Namba, S. The Alteration of Plant Morphology by Small Peptides Released from the Proteolytic Processing of the Bacterial Peptide TENGU. Plant Physiol. 2013, 162, 2005–2014. [Google Scholar] [CrossRef]
- Huang, W.; MacLean, A.M.; Sugio, A.; Maqbool, A.; Busscher, M.; Cho, S.-T.; Kamoun, S.; Kuo, C.-H.; Immink, R.G.H.; Hogenhout, S.A. Parasitic Modulation of Host Development by Ubiquitin-Independent Protein Degradation. Cell 2021, 184, 5201–5214.e12. [Google Scholar] [CrossRef]
- Sugio, A.; MacLean, A.M.; Hogenhout, S.A. The Small Phytoplasma Virulence Effector SAP 11 Contains Distinct Domains Required for Nuclear Targeting and CIN-TCP Binding and Destabilization. New Phytol. 2014, 202, 838–848. [Google Scholar] [CrossRef] [PubMed]
- MacLean, A.M.; Orlovskis, Z.; Kowitwanich, K.; Zdziarska, A.M.; Angenent, G.C.; Immink, R.G.H.; Hogenhout, S.A. Phytoplasma Effector SAP54 Hijacks Plant Reproduction by Degrading MADS-Box Proteins and Promotes Insect Colonization in a RAD23-Dependent Manner. PLoS Biol. 2014, 12, e1001835. [Google Scholar] [CrossRef] [PubMed]
- Iwabuchi, N.; Kitazawa, Y.; Maejima, K.; Koinuma, H.; Miyazaki, A.; Matsumoto, O.; Suzuki, T.; Nijo, T.; Oshima, K.; Namba, S.; et al. Functional Variation in Phyllogen, a Phyllody-inducing Phytoplasma Effector Family, Attributable to a Single Amino Acid Polymorphism. Mol. Plant Pathol. 2020, 21, 1322–1336. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Li, Y.; Chen, W.; Yang, H.Z.; Zhang, P.H.; Wu, Y.F. Identification of Wheat Blue Dwarf Phytoplasma Effectors Targeting Plant Proliferation and Defence Responses. Plant Pathol. 2017, 67, 603–609. [Google Scholar] [CrossRef]
- Chen, P.; Chen, L.; Ye, X.; Tan, B.; Zheng, X.; Cheng, J.; Wang, W.; Yang, Q.; Zhang, Y.; Li, J.; et al. Phytoplasma Effector Zaofeng6 Induces Shoot Proliferation by Decreasing the Expression of ZjTCP7 in Ziziphus Jujuba. Hortic. Res. 2022, 9, uhab032. [Google Scholar] [CrossRef]
- Kakizawa, S.; Oshima, K.; Ishii, Y.; Hoshi, A.; Maejima, K.; Jung, H.-Y.; Yamaji, Y.; Namba, S. Cloning of Immunodominant Membrane Protein Genes of Phytoplasmas and Their in Planta Expression. FEMS Microbiol. Lett. 2009, 293, 92–101. [Google Scholar] [CrossRef]
- Arricau-Bouvery, N.; Duret, S.; Dubrana, M.-P.; Desqué, D.; Eveillard, S.; Brocard, L.; Malembic-Maher, S.; Foissac, X. Interactions between the Flavescence Dorée Phytoplasma and Its Insect Vector Indicate Lectin-Type Adhesion Mediated by the Adhesin VmpA. Sci. Rep. 2021, 11, 11222. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, X.; Zhou, S.; Zhang, X.; Zhu, Y.; Chen, B.; Huang, X.; Yang, X.; Zhou, G.; Zhang, T. The Antigenic Membrane Protein (Amp) of Rice Orange Leaf Phytoplasma Suppresses Host Defenses and Is Involved in Pathogenicity. Int. J. Mol. Sci. 2023, 24, 4494. [Google Scholar] [CrossRef]
- Galetto, L.; Abbà, S.; Rossi, M.; Ripamonti, M.; Palmano, S.; Bosco, D.; Marzachì, C. Silencing of ATP Synthase β Reduces Phytoplasma Multiplication in a Leafhopper Vector. J. Insect Physiol. 2021, 128, 104176. [Google Scholar] [CrossRef]
- Tomkins, M.; Kliot, A.; Marée, A.F.; Hogenhout, S.A. A Multi-Layered Mechanistic Modelling Approach to Understand How Effector Genes Extend beyond Phytoplasma to Modulate Plant Hosts, Insect Vectors and the Environment. Curr. Opin. Plant Biol. 2018, 44, 39–48. [Google Scholar] [CrossRef]
- Dillon, M.M.; Almeida, R.N.D.; Laflamme, B.; Martel, A.; Weir, B.S.; Desveaux, D.; Guttman, D.S. Molecular Evolution of Pseudomonas Syringae Type III Secreted Effector Proteins. Front. Plant Sci. 2019, 10, 418. [Google Scholar] [CrossRef] [PubMed]
- Morgado, S.; Vicente, A.C. Diversity and Distribution of Type VI Secretion System Gene Clusters in Bacterial Plasmids. Sci. Rep. 2022, 12, 8249. [Google Scholar] [CrossRef]
- Mai-Prochnow, A.; Clauson, M.; Hong, J.; Murphy, A.B. Gram Positive and Gram Negative Bacteria Differ in Their Sensitivity to Cold Plasma. Sci. Rep. 2016, 6, 38610. [Google Scholar] [CrossRef]
- Kerr, A.; Gibb, K. Bacteria and Phytoplasma as Plant Parasites. In Plant Pathogens and Plant Diseases; Brown, J.F., Ogle, H.J., Eds.; Rockvale Publications: Armidale, Australia, 1997; pp. 86–102. [Google Scholar]
- Cao, Y.; Trivellone, V.; Dietrich, C.H. A Timetree for Phytoplasmas (Mollicutes) with New Insights on Patterns of Evolution and Diversification. Mol. Phylogenet. Evol. 2020, 149, 106826. [Google Scholar] [CrossRef] [PubMed]
- Francis, I.; Holsters, M.; Vereecke, D. The Gram-Positive Side of Plant–Microbe Interactions. Environ. Microbiol. 2010, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Meir, A.; Macé, K.; Vegunta, Y.; Williams, S.M.; Waksman, G. Substrate Recruitment Mechanism by Gram-Negative Type III, IV, and VI Bacterial Injectisomes. Trends Microbiol. 2023, 31, 916–932. [Google Scholar] [CrossRef]
- Hogenhout, S.A.; Loria, R. Virulence Mechanisms of Gram-Positive Plant Pathogenic Bacteria. Curr. Opin. Plant Biol. 2008, 11, 449–456. [Google Scholar] [CrossRef]
- Carreón-Anguiano, K.G.; Todd, J.N.A.; Chi-Manzanero, B.H.; Couoh-Dzul, O.J.; Islas-Flores, I.; Canto-Canché, B. WideEffHunter: An Algorithm to Predict Canonical and Non-Canonical Effectors in Fungi and Oomycetes. Int. J. Mol. Sci. 2022, 23, 13567. [Google Scholar] [CrossRef]
- Huang, C.-T.; Cho, S.-T.; Lin, Y.-C.; Tan, C.-M.; Chiu, Y.-C.; Yang, J.-Y.; Kuo, C.-H. Comparative Genome Analysis of ‘Candidatus Phytoplasma Luffae’ Reveals the Influential Roles of Potential Mobile Units in Phytoplasma Evolution. Front. Microbiol. 2022, 13, 773608. [Google Scholar] [CrossRef]
- MacLean, A.M.; Sugio, A.; Makarova, O.V.; Findlay, K.C.; Grieve, V.M.; Tóth, R.; Nicolaisen, M.; Hogenhout, S.A. Phytoplasma Effector SAP54 Induces Indeterminate Leaf-Like Flower Development in Arabidopsis Plants. Plant Physiol. 2011, 157, 831–841. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Liu, X.; Fan, Y.; Zhang, Y.; Zhou, X.; Li, W. A Novel ‘Candidatus Liberibacter Asiaticus’-Encoded Sec-Dependent Secretory Protein Suppresses Programmed Cell Death in Nicotiana Benthamiana. Int. J. Mol. Sci. 2019, 20, 5802. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Number of Effectors | % of the Total * |
---|---|---|
SP ** | 58 | 90.6 |
Nc-SecP | 3 *** | 4.7 |
Non-secreted | 3 **** | 4.7 |
0 TMD ***** | 59 | 92.2 |
1 TMD | 5 | 7.8 |
Pipeline 1 (Signalp4.1 + phobius + secretomeP2.0 + TMHMM2.0) | ||||||||
Control set | Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Positive dataset | 64 | 61 | 0.93 | 0.89 | 0.89 | 0.91 | 0.10 | 0.91 |
Negative dataset | 64 | 7 | ||||||
Pipeline 2 (Signalp4.1 + phobius + secretomeP2.0 + TMHMM2.0 + BLASTP+ elimination of false positive) | ||||||||
Control set | Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Positive dataset | 64 | 64 | 1 | 1 | 1 | 1 | 0 | 1 |
Negative dataset | 64 | 0 | ||||||
Pipeline 3 (Signalp4.1 + phobius + TMHMM2.0) | ||||||||
Control set | Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Positive dataset | 64 | 59 | 0.92 | 0.92 | 0.92 | 0.92 | 0.07 | 0.92 |
Negative dataset | 64 | 5 | ||||||
Pipeline 4 (Signalp4.1 + phobius + TMHMM2.0 + BLASTP+ elimination of false positive) | ||||||||
Control set | Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Positive dataset | 64 | 64 | 1 | 1 | 1 | 1 | 0 | 1 |
Negative dataset | 64 | 0 | ||||||
Pipeline 5 (Signalp5.0 + phobius + secretomeP2.0 + TMHMM2.0) | ||||||||
Control set | Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Positive dataset | 64 | 55 | 0.85 | 0.95 | 0.94 | 0.90 | 0.04 | 0.90 |
Negative dataset | 64 | 3 | ||||||
Pipeline 6 (Signalp5.0 + phobius + secretomeP2.0 + TMHMM2.0 + BLASTP+ elimination of false positive) | ||||||||
Control set | Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Positive dataset | 64 | 64 | 1 | 1 | 1 | 1 | 0 | 1 |
Negative dataset | 64 | 0 | ||||||
Pipeline 7 (Signalp5.0 + phobius + TMHMM2.0) | ||||||||
Control set | Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Positive dataset | 64 | 52 | 0.81 | 0.98 | 0.98 | 0.89 | 0.01 | 0.88 |
Negative dataset | 64 | 1 | ||||||
Pipeline 8 (Signalp5.0 + phobius + TMHMM2.0 + BLASTP+ elimination of false positive) | ||||||||
Control set | Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Positive dataset | 64 | 64 | 1 | 1 | 1 | 1 | 0 | 1 |
Negative dataset | 64 | 0 |
Pipeline 1 (Signalp4.1 + phobius + secretomeP2.0 + TMHMM2.0) | ||||||||
Control set | Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Positive dataset | 64 | 60 | 0.93 | 0.93 | 0.93 | 0.93 | 0.06 | 0.93 |
Negative dataset | 64 | 4 | ||||||
Pipeline 2 (Signalp4.1 + phobius + secretomeP2.0 + TMHMM2.0 + BLASTP+ elimination of false positive) | ||||||||
Control set | Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Positive dataset | 64 | 64 | 1 | 1 | 1 | 1 | 0 | 1 |
Negative dataset | 64 | 0 | ||||||
Pipeline 3 (Signalp4.1 + phobius + TMHMM2.0) | ||||||||
Control set | Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Positive dataset | 64 | 56 | 0.87 | 0.96 | 0.96 | 0.92 | 0.03 | 0.0.91 |
Negative dataset | 64 | 2 | ||||||
Pipeline 4 (Signalp4.1 + phobius + TMHMM2.0 + BLASTP+ elimination of false positive) | ||||||||
Control set | Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Positive dataset | 64 | 64 | 1 | 1 | 1 | 1 | 0 | 1 |
Negative dataset | 64 | 0 | ||||||
Pipeline 5 (Signalp5.0 + phobius + secretomeP2.0 + TMHMM2.0) | ||||||||
Control set | Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Positive dataset | 64 | 49 | 0.76 | 0.95 | 0.94 | 0.85 | 0.04 | 0.84 |
Negative dataset | 64 | 3 | ||||||
Pipeline 6 (Signalp5.0 + phobius + secretomeP2.0 + TMHMM2.0 + BLASTP+ elimination of false positive) | ||||||||
Control set | Proteins | Prediction | Sen/Rec | Spe | PPV/Prec | ACC | FPR | F1 score |
Positive dataset | 64 | 64 | 1 | 1 | 1 | 1 | 0 | 1 |
Negative dataset | 64 | 0 | ||||||
Pipeline 7 (Signalp5.0 + phobius + TMHMM2.0) | ||||||||
Control set | Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Positive dataset | 64 | 45 | 0.70 | 0.98 | 0.97 | 0.84 | 0.01 | 0.81 |
Negative dataset | 64 | 1 | ||||||
Pipeline 8 (Signalp5.0 + phobius + TMHMM2.0 + BLASTP+ elimination of false positive) | ||||||||
Control set | Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Positive dataset | 64 | 64 | 1 | 1 | 1 | 1 | 0 | 1 |
Negative dataset | 64 | 0 |
Pipeline 1 (Signalp4.1 + phobius + secretomeP2.0 + TMHMM2.0) | ||||||||
Set | Num. Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Testing set | 226 | 181 | 0.80 | 0.84 | 0.83 | 0.82 | 0.15 | 0.81 |
Negative set | 226 | 35 | ||||||
Pipeline 2 (Signalp4.1 + phobius + secretomeP2.0 + TMHMM2.0 + BLASTP+ elimination of false positive) | ||||||||
Set | Num. Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Testing set | 226 | 189 | 0.83 | 0.99 | 0.99 | 0.91 | 0.004 | 0.90 |
Negative set | 226 | 1 | ||||||
Pipeline 3 (Signalp4.1 + phobius + TMHMM2.0) | ||||||||
Set | Num. Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Testing set | 226 | 158 | 0.69 | 0.94 | 0.92 | 0.82 | 0.05 | 0.79 |
Negative set | 226 | 13 | ||||||
Pipeline 4 (Signalp4.1 + phobius + TMHMM2.0 + BLASTP+ elimination of false positive) | ||||||||
Set | Num. Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Testing set | 226 | 172 | 0.76 | 0.99 | 0.98 | 0.87 | 0.008 | 0.86 |
Negative set | 226 | 1 | ||||||
Pipeline 5 (Signalp5.0 + phobius + secretomeP2.0 + TMHMM2.0) | ||||||||
Set | Num. Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Testing set | 226 | 127 | 0.56 | 0.87 | 0.81 | 0.71 | 0.12 | 0.66 |
Negative set | 226 | 29 | ||||||
Pipeline 6 (Signalp5.0 + phobius + secretomeP2.0 + TMHMM2.0 + BLASTP+ elimination of false positive) | ||||||||
Set | Num. Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Testing set | 226 | 138 | 0.61 | 0.98 | 0.97 | 0.79 | 0.01 | 0.75 |
Negative set | 226 | 1 | ||||||
Pipeline 7 (Signalp5.0 + phobius + TMHMM2.0) | ||||||||
Set | Num. Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Testing set | 226 | 89 | 0.39 | 0.93 | 0.86 | 0.66 | 0.06 | 0.54 |
Negative set | 226 | 12 | ||||||
Pipeline 8 (Signalp5.0 + phobius + TMHMM2.0 + BLASTP+ elimination of false positive) | ||||||||
Set | Num. Proteins | Prediction | Sen | Spe | PPV | ACC | FPR | F1 score |
Testing set | 226 | 106 | 0.46 | 0.99 | 0.98 | 0.73 | 0.008 | 0.63 |
Negative set | 226 | 2 |
Phytoplasma | Effectors Predicted by the Authors | Pipeline Used for Effector Prediction * | Reference | PhyEffector Prediction | Shared Candidates | Unshared Candidates | False Negatives | False Positives | F1 Score *** |
---|---|---|---|---|---|---|---|---|---|
‘Ca. Phytoplasma mali’ | 31 | SignalP v4.0, for SP, and then TMHMM v2.0 on mature protein sequence without the SP | [13] | 49 | 18 | A = 13 P = 31 | A = 31 P = 6 | A = 7 P = 0 | 0.9423 |
‘Ca. Phytoplasma australiense’ | 61 | SignalP v4.0, for SP, and then TMHMM v2.0 on mature protein sequence without the SP | [13] | 89 | 43 | A = 18 P = 46 | A = 46 P = 10 | A = 8 P = 0 | 0.9518 |
‘Ca. Phytoplasma asteris’ (AY-WB) | 58 | SignalP v4.0, for SP, and then TMHMM v2.0 on mature protein sequence without the SP | [13] | 73 | 35 | A = 23 P = 38 | A = 38 P = 17 | A = 6 P = 0 | 0.8957 |
‘Ca. Phytoplasma asteris’ OY-M | 65 | SignalP v4.0, for SP, and then TMHMM v2.0 on mature protein sequence without the SP | [13] | 85 | 54 | A = 11 P = 50 | A = 50 P = 7 | A = 4 P = 0 | 0.9674 |
‘Ca. Phytoplasma solani’ strain SA-1 | 38 | SignalP v3.0, for SP, and then TMHMM v2.0 on mature protein sequence without the SP | [18] | 96 | 26 | A = 12 P = 83 | A = 83 P = 4 | A = 8 P = 0 | 0.9819 |
‘Ca. Phytoplasma asteris’ AYWB | 33 | SignalP v3.0, for SP, and then TMHMM v2.0 on mature protein sequence without the SP | [11] | 73 | 23 | A = 10 P = 40 | A = 40 P = 5 | A = 5 P = 0 | 0.9668 |
‘Ca. Phytoplasma. asteris’ NJAY | 23 | SignalP v5.0, for SP, and then TMHMM v2.0 on mature protein sequence without the SP | [11] | 95 | 18 | A = 5 P = 77 | A = 77 P = 0 | A = 5 P = 0 | 1 |
‘Ca. Phytoplasma asteris’ WEID | 17 | SignalP v5.0, for SP, and then TMHMM v2.0 on mature protein sequence without the SP | [11] | 64 | 11 | A = 6 P = 53 | A = 53 P = 1 | A = 5 P = 0 | 0.9922 |
‘Ca. Phytoplasma asteris’ OY-M | 37 | SignalP v5.0, for SP, and then TMHMM v2.0 on mature protein sequence without the SP | [11] | 84 | 15 | A = 22 P = 69 | A = 84 P = 5 | A = 17 P = 0 | 0.9710 |
‘Ca. Phytoplasma asteris’ OY-V | 36 | SignalP v5.0, for SP, and then TMHMM v2.0 on mature protein sequence without the SP | [11] | 87 | 24 | A = 12 P = 63 | A = 129 P = 4 | A = 8 P = 0 | 0.9870 |
‘Ca. Phytoplasma asteris’ DY2014 | 45 | SignalP v5.0, for SP, and then TMHMM v2.0 on mature protein sequence without the SP | [11] | 97 | 31 | A = 14 P = 52 | A = 52 P = 2 | A = 12 P = 0 | 0.9944 |
‘Ca. Phytoplasma asteris’ MBP-M3 | 13 | SignalP v5.0, for SP, and then TMHMM v2.0 on mature protein sequence without the SP | [11] | 64 | 9 | A = 4 P = 51 | A = 56 P = 0 | A = 4 P = 0 | 1 |
‘Ca. Phytoplasma asteris’ De Villa | 10 | SignalP v5.0, for SP, and then TMHMM v2.0 on mature protein sequence without the SP | [11] | 55 | 5 | A = 5 P = 50 | A = 50 P = 1 | A = 4 P = 0 | 0.9909 |
‘Ca. Phytoplasma asteris’ LD1 | 14 | SignalP v5.0, for SP, and then TMHMM v2.0 on mature protein sequence without the SP | [11] | 60 | 9 | A = 5 P = 46 | A = 56 P = 1 | A = 4 P = 0 | 0.9923 |
‘Ca. Phytoplasma asteris’ CYP | 21 | SignalP v5.0, for SP, and then TMHMM v2.0 on mature protein sequence without the SP | [11] | 91 | 14 | A = 7 P = 77 | A = 77 P = 0 | A = 7 P = 0 | 1 |
‘Ca. Phytoplasma asteris’ TW1 | 19 | SignalP v5.0, for SP, and then TMHMM v2.0 on mature protein sequence without the SP | [11] | 57 | 14 | A = 5 P = 38 | A = 51 P = 2 | A = 3 P = 0 | 0.9827 |
‘Ca. Phytoplasma hytoplasma aurantifolia’ | 98 SignalP v4.1 | Comparison of SignalP v4.1 and SignalP v5.0; the former retrieved ~ 70 false positives. | [14] | 93 | 53 | A = 45 P = 40 | A = 40 P = 8 | A = 37 P = 0 | 0.9587 |
‘Ca. Phytoplasma aurantifolia’ | 27 ** SignalP v5.0 | Comparison of SignalP v4.1 and SignalP v5.0; the former retrieved ~ 70 false positives. | [14] | 93 | 20 | A = 7 P = 73 | A = 73 P = 5 | A = 2 P = 0 | 0.9738 |
‘Ca. Phytoplasma vitis’ (Flavescence dorée) | 17 | SignalP v5.0 and Phobius. Effectors with transmembrane domains (TMDs) were also identified. | [12] | 41 | 6 | A = 11 P = 35 | A = 35 P = 2 | A = 9 P = 0 | 0.9791 |
‘Ca. Phytoplasma ziziphi’ (Jujube witches’-broom Phytoplasma) | 8 (Zaofeng1 to Zaofeng8). | Signal peptide by SignalP 4.1 and TMDs by the TMHMM 2.0. Potential mobile units (PMUs) were identified by the presence of flanking tra5 insertion sequences and DNA replication genes (dnaG, dnaB, ssb, tmk). Secreted proteins harbored in PMUs were identified as JWB phytoplasma putative effectors. | [35] | 87 | 5 | A = 3 P = 82 | A = 89 P = 1 | A = 2 P = 0 | 0.9942 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carreón-Anguiano, K.G.; Vila-Luna, S.E.; Sáenz-Carbonell, L.; Canto-Canche, B. PhyEffector, the First Algorithm That Identifies Classical and Non-Classical Effectors in Phytoplasmas. Biomimetics 2023, 8, 550. https://doi.org/10.3390/biomimetics8070550
Carreón-Anguiano KG, Vila-Luna SE, Sáenz-Carbonell L, Canto-Canche B. PhyEffector, the First Algorithm That Identifies Classical and Non-Classical Effectors in Phytoplasmas. Biomimetics. 2023; 8(7):550. https://doi.org/10.3390/biomimetics8070550
Chicago/Turabian StyleCarreón-Anguiano, Karla Gisel, Sara Elena Vila-Luna, Luis Sáenz-Carbonell, and Blondy Canto-Canche. 2023. "PhyEffector, the First Algorithm That Identifies Classical and Non-Classical Effectors in Phytoplasmas" Biomimetics 8, no. 7: 550. https://doi.org/10.3390/biomimetics8070550
APA StyleCarreón-Anguiano, K. G., Vila-Luna, S. E., Sáenz-Carbonell, L., & Canto-Canche, B. (2023). PhyEffector, the First Algorithm That Identifies Classical and Non-Classical Effectors in Phytoplasmas. Biomimetics, 8(7), 550. https://doi.org/10.3390/biomimetics8070550