Assessment of Pedestrians’ Head and Lower Limb Injuries in Tram–Pedestrian Collisions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pedestrian Model
2.2. Tram Model
2.3. Tram-Pedestrian Collision Coupled Model
2.4. Validation of the Coupled Model
2.5. Simulation Matrix
2.6. Injury Evaluation Index
2.6.1. Lower Limb Evaluation Index
2.6.2. Head Injury Evaluation Index
3. Results
3.1. Kinematics Response in Tram–Pedestrian Collisions
3.2. Lower Limb Injury Response
3.3. Head Injury Response
3.4. Relationship between Input Parameter and Injury Index
4. Discussion
4.1. Bone Fracture Severity
4.2. Knee Injury Severity
4.3. Brain Contusion Severity
4.4. DAI Severity
5. Limitation
6. Conclusions
- The results indicate that the direct impact between the lower limb and the tram’s obstacle deflector leads to tibial shaft fractures, as well as lateral shearing displacement and bending of the knee, resulting in knee tissue damage. Tibia fractures and knee injuries are highly sensitive to the velocity and impact angle of the tram.
- The neck flinging contributes to worsened head injuries in tram–pedestrian collisions. Coup contusion is the primary form of brain contusion, but contrecoup contusion should not be overlooked. DAI is uniformly distributed on both sides of the brain. Compared with tram velocity, the impact angle has a significant effect on DAI.
- With trams becoming an important component of urban transportation systems, the incidence of tram–pedestrian collisions has increased. This research provides valuable insights for the development of driving regulations in high-risk collision areas, pedestrian protection studies, and the diagnosis and treatment of injuries to pedestrians.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Naznin, F.; Currie, G.; Logan, D.; Sarvi, M. Safety impacts of platform tram stops on pedestrians in mixed traffic operation: A comparison group before-after crash study. Accid. Anal. Prev. 2016, 86, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.; Park, D. A study on strategy of tram design reflecting urban identity. Sculpt. Des. Res. 2022, 25, 155–171. [Google Scholar]
- Zhang, T.; Guo, X.; Jin, T.; Yang, Y.; Ling, L.; Wang, K.; Zhai, W. Dynamic derailment behaviour of urban tram subjected to lateral collision. Int. J. Rail Transp. 2022, 10, 581–605. [Google Scholar] [CrossRef]
- Guerrieri, M. Tramways in urban areas: An overview on safety at road intersections. Urban Rail Transit 2018, 4, 223–233. [Google Scholar] [CrossRef]
- Lackner, C.; Heinzl, P.; Rizzi, M.C.; Leo, C.; Schachner, M.; Pokorny, P.; Klager, P.; Buetzer, D.; Elvik, R.; Linder, A.; et al. Tram to Pedestrian Collisions-Priorities and Potentials. Front. Future Transp. 2022, 3, 15. [Google Scholar] [CrossRef]
- Gaca, S.; Franek, L. Pedestrian fatality risk as a function of tram impact speed. Open Eng. 2021, 11, 1105–1113. [Google Scholar] [CrossRef]
- Castanier, C.; Paran, F.; Delhomme, P. Risk of crashing with a tram: Perceptions of pedestrians, cyclists, and motorists. Transp. Res. Part F Traffic Psychol. Behav. 2012, 15, 387–394. [Google Scholar] [CrossRef]
- Mitra, B.; AI Jubair, J.; Cameron, P.A.; Gabbe, B.J. Tram-related trauma in Melbourne, Victoria. Emerg. Med. Australas. 2010, 22, 337–342. [Google Scholar] [CrossRef]
- Hedelin, A.; Björnstig, U.; Brismar, B. Trams-a risk factor for pedestrians. Accid. Anal. Prev. 1996, 28, 733–738. [Google Scholar] [CrossRef]
- Laughlin, A.; Berecki-Gisolf, J. Tram Related Injury Statistics Victoria 2005/06 to 2014/15; Victorian Injury Surveillance Unit: Melbourne, Australia, 2017. [Google Scholar]
- Kleiven, S. Why most traumatic brain injuries are not caused by linear acceleration but skull fractures are. Front. Bioeng. Biotechnol. 2013, 1, 15. [Google Scholar] [CrossRef]
- Huang, J.; Peng, Y.; Yang, J.; Otte, D.; Wang, B. A study on correlation of pedestrian head injuries with physical parameters using in-depth traffic accident data and mathematical models. Accid. Anal. Prev. 2018, 119, 91–103. [Google Scholar] [CrossRef]
- Antona-Makoshi, J.; Mikami, K.; Lindkvist, M.; Davidsson, J.; Schick, S. Accident analysis to support the development of strategies for the prevention of brain injuries in car crashes. Accid. Anal. Prev. 2018, 117, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Wang, D.; Liu, X.; Yu, H.; Jiang, C.; Hu, Y. Influence of skull fracture on traumatic brain injury risk induced by blunt impact. Int. J. Environ. Res. Public Health 2020, 17, 2392. [Google Scholar] [CrossRef] [PubMed]
- Grzebieta, R.H.; Rechnitzer, G. Tram interface crashworthiness. In Proceedings of the International Crashworthiness Conference-ICRASH 2000, Bolton, UK, 6–8 September 2000. [Google Scholar]
- Hynčík, L.; Kocková, H.; Číhalová, L.; Cimrman, R. Optimization of tram face with respect to passive safety. Appl. Comput. Mech. 2008, 2, 53–62. [Google Scholar]
- Chevalier, M.C.; Brizard, D.; Beillas, P. Study of the possible relationships between tramway front-end geometry and pedestrian injury risk. Traffic Inj. Prev. 2019, 20, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Špička, J.; Špirk, S. Sensitivity analysis of the newly design tram front-end with respect to variations of the pre-impact conditions. In Proceedings of the 2019 IRCOBI Conference Proceedings, Florence, Italy, 11–13 September 2019; pp. 552–553. [Google Scholar]
- Tomsovsky, L.; Kubovy, P.; Lopot, F.; Jelen, L. Kinematic analysis of the tram-pedestrian collision-a preliminary case study. Manuf. Technol. 2022, 22, 89–94. [Google Scholar] [CrossRef]
- Tomsovsky, L.; Kubovy, P.; Jelen, K.; Kubovy, P.; Hilmarova, D.; Stocek, O.; Lopot, F.; Rulc, V.; Hribal, P.; Jezdik, R. Verification of usability of the hybrid Ⅲ dummy for crash tests-pilot experiment. Manuf. Technol. 2022, 22, 477–483. [Google Scholar] [CrossRef]
- Fanta, O.; Lopot, F.; Kubovy, P.; Jelen, K.; Hilmarova, D.; Svoboda, M. Kinematic analysis and head injury criterion in a pedestrian collision with a tram at the speed of 10 and 20 km/h. Manuf. Technol. 2022, 22, 139–145. [Google Scholar] [CrossRef]
- Špirk, S.; Špička, J.; Vychytil, J.; Křížek, M.; Stehlík, A. Utilization of the validated windshield material model in simulation of tram to pedestrian collision. Materials 2021, 14, 265. [Google Scholar] [CrossRef]
- Naznin, F.; Currie, G.; Logan, D. Exploring the impacts of factors contributing to tram-involved serious injury crashes on Melbourne tram routes. Accid. Anal. Prev. 2016, 94, 238–244. [Google Scholar] [CrossRef]
- Megna, G.; Bracciali, A. Technical comparison of commercially available trams and review of standardization frame and design principles. Urban Rail Transit 2022, 8, 16–31. [Google Scholar] [CrossRef]
- Peng, Y.; Li, T.; Bao, C.; Zhang, J.; Xie, G.; Zhang, H. Performance analysis and multi-objective optimization of bionic dendritic furcal energy-absorbing structures for trains. Int. J. Mech. Sci. 2023, 246, 108145. [Google Scholar] [CrossRef]
- Crocetta, G.; Piantini, S.; Pierini, M.; Simms, C. The influence of vehicle front-end design on pedestrian ground impact. Accid. Anal. Prev. 2015, 79, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Nie, B.; Zhou, Q. Can new passenger cars reduce pedestrian lower extremity injury? A review of geometrical changes of front-end design before and after regulatory efforts. Traffic Inj. Prev. 2016, 17, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Scattina, A.; Mo, F.; Masson, C.; Avalle, M.; Arnoux, P.J. Analysis of the influence of passenger vehicles front-end design on pedestrian lower extremity injuries by means of the LLMS model. Traffic Inj. Prev. 2018, 19, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Yang, J.; Deck, C.; Willinger, R. Finite element modeling of crash test behavior for windshield laminated glass. Int. J. Impact Eng. 2013, 57, 27–35. [Google Scholar] [CrossRef]
- Shi, L.; Han, Y.; Huang, H.; He, W.; Wang, F.; Wang, B. Effects of vehicle front-end safety countermeasures on pedestrian head injury risk during ground impact. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2019, 233, 3588–3599. [Google Scholar] [CrossRef]
- Teng, T.L.; Liang, C.C.; Shih, C.J.; Nguyen, M.T. Design of car hood of sandwich structures for pedestrian safety. Int. J. Veh. Des. 2013, 63, 185–198. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Wang, K.; Yao, S.; Peng, Y. Progressive collapse behaviors and mechanisms of 3D printed thin-walled composite structures under multi-conditional loading. Thin Wall. Struct. 2022, 171, 108810. [Google Scholar] [CrossRef]
- Cheng, P.; Peng, Y.; Li, S.; Rao, Y.; Le Duigou, A.; Wang, K.; Ahzi, S. 3D printed continuous fiber reinforced composite lightweight structures: A review and outlook. Compos. Part B-Eng. 2023, 250, 110450. [Google Scholar] [CrossRef]
- Shigeta, K.; Kitagawa, Y.; Yasuki, T. Development of next generation human FE model capable of organ injury prediction. In Proceedings of the 21st Annual Enhanced Safety of Vehicles, Stuttgart, Germany, 15–18 June 2009; pp. 09–0111. [Google Scholar]
- Watanabe, R.; Miyazaki, H.; Kitagawa, Y.; Yasuki, T. Research of collision speed dependency of pedestrian head and chest injuries using human FE model (THUMS version 4). In Proceedings of the 22nd International Technical Conference on the Enhanced Safety of Vehicles (ESV), Washington, DC, USA, 13–16 June 2011; pp. 11–0043. [Google Scholar]
- Deng, G.; Wang, F.; Yu, C.; Peng, Y.; Xu, H.; Li, Z.; Hou, L.; Wang, Z. Assessment of standing passenger traumatic brain injury caused by ground impact in subway collisions. Accid. Anal. Prev. 2022, 166, 106547. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yang, J.; Simms, C. The influence of gait stance on pedestrian lower limb injury risk. Accid. Anal. Prev. 2015, 85, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Qu, C.; Yao, S.; Yang, C.; Che, Q. Crash mechanics behavior of single-carriage train with square cone energy-absorbing structure. J. Cent. South Univ. (Sci. Technol.) 2022, 53, 1889–1903. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y.; Chen, X.; Wang, K. The crack propagation and dynamic impact responses of tempered laminated glass used in high-speed trains. Eng. Fail. Anal. 2022, 134, 106024. [Google Scholar] [CrossRef]
- Fugger, T.F.; Randles, B.C., Jr.; Stein, A.C.; Whiting, W.C.; Gallagher, B. Analysis of Pedestrian Gait and Perception-Reaction at Signal-Controlled Crosswalk Intersections. Transport. Res. Rec. 2000, 1705, 20–25. [Google Scholar] [CrossRef]
- CJ/T 417-2022; General Technical Specifications for Low Floor Tramcar. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2022.
- Deng, G.; Peng, Y.; Hou, L.; Li, Z.; Li, B.; Yu, C.; Simms, C. A Novel Simplified FE Rail Vehicle Model in Longitudinal and Lateral Collisions. Machines 2022, 10, 1214. [Google Scholar] [CrossRef]
- Yu, C.; Wang, F.; Wang, B.; Li, G.; Li, F. A computational biomechanics human body model coupling finite element and multibody segments for assessment of head/brain injuries in car-to-pedestrian collisions. Int. J. Environ. Res. Public Health 2020, 17, 492. [Google Scholar] [CrossRef]
- Guesset, A. Tramway Front End Design; Technical Agency for Ropeways and Guided Transport Systems: Saint-Martin-d’Hères, France, 2016. [Google Scholar]
- Kuehn, A. Tramways in Pedestrian Zones and Traffic Calmed Areas. Available online: https://www.cerema.fr/system/files/documents/2019/09/2a-tramways_in_pedestrian_zones_and_traffic_calmed_areas_akuehn_29102016.pdf (accessed on 10 October 2023).
- Onfield, W. Advances in the fracture mechanics of cortical bone. J. Biomech. 1987, 20, 1071–1081. [Google Scholar] [CrossRef]
- Bose, D.; Bhalla, K.S.; Untaroiu, C.D.; Ivarsson, B.J.; Crandall, J.R.; Hurwitz, S. Injury tolerance and moment response of the knee joint to combined valgus bending and shear loading. J. Biomech. Eng. 2008, 130, 031008. [Google Scholar] [CrossRef]
- Mo, F.; Arnoux, P.J.; Cesari, D.; Masson, C. Investigation of the injury threshold of knee ligaments by the parametric study of car-pedestrian impact conditions. Safety Sci. 2014, 62, 58–67. [Google Scholar] [CrossRef]
- Takahashi, Y.; Kikuchi, Y.; Konosu, A.; Ishikawa, H. Development and Validation of the Finite Element Model for the Human Lower Limb of Pedestrians; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2000. [Google Scholar] [CrossRef]
- Wang, F.; Wu, J.; Hu, L.; Yu, C.; Wang, B.; Huang, X.; Miller, K.; Wittek, A. Evaluation of the head protection effectiveness of cyclist helmets using full-scale computational biomechanics modelling of cycling accidents. J. Safety Res. 2022, 80, 109–134. [Google Scholar] [CrossRef] [PubMed]
- Takhounts, E.G.; Eppinger, R.H.; Campbell, J.Q.; Tannous, R.E.; Power, E.D.; Shook, L.S. On the Development of the SIMon Finite Element Head Model; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2003. [Google Scholar] [CrossRef]
- Takhounts, E.G.; Ridella, S.A.; Hasija, V.; Tannous, R.E.; Campbell, J.Q.; Malone, D.; Danelson, K.; Stitzel, J.; Rowson, S.; Duma, S. Investigation of Traumatic Brain Injuries Using the Next Generation of Simulated Injury Monitor (SIMon) Finite Element Head Model; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2008. [Google Scholar] [CrossRef]
- Cronin, D.S. Finite element modeling of potential cervical spine pain sources in neutral position low speed rear impact. J. Mech. Behav. Biomed. Mater. 2014, 33, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Ferrari, R.; Narayan, Y. Kinematic and electromyographic response to whiplash loading in low–velocity whiplash impacts—A review. Clin. Biomech. 2005, 20, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Stemper, B.D.; Yoganandan, N.; Rao, R.D.; Pintar, F.A. Influence of thoracic ramping on whiplash kinematics. Clin. Biomech. 2005, 20, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Nagasaka, K.; Mizuno, K.; Tanaka, E.; Yamamoto, S.; Iwamoto, M.; Miki, K.; Kajzer, J. Finite element analysis of knee injury risks in car-to-pedestrian impacts. Traffic Inj. Prev. 2003, 4, 345–354. [Google Scholar] [CrossRef]
- Li, G.; Lyons, M.; Wang, B.; Yang, J.; Otte, D.; Simms, C. The influence of passenger car front shape on pedestrian injury risk observed from German in-depth accident data. Accid. Anal. Prev. 2017, 101, 11–21. [Google Scholar] [CrossRef]
- Yang, K.H.; King, A.I. Modeling of the brain for injury simulation and prevention. In Biomechanics of the Brain; Springer: New York, NY, USA, 2011; pp. 91–110. [Google Scholar] [CrossRef]
- Mao, H.; Yang, K.H. Investigation of brain contusion mechanism and threshold by combining finite element analysis with in vivo histology data. Int. J. Numer. Methods Biomed. Eng. 2011, 27, 357–366. [Google Scholar] [CrossRef]
- Demant, A.W.; Bangard, C.; Bovenschulte, H.; Skouras, E.; Anderson, S.E.; Lackner, K.J. MDCT evaluation of injuries after tram accidents in pedestrians. Emerg. Radiol. 2010, 17, 103–108. [Google Scholar] [CrossRef]
Input Parameter | Simulation Matrix | |||||
---|---|---|---|---|---|---|
Baseline Case | Value Sample (Baseline Case Shown in Brackets) | |||||
Tram speed (km/h) | 20 | 12.5 | 15 | 17.5 | (20) | 22.5 |
Impact angle (°) | 0 | −90 | −45 | (0) | 45 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Hu, Z.; Liu, Z.; Che, Q.; Deng, G. Assessment of Pedestrians’ Head and Lower Limb Injuries in Tram–Pedestrian Collisions. Biomimetics 2024, 9, 17. https://doi.org/10.3390/biomimetics9010017
Peng Y, Hu Z, Liu Z, Che Q, Deng G. Assessment of Pedestrians’ Head and Lower Limb Injuries in Tram–Pedestrian Collisions. Biomimetics. 2024; 9(1):17. https://doi.org/10.3390/biomimetics9010017
Chicago/Turabian StylePeng, Yong, Zhengsheng Hu, Zhixiang Liu, Quanwei Che, and Gongxun Deng. 2024. "Assessment of Pedestrians’ Head and Lower Limb Injuries in Tram–Pedestrian Collisions" Biomimetics 9, no. 1: 17. https://doi.org/10.3390/biomimetics9010017
APA StylePeng, Y., Hu, Z., Liu, Z., Che, Q., & Deng, G. (2024). Assessment of Pedestrians’ Head and Lower Limb Injuries in Tram–Pedestrian Collisions. Biomimetics, 9(1), 17. https://doi.org/10.3390/biomimetics9010017