Transforming Object Design and Creation: Biomaterials and Contemporary Manufacturing Leading the Way
Abstract
:1. Introduction
2. Biomimetic Smart Materials
2.1. Shape Memory Alloys (SMAs)
2.2. Shape Memory Polymers (SMPs)
SMP Type | Applications | Strength | Cost-Effectiveness | Biocompatibility |
---|---|---|---|---|
Polyurethane-based [76,77] | Biomedical devices, textiles, actuators | Moderate | Moderate | Varies (depends on formulation) |
Polyethylene-based [80,81] | Textiles, automotive applications, robotics | Low to moderate | Low to moderate | Generally good |
Polyvinyl-based [70,72] | Biomedical devices, textiles | Low to moderate | Moderate | Generally good |
Epoxy-based [71] | Aerospace applications, robotics, deployable structures | Moderate to high | Moderate to high | Varies (depends on formulation) |
Polycaprolactone [78,79] | Biomedical implants, drug delivery | Low to moderate | Moderate | Generally good |
Polyethylene terephthalate (PET) [80,81] | Textiles, packaging, automotive applications | Moderate to high | Moderate to high | Generally good |
2.3. Electroactive Polymers (EAPs)
EAP Type | Applications | Strength | Cost-Effectiveness | Biocompatibility |
---|---|---|---|---|
Polypyrrole [86] | Artificial muscles, sensors, actuators | Low to moderate | Moderate | Limited |
Polyaniline [84] | Sensors, actuators, electronic textiles | Low to moderate | Moderate | Limited |
Ionic Polymer-Metal Composite (IPMC) [82] | Soft robotics, sensors | Low | Moderate | Limited |
Dielectric Elastomer [83] | Soft robotics, haptic feedback, medical devices | Low to moderate | Moderate | Limited |
Conductive Elastomer [85] | Tactile sensors, wearable electronics | Low to moderate | Moderate | Limited |
Ferroelectric Polymers [87] | Energy harvesting, sensors | Low to moderate | Moderate | Limited |
3. Applications of Biomimetic Smart Materials
3.1. Healthcare Field and Regenerative Medicine
3.2. Robotics Field
3.3. Architectural Sector
3.4. Aerospace Industry Sector
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kantaros, A.; Ganetsos, T.; Piromalis, D. 4D Printing: Technology Overview and Smart Materials Utilized. J. Mechatron. Robot. 2023, 7, 1–14. [Google Scholar] [CrossRef]
- Kantaros, A.; Ganetsos, T.; Piromalis, D. 3D and 4D Printing as Integrated Manufacturing Methods of Industry 4.0. Am. J. Eng. Appl. Sci. 2023, 16, 12–22. [Google Scholar] [CrossRef]
- Momeni, F.M.; Mehdi Hassani, N.S.; Liu, X.; Ni, J. A Review of 4D Printing. Mater. Des. 2017, 122, 42–79. [Google Scholar] [CrossRef]
- Kuang, X.; Roach, D.J.; Wu, J.; Hamel, C.M.; Ding, Z.; Wang, T.; Dunn, M.L.; Qi, H.J. Advances in 4D Printing: Materials and Applications. Adv. Funct. Mater. 2019, 29, 1805290. [Google Scholar] [CrossRef]
- Choi, J.; Kwon, O.-C.; Jo, W.; Lee, H.J.; Moon, M.-W. 4D Printing Technology: A Review. 3D Print. Addit. Manuf. 2015, 2, 159–167. [Google Scholar] [CrossRef]
- Khoo, Z.X.; Teoh, J.E.M.; Liu, Y.; Chua, C.K.; Yang, S.; An, J.; Leong, K.F.; Yeong, W.Y. 3D Printing of Smart Materials: A Review on Recent Progresses in 4D Printing. Virtual Phys. Prototyp. 2015, 10, 103–122. [Google Scholar] [CrossRef]
- Chu, H.; Yang, W.; Sun, L.; Cai, S.; Yang, R.; Liang, W.; Yu, H.; Liu, L. 4D Printing: A Review on Recent Progresses. Micromachines 2020, 11, 796. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Rawat, K.; Karunakaran; Rajamohan, V.; Mathew, A.T.; Koziol, K.; Kumar Thakur, V. Balan 4D Printing of Materials for the Future: Opportunities and Challenges. Appl. Mater. Today 2020, 18, 100490. [Google Scholar] [CrossRef]
- Tibbits, S. 4D Printing: Multi-Material Shape Change. Archit. Des. 2014, 84, 116–121. [Google Scholar] [CrossRef]
- Wu, J.-J.; Huang, L.-M.; Zhao, Q.; Xie, T. 4D Printing: History and Recent Progress. Chin. J. Polym. Sci. 2018, 36, 563–575. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. 4D Printing Applications in Medical Field: A Brief Review. Clin. Epidemiol. Glob. Health 2019, 7, 317–321. [Google Scholar] [CrossRef]
- Ahmed, A.; Arya, S.; Gupta, V.; Furukawa, H.; Khosla, A. 4D Printing: Fundamentals, Materials, Applications and Challenges. Polymer 2021, 228, 123926. [Google Scholar] [CrossRef]
- Zhang, Z.; Demir, K.G.; Gu, G.X. Developments in 4D-Printing: A Review on Current Smart Materials, Technologies, and Applications. Int. J. Smart Nano Mater. 2019, 10, 205–224. [Google Scholar] [CrossRef]
- Sun, T.; Qing, G. Biomimetic Smart Interface Materials for Biological Applications. Adv. Mater. 2011, 23, H57–H77. [Google Scholar] [CrossRef]
- Shen, A.Q.; Hamlington, B.; Knoblauch, M.; Peters, W.S.; Pickard, W.F. Forisome Based Biomimetic Smart Materials. Available online: https://web.archive.org/web/20170216155956id_/http://faculty.washington.edu/amyshen/smartsystem.pdf (accessed on 7 September 2023).
- Suresh Kumar, N.; Padma Suvarna, R.; Chandra Babu Naidu, K.; Banerjee, P.; Ratnamala, A.; Manjunatha, H. A Review on Biological and Biomimetic Materials and Their Applications. Appl. Phys. A Mater. Sci. Process. 2020, 126, 445. [Google Scholar] [CrossRef]
- Fratzl, P. Biomimetic Materials Research: What Can We Really Learn from Nature’s Structural Materials? J. R. Soc. Interface 2007, 4, 637–642. [Google Scholar] [CrossRef]
- Vincent, J.F.V. Biomimetic Materials. J. Mater. Res. 2008, 23, 3140–3147. [Google Scholar] [CrossRef]
- Huang, G.; Li, F.; Zhao, X.; Ma, Y.; Li, Y.; Lin, M.; Jin, G.; Lu, T.J.; Genin, G.M.; Xu, F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem. Rev. 2017, 117, 12764–12850. [Google Scholar] [CrossRef]
- Ma, P.X. Biomimetic Materials for Tissue Engineering. Adv. Drug Deliv. Rev. 2008, 60, 184–198. [Google Scholar] [CrossRef]
- Patterson, J.; Martino, M.M.; Hubbell, J.A. Biomimetic Materials in Tissue Engineering. Mater. Today 2010, 13, 14–22. [Google Scholar] [CrossRef]
- Zhu, Y.; Joralmon, D.; Shan, W.; Chen, Y.; Rong, J.; Zhao, H.; Xiao, S.; Li, X. 3D Printing Biomimetic Materials and Structures for Biomedical Applications. Biodes. Manuf. 2021, 4, 405–428. [Google Scholar] [CrossRef]
- Naik, R.R.; Singamaneni, S. Introduction: Bioinspired and Biomimetic Materials. Chem. Rev. 2017, 117, 12581–12583. [Google Scholar] [CrossRef]
- Cho, K.-J.; Koh, J.-S.; Kim, S.; Chu, W.-S.; Hong, Y.; Ahn, S.-H. Review of Manufacturing Processes for Soft Biomimetic Robots. Int. J. Precis. Eng. Manuf. 2009, 10, 171–181. [Google Scholar] [CrossRef]
- Gao, Z.; Shi, Q.; Fukuda, T.; Li, C.; Huang, Q. An Overview of Biomimetic Robots with Animal Behaviors. Neurocomputing 2019, 332, 339–350. [Google Scholar] [CrossRef]
- Wang, J.; Chen, W.; Xiao, X.; Xu, Y.; Li, C.; Jia, X.; Meng, M.Q.-H. A Survey of the Development of Biomimetic Intelligence and Robotics. Biomim. Intell. Robot. 2021, 1, 100001. [Google Scholar] [CrossRef]
- Pampaloni, F.; Florin, E.-L. Microtubule Architecture: Inspiration for Novel Carbon Nanotube-Based Biomimetic Materials. Trends Biotechnol. 2008, 26, 302–310. [Google Scholar] [CrossRef]
- Voronkina, A.; Romanczuk-Ruszuk, E.; Przekop, R.E.; Lipowicz, P.; Gabriel, E.; Heimler, K.; Rogoll, A.; Vogt, C.; Frydrych, M.; Wienclaw, P.; et al. Honeycomb Biosilica in Sponges: From Understanding Principles of Unique Hierarchical Organization to Assessing Biomimetic Potential. Biomimetics 2023, 8, 234. [Google Scholar] [CrossRef]
- Lu, H.Z.; Yang, C.; Luo, X.; Ma, H.W.; Song, B.; Li, Y.Y.; Zhang, L.C. Ultrahigh-Performance TiNi Shape Memory Alloy by 4D Printing. Mater. Sci. Eng. A Struct. Mater. 2019, 763, 138166. [Google Scholar] [CrossRef]
- Kim, D.; Ferretto, I.; Kim, W.; Leinenbach, C.; Lee, W. Effect of Post-Heat Treatment Conditions on Shape Memory Property in 4D Printed Fe–17Mn–5Si–10Cr–4Ni Shape Memory Alloy. Mater. Sci. Eng. A Struct. Mater. 2022, 852, 143689. [Google Scholar] [CrossRef]
- Yao, T.; Wang, Y.; Zhu, B.; Wei, D.; Yang, Y.; Han, X. 4D Printing and Collaborative Design of Highly Flexible Shape Memory Alloy Structures: A Case Study for a Metallic Robot Prototype. Smart Mater. Struct. 2021, 30, 015018. [Google Scholar] [CrossRef]
- Kim, D.; Ferretto, I.; Leinenbach, C.; Lee, W. 3D and 4D Printing of Complex Structures of Fe–Mn–Si-based Shape Memory Alloy Using Laser Powder Bed Fusion. Adv. Mater. Interfaces 2022, 9, 2200171. [Google Scholar] [CrossRef]
- Abolhasani, D.; Han, S.W.; VanTyne, C.J.; Kang, N.; Moon, Y.H. Powder Bed Fusion of Two-Functional Cu-Al-Ni Shape Memory Alloys Utilized for 4D Printing. J. Alloys Compd. 2022, 922, 166228. [Google Scholar] [CrossRef]
- Ge, Q.; Sakhaei, A.H.; Lee, H.; Dunn, C.K.; Fang, N.X.; Dunn, M.L. Multimaterial 4D Printing with Tailorable Shape Memory Polymers. Sci. Rep. 2016, 6, 31110. [Google Scholar] [CrossRef] [PubMed]
- Bodaghi, M.; Damanpack, A.R.; Liao, W.H. Triple Shape Memory Polymers by 4D Printing. Smart Mater. Struct. 2018, 27, 065010. [Google Scholar] [CrossRef]
- Spiegel, C.A.; Hackner, M.; Bothe, V.P.; Spatz, J.P.; Blasco, E. 4D Printing of Shape Memory Polymers: From Macro to Micro. Adv. Funct. Mater. 2022, 32, 2110580. [Google Scholar] [CrossRef]
- Luo, B.; Zhu, Z.; Xu, X.; Bian, C. 4D-Printed Low-Voltage Electroactive Polymers Modeling and Fabrication. In Smart Materials in Additive Manufacturing, Volume 1: 4D Printing Principles and Fabrication; Elsevier: Amsterdam, The Netherlands, 2022; pp. 107–150. [Google Scholar]
- Ma, S.; Zhang, Y.; Wang, M.; Liang, Y.; Ren, L.; Ren, L. Recent Progress in 4D Printing of Stimuli-Responsive Polymeric Materials. Sci. China Technol. Sci. 2020, 63, 532–544. [Google Scholar] [CrossRef]
- Oguntona, O.A.; Aigbavboa, C.O. Promoting Biomimetic Materials for a Sustainable Construction Industry. Bioinspired Biomim. Nanobiomaterials 2017, 6, 122–130. [Google Scholar] [CrossRef]
- Speck, T.; Speck, O. Emergence in Biomimetic Materials Systems. In Emergence and Modularity in Life Sciences; Springer International Publishing: Cham, Switzerland, 2019; pp. 97–115. ISBN 9783030061272. [Google Scholar]
- Pereira, P.M.M.; Monteiro, G.A.; Prazeres, D.M.F. General Aspects of Biomimetic Materials. In Biotechnologies and Biomimetics for Civil Engineering; Springer International Publishing: Cham, Switzerland, 2015; pp. 57–79. ISBN 9783319092867. [Google Scholar]
- The 17 Goals. Available online: https://sdgs.un.org/goals (accessed on 7 September 2023).
- Andreotti, M.; Brondi, C.; Micillo, D.; Zevenhoven, R.; Rieger, J.; Jo, A.; Hettinger, A.-L.; Bollen, J.; Malfa, E.; Trevisan, C.; et al. SDGs in the EU Steel Sector: A Critical Review of Sustainability Initiatives and Approaches. Sustainability 2023, 15, 7521. [Google Scholar] [CrossRef]
- Mori Junior, R.; Fien, J.; Horne, R. Implementing the UN SDGs in Universities: Challenges, Opportunities, and Lessons Learned. Sustainability 2019, 12, 129–133. [Google Scholar] [CrossRef]
- Abbate, E.; Mirpourian, M.; Brondi, C.; Ballarino, A.; Copani, G. Environmental and Economic Assessment of Repairable Carbon-Fiber-Reinforced Polymers in Circular Economy Perspective. Materials 2022, 15, 2986. [Google Scholar] [CrossRef]
- Küfeoğlu, S. SDG-9: Industry, Innovation and Infrastructure. In Emerging Technologies; Springer International Publishing: Cham, Switzerland, 2022; pp. 349–369. ISBN 9783031071263. [Google Scholar]
- Koch, F.; Krellenberg, K. How to Contextualize SDG 11? Looking at Indicators for Sustainable Urban Development in Germany. ISPRS Int. J. Geo-Inf. 2018, 7, 464. [Google Scholar] [CrossRef]
- Russell, C. Sustainable Cities and Communities from Backyards to Biolinks: Royal Botanic Gardens Victoria’s Role in Urban Greening. BGjournal 2018, 15, 31–33. [Google Scholar]
- Beccarello, M.; Di Foggia, G. Sustainable Development Goals Data-Driven Local Policy: Focus on SDG 11 and SDG 12. Adm. Sci. 2022, 12, 167. [Google Scholar] [CrossRef]
- Campbell, B.M.; Hansen, J.; Rioux, J.; Stirling, C.M.; Twomlow, S.; Wollenberg, E. Urgent Action to Combat Climate Change and Its Impacts (SDG 13): Transforming Agriculture and Food Systems. Curr. Opin. Environ. Sustain. 2018, 34, 13–20. [Google Scholar] [CrossRef]
- Arana, C.; Franco, I.B.; Joshi, A.; Sedhai, J. SDG 15 Life on Land: A Review of Sustainable Fashion Design Processes: Upcycling Waste Organic Yarns. In Science for Sustainable Societies; Springer: Singapore, 2020; pp. 247–264. ISBN 9789813299269. [Google Scholar]
- Essential Surgical Care WHO Global Initiative for Emergency and Essential Surgical Care. Available online: https://apps.who.int/iris/bitstream/handle/10665/206541/WHO_HIS_SDS_2016.11_eng.pdf (accessed on 7 September 2023).
- Agarwal, B. Gender Equality, Food Security and the Sustainable Development Goals. Curr. Opin. Environ. Sustain. 2018, 34, 26–32. [Google Scholar] [CrossRef]
- Clark, H.; Wu, H. The Sustainable Development Goals: 17 Goals to Transform Our World. In Furthering the Work of the United Nations; United Nations: New York, NY, USA, 2016; pp. 36–54. ISBN 9789210583237. [Google Scholar]
- Ayushi; Kumar Vates, U.; Mishra, S.; Jee Kanu, N. Biomimetic 4D Printed Materials: A State-of-the-Art Review on Concepts, Opportunities, and Challenges. Mater. Today 2021, 47, 3313–3319. [Google Scholar] [CrossRef]
- Shape Memory Alloys: Modeling and Engineering Applications; Springer: Boston, MA, USA, 2008; ISBN 9780387476841.
- Kumar, P.K.; Lagoudas, D.C. Introduction to Shape Memory Alloys. In Shape Memory Alloys; Springer: Boston, MA, USA, 2008; pp. 1–51. ISBN 9780387476841. [Google Scholar]
- Otsuka, K.; Kakeshita, T. Science and Technology of Shape-Memory Alloys: New Developments. MRS Bull. 2002, 27, 91–100. [Google Scholar] [CrossRef]
- Hartl, D.J.; Lagoudas, D.C. Aerospace Applications of Shape Memory Alloys. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 2007, 221, 535–552. [Google Scholar] [CrossRef]
- Costanza, G.; Tata, M.E. Shape Memory Alloys for Aerospace, Recent Developments, and New Applications: A Short Review. Materials 2020, 13, 1856. [Google Scholar] [CrossRef]
- Aversa, R.; Tamburrino, F.; Petrescu, R.V.V.; Petrescu, F.I.T.; Artur, M.; Chen, G.; Apicella, A. Biomechanically Inspired Shape Memory Effect Machines Driven by Muscle like Acting NiTi Alloys. Am. J. Appl. Sci. 2016, 13, 1264–1271. [Google Scholar] [CrossRef]
- Raffaella, A.; Petrescu, F.I.T.; Petrescu, R.V.V.; Antonio, A. Biomimetic Finite Element Analysis Bone Modeling for Customized Hybrid Biological Prostheses Development. Am. J. Appl. Sci. 2016, 13, 1060–1067. [Google Scholar] [CrossRef]
- Aversa, R.; Petrescu, R.V.V.; Apicella, A.; Petrescu, F.I.T. A Nanodiamond for Structural Biomimetic Scaffolds. Eng. Rev. 2019, 39, 81–89. [Google Scholar] [CrossRef]
- Petrescu, N.; Aversa, R.; Apicella, A.; Petrescu, F.I.T. Something about Robots Today. J. Mechatron. Robot. 2018, 2, 85–104. [Google Scholar] [CrossRef]
- Ganetsos, T.; Kantaros, A.; Gioldasis, N.; Brachos, K. Applications of 3D Printing and Illustration in Industry. In Proceedings of the 2023 17th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, 9–10 June 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Wen, S.; Gan, J.; Li, F.; Zhou, Y.; Yan, C.; Shi, Y. Research Status and Prospect of Additive Manufactured Nickel-Titanium Shape Memory Alloys. Materials 2021, 14, 4496. [Google Scholar] [CrossRef]
- Gohar, G.A.; Manzoor, T.; Ahmad, A.; Raza, H.; Farooq, A.; Karim, I.; Iftikhar, W.; Umar, M.; Asad, F. Synthesis and Investigate the Properties of Cu–Al–Ni Alloys with Ag Addition Using Powder Metallurgy Technique. J. Alloys Compd. 2020, 817, 153281. [Google Scholar] [CrossRef]
- Ur Rahman, R.A.; Juhre, D.; Halle, T. Review of Types, Properties, and Importance of Ferrous Based Shape Memory Alloys. Korean J. Mater. Res. 2018, 28, 381–390. [Google Scholar] [CrossRef]
- Mohd Jani, J.; Leary, M.; Subic, A.; Gibson, M.A. A Review of Shape Memory Alloy Research, Applications and Opportunities. Mater. Eng. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Xia, Y.; He, Y.; Zhang, F.; Liu, Y.; Leng, J. A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. Adv. Mater. 2021, 33, 2000713. [Google Scholar] [CrossRef]
- Hager, M.D.; Bode, S.; Weber, C.; Schubert, U.S. Shape Memory Polymers: Past, Present and Future Developments. Prog. Polym. Sci. 2015, 49–50, 3–33. [Google Scholar] [CrossRef]
- Yakacki, C.M.; Gall, K. Shape-Memory Polymers for Biomedical Applications. In Shape-Memory Polymers; Springer: Berlin/Heidelberg, Germany, 2009; pp. 147–175. ISBN 9783642123580. [Google Scholar]
- Wang, K.; Strandman, S.; Zhu, X.X. A Mini Review: Shape Memory Polymers for Biomedical Applications. Front. Chem. Sci. Eng. 2017, 11, 143–153. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.; Leng, J. Progress of Shape Memory Polymers and Their Composites in Aerospace Applications. Smart Mater. Struct. 2019, 28, 103003. [Google Scholar] [CrossRef]
- Liu, Y.; Du, H.; Liu, L.; Leng, J. Shape Memory Polymers and Their Composites in Aerospace Applications: A Review. Smart Mater. Struct. 2014, 23, 023001. [Google Scholar] [CrossRef]
- Sabahi, N.; Roohani, I.; Wang, C.H.; Farajzadeh, E.; Li, X. Thermoplastic Polyurethane-Based Shape Memory Polymers with Potential Biomedical Application: The Effect of TPU Soft-Segment on Shape Memory Effect and Cytocompatibility. Polymer 2023, 283, 126189. [Google Scholar] [CrossRef]
- Zhou, J.; Li, H.; Liu, W.; Dugnani, R.; Tian, R.; Xue, W.; Chen, Y.; Guo, Y.; Duan, H.; Liu, H. A Facile Method to Fabricate Polyurethane Based Graphene Foams/Epoxy/Carbon Nanotubes Composite for Electro-Active Shape Memory Application. Compos. Part A Appl. Sci. Manuf. 2016, 91, 292–300. [Google Scholar] [CrossRef]
- Defize, T.; Riva, R.; Thomassin, J.-M.; Alexandre, M.; Van Herck, N.; Prez, F.D.; Jérôme, C. Reversible TAD Chemistry as a Convenient Tool for the Design of (Re)Processable PCL-Based Shape-Memory Materials. Macromol. Rapid Commun. 2017, 38, 1600517. [Google Scholar] [CrossRef] [PubMed]
- Pfau, M.R.; McKinzey, K.G.; Roth, A.A.; Grunlan, M.A. PCL-Based Shape Memory Polymer Semi-IPNs: The Role of Miscibility in Tuning the Degradation Rate. Biomacromolecules 2020, 21, 2493–2501. [Google Scholar] [CrossRef] [PubMed]
- Dolog, R.; Weiss, R.A. Shape Memory Behavior of a Polyethylene-Based Carboxylate Ionomer. Macromolecules 2013, 46, 7845–7852. [Google Scholar] [CrossRef]
- Scalet, G.; Auricchio, F.; Bonetti, E.; Castellani, L.; Ferri, D.; Pachera, M.; Scavello, F. An Experimental, Theoretical and Numerical Investigation of Shape Memory Polymers. Int. J. Plast. 2015, 67, 127–147. [Google Scholar] [CrossRef]
- Bar-Cohen, Y. Electroactive Polymers: Current Capabilities and Challenges. In Proceedings of the SPIE Proceedings, San Diego, CA, USA, 17–21 March 2002; Bar-Cohen, Y., Ed.; SPIE: Bellingham, WA, USA, 2002. [Google Scholar]
- Lu, T.; Ma, C.; Wang, T. Mechanics of Dielectric Elastomer Structures: A Review. Extreme Mech. Lett. 2020, 38, 100752. [Google Scholar] [CrossRef]
- Woehling, V.; Nguyen, G.T.M.; Plesse, C.; Petel, Y.; Dobashi, Y.; Madden, J.D.W.; Michal, C.A.; Vidal, F. Study of the Piezoionic Effect and Influence of Electrolyte in Conducting Polymer Based Soft Strain Sensors. Multifunct. Mater. 2019, 2, 045002. [Google Scholar] [CrossRef]
- Seurre, L.; Aréna, H.; Ghenna, S.; Soyer, C.; Grondel, S.; Plesse, C.; Nguyen, G.T.M.; Vidal, F.; Cattan, E. Behavior of Conducting Polymer-Based Micro-Actuators under a DC Voltage. Sens. Actuators B Chem. 2023, 380, 133338. [Google Scholar] [CrossRef]
- Choudhary, R.B.; Ansari, S.; Purty, B. Robust Electrochemical Performance of Polypyrrole (PPy) and Polyindole (PIn) Based Hybrid Electrode Materials for Supercapacitor Application: A Review. J. Energy Storage 2020, 29, 101302. [Google Scholar] [CrossRef]
- Sharma, T.; Je, S.-S.; Gill, B.; Zhang, J.X.J. Patterning Piezoelectric Thin Film PVDF–TrFE Based Pressure Sensor for Catheter Application. Sens. Actuators A Phys. 2012, 177, 87–92. [Google Scholar] [CrossRef]
- Sinha, S.K. Additive Manufacturing (AM) of Medical Devices and Scaffolds for Tissue Engineering Based on 3D and 4D Printing. In 3D and 4D Printing of Polymer Nanocomposite Materials; Sadasivuni, K.K., Deshmukh, K., Almaadeed, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 119–160. ISBN 9780128168059. [Google Scholar]
- Kantaros, A. 3D Printing in Regenerative Medicine: Technologies and Resources Utilized. Int. J. Mol. Sci. 2022, 23, 14621. [Google Scholar] [CrossRef]
- Kantaros, A.; Piromalis, D. Fabricating Lattice Structures via 3D Printing: The Case of Porous Bio-Engineered Scaffolds. Appl. Mech. 2021, 2, 289–302. [Google Scholar] [CrossRef]
- Apicella, A.; Aversa, R.; Petrescu, F.I.T. Hybrid Ceramo-Polymeric Nano-Diamond Composites. Am. J. Eng. Appl. Sci. 2018, 11, 766–782. [Google Scholar] [CrossRef]
- Kantaros, A. Bio-Inspired Materials: Exhibited Characteristics and Integration Degree in Bio-Printing Operations. Am. J. Eng. Appl. Sci. 2022, 15, 255–263. [Google Scholar] [CrossRef]
- Aversa, R.; Apicella, A.; Tamburrino, F.; Petrescu, F.I.T. Mechanically Stimulated Osteoblast Cells Growth. Am. J. Eng. Appl. Sci. 2018, 11, 1023–1036. [Google Scholar] [CrossRef]
- Aljohani, A.; Desai, S. 3D Printing of Porous Scaffolds for Medical Applications. Am. J. Eng. Appl. Sci. 2018, 11, 1076–1085. [Google Scholar] [CrossRef]
- Shakibania, S.; Ghazanfari, L.; Raeeszadeh-Sarmazdeh, M.; Khakbiz, M. Medical Application of Biomimetic 4D Printing. Drug Dev. Ind. Pharm. 2021, 47, 521–534. [Google Scholar] [CrossRef]
- Tran, T.S.; Balu, R.; Mettu, S.; Roy Choudhury, N.; Dutta, N.K. 4D Printing of Hydrogels: Innovation in Material Design and Emerging Smart Systems for Drug Delivery. Pharmaceuticals 2022, 15, 1282. [Google Scholar] [CrossRef] [PubMed]
- Apicella, A.; Aversa, R.; Petrescu, F.I.T. Biomechanically Inspired Machines, Driven by Muscle like Acting NiTi Alloys. Am. J. Eng. Appl. Sci. 2018, 11, 809–829. [Google Scholar] [CrossRef]
- Ramezani, M.; Mohd Ripin, Z. 4D Printing in Biomedical Engineering: Advancements, Challenges, and Future Directions. J. Funct. Biomater. 2023, 14, 347. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Song, Z.; Ren, L.; Liu, Q.; Ren, L. Biomimetic Shape–Color Double-responsive 4D Printing. Adv. Mater. Technol. 2019, 4, 1900293. [Google Scholar] [CrossRef]
- Li, Y.-C.; Zhang, Y.S.; Akpek, A.; Shin, S.R.; Khademhosseini, A. 4D Bioprinting: The next-Generation Technology for Biofabrication Enabled by Stimuli-Responsive Materials. Biofabrication 2016, 9, 012001. [Google Scholar] [CrossRef]
- Kantaros, A.; Soulis, E.; Ganetsos, T.; Petrescu, F.I.T. Applying a Combination of Cutting-Edge Industry 4.0 Processes towards Fabricating a Customized Component. Processes 2023, 11, 1385. [Google Scholar] [CrossRef]
- Pagonis, K.; Zacharia, P.; Kantaros, A.; Ganetsos, T.; Brachos, K. Design, Fabrication and Simulation of a 5-dof Robotic Arm using Machine Vision. In Proceedings of the 2023 17th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, 26–27 May 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Shiblee, M.D.N.I.; Ahmed, K.; Kawakami, M.; Furukawa, H. 4D Printing of Shape-memory Hydrogels for Soft-robotic Functions. Adv. Mater. Technol. 2019, 4, 1900071. [Google Scholar] [CrossRef]
- Must, I.; Kaasik, F.; Põldsalu, I.; Mihkels, L.; Johanson, U.; Punning, A.; Aabloo, A. Ionic and Capacitive Artificial Muscle for Biomimetic Soft Robotics: Ionic and Capacitive Artificial Muscle for Biomimetic Soft Robotics. Adv. Eng. Mater. 2015, 17, 84–94. [Google Scholar] [CrossRef]
- Park, C.; Ozturk, C.; Roche, E.T. Computational Design of a Soft Robotic Myocardium for Biomimetic Motion and Function. Adv. Funct. Mater. 2022, 32, 2206734. [Google Scholar] [CrossRef]
- Aversa, R.; Parcesepe, D.; Tamburrino, F.; Apicella, A.; Petrescu, F.I.T. Cold Crystallization Behavior of a Zr44-Ti11-Cu10-Ni10-Be25 Metal Glassy Alloy. Am. J. Eng. Appl. Sci. 2018, 11, 1005–1022. [Google Scholar] [CrossRef]
- Nalcaci, G.; Nalcaci, G. Modeling and Implementation of an Adaptive Facade Design for Energy Efficiently Buildings Based Biomimicry. In Proceedings of the 2020 8th International Conference on Smart Grid (icSmartGrid), Paris, France, 17–19 June 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Tamburrino, F.; Graziosi, S.; Bordegoni, M. The Design Process of Additively Manufactured Mesoscale Lattice Structures: A Review. J. Comput. Inf. Sci. Eng. 2018, 18, 040801. [Google Scholar] [CrossRef]
- Kim, M.-J.; Kim, B.-G.; Koh, J.-S.; Yi, H. Flexural Biomimetic Responsive Building Façade Using a Hybrid Soft Robot Actuator and Fabric Membrane. Autom. Constr. 2023, 145, 104660. [Google Scholar] [CrossRef]
- Shahbazi, M.; Jäger, H.; Ettelaie, R.; Mohammadi, A.; Asghartabar Kashi, P. Multimaterial 3D Printing of Self-Assembling Smart Thermo-Responsive Polymers into 4D Printed Objects: A Review. Addit. Manuf. 2023, 71, 103598. [Google Scholar] [CrossRef]
- Reichert, S.; Menges, A.; Correa, D. Meteorosensitive Architecture: Biomimetic Building Skins Based on Materially Embedded and Hygroscopically Enabled Responsiveness. Comput. Aided Des. 2015, 60, 50–69. [Google Scholar] [CrossRef]
- Aruanno, B.; Paoli, A.; Razionale, A.V.; Tamburrino, F. Effect of Printing Parameters on Extrusion-Based Additive Manufacturing Using Highly Filled CuSn12 Filament. Int. J. Adv. Manuf. Technol. 2023, 128, 1101–1114. [Google Scholar] [CrossRef]
- Raszewski, Z.; Mikulewicz, M.; Brząkalski, D.; Pakuła, D.; Przekop, R.E. Comparison of the Bioactive and Bacteriostatic Performance of Different Alginate-Based Dental Prosthetic Impression Materials with and without Zirconium Phosphate-Based Ion Exchange Resin Containing Silver: An in Vitro Study. Appl. Sci. 2023, 13, 11639. [Google Scholar] [CrossRef]
- Menges, A.; Reichert, S. Material Capacity: Embedded Responsiveness. Archit. Des. 2012, 82, 52–59. [Google Scholar] [CrossRef]
- Tzikopoulos, A.F.; Karatza, M.C.; Paravantis, J.A. Modeling Energy Efficiency of Bioclimatic Buildings. Energy Build. 2005, 37, 529–544. [Google Scholar] [CrossRef]
- Yu, K.; Fan, T.; Lou, S.; Zhang, D. Biomimetic Optical Materials: Integration of Nature’s Design for Manipulation of Light. Prog. Mater. Sci. 2013, 58, 825–873. [Google Scholar] [CrossRef]
- Kuru, A.; Oldfield, P.; Bonser, S.; Fiorito, F. Biomimetic Adaptive Building Skins: Energy and Environmental Regulation in Buildings. Energy Build. 2019, 205, 109544. [Google Scholar] [CrossRef]
- Badarnah, L. Water Management Lessons from Nature for Applications to Buildings. Procedia Eng. 2016, 145, 1432–1439. [Google Scholar] [CrossRef]
- Tamburrino, F.; Apicella, A.; Aversa, R.; Petrescu, F.I.T. Advanced Manufacturing for Novel Materials in Industrial Design Applications. Am. J. Eng. Appl. Sci. 2018, 11, 932–972. [Google Scholar] [CrossRef]
- Rose, J.B.R.; Natarajan, S.G.; Gopinathan, V.T. Biomimetic Flow Control Techniques for Aerospace Applications: A Comprehensive Review. Rev. Environ. Sci. Biotechnol. 2021, 20, 645–677. [Google Scholar] [CrossRef]
- Kunzmann, C.; Aliakbarpour, H.; Ramezani, M. Biomimetics Design of Sandwich-Structured Composites. J. Compos. Sci. 2023, 7, 315. [Google Scholar] [CrossRef]
- Du, X.; Xin, B.; Xu, J.; Wang, C. Biomimetic Superhydrophobic Membrane with Multi-Scale Porous Microstructure for Waterproof and Breathable Application. Colloids Surf. A Physicochem. Eng. Asp. 2021, 612, 125924. [Google Scholar] [CrossRef]
- Basri, E.I.; Basri, A.A.; Ahmad, K.A. Computational Fluid Dynamics Analysis in Biomimetics Applications: A Review from Aerospace Engineering Perspective. Biomimetics 2023, 8, 319. [Google Scholar] [CrossRef]
- Aththanayaka, S.; Thiripuranathar, G.; Ekanayake, S. Emerging Advances in Biomimetic Synthesis of Nanocomposites and Potential Applications. Mater. Today Sustain. 2022, 20, 100206. [Google Scholar] [CrossRef]
- Knoblauch, M.; Peters, W.S. Biomimetic Actuators: Where Technology and Cell Biology Merge. Cell. Mol. Life Sci. 2004, 61, 2497–2509. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, J.; Guo, X.; Yang, S.; Ozen, M.O.; Chen, P.; Liu, X.; Du, W.; Xiao, F.; Demirci, U.; et al. Multi-Stimuli-Responsive Programmable Biomimetic Actuator. Nat. Commun. 2019, 10, 4087. [Google Scholar] [CrossRef]
- Li, G.; Shojaei, A. A Viscoplastic Theory of Shape Memory Polymer Fibres with Application to Self-Healing Materials. Proc. Math. Phys. Eng. Sci. 2012, 468, 2319–2346. [Google Scholar] [CrossRef]
- Choi, E.; Sul, O.; Lee, J.; Seo, H.; Kim, S.; Yeom, S.; Ryu, G.; Yang, H.; Shin, Y.; Lee, S.-B. Biomimetic Tactile Sensors with Bilayer Fingerprint Ridges Demonstrating Texture Recognition. Micromachines 2019, 10, 642. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, D.; Nakagawa-Silva, A.; Nguyen, H.; Low, J.H.; Shallal, C.; Osborn, L.; Soares, A.B.; Yeow, R.C.H.; Thakor, N. Texture Discrimination Using a Soft Biomimetic Finger for Prosthetic Applications. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Chathuranga, D.S.; Wang, Z.; Ho, V.A.; Mitani, A.; Hirai, S. A Biomimetic Soft Fingertip Applicable to Haptic Feedback Systems for Texture Identification. In Proceedings of the 2013 IEEE International Symposium on Haptic Audio Visual Environments and Games (HAVE), Istanbul, Turkey, 26–27 October 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar]
- Malshe, A.P.; Bapat, S.; Rajurkar, K.P.; Haitjema, H. Bio-Inspired Textures for Functional Applications. CIRP Ann. Manuf. Technol. 2018, 67, 627–650. [Google Scholar] [CrossRef]
- Kim, H.-M. Ceramic Bioactivity and Related Biomimetic Strategy. Curr. Opin. Solid State Mater. Sci. 2003, 7, 289–299. [Google Scholar] [CrossRef]
SMA Type | Applications | Strength | Cost-Effectiveness | Biocompatibility |
---|---|---|---|---|
Nitinol (NiTi) [66] | Medical devices, eyeglass frames, robotics | High | Moderate | Good |
Cu-Zn-Al [59] | Actuators, robotics, aerospace | Moderate | Moderate | Poor |
Ni-Ti-Pd [60] | Aerospace, medical implants | High | Moderate | Good |
Fe-Pt [68,69] | Actuators, sensors, robotics | High | High | Poor |
Cu-Al-Ni [67] | Robotics, automotive | Moderate | Moderate | Poor |
Ni-Al-Mn [65] | Actuators, medical devices | High | Moderate | Good |
Key Findings and Applications | Description |
---|---|
Biomimetic scaffolds [89,90] | Introduction of biomechanical scaffolds based on nanodiamond-filled hydrophilic polymer matrix |
Unique material properties [88] | Novel biomaterials with special mechanical and biological properties for advanced biomedical applications |
Enhanced mechanical strength [91] | Hybrid nanocomposites with significantly improved mechanical strength compared to traditional hydrogels |
Orthopedic applications [92] | Biomimetic implants find potential applications in orthopedic areas like the knee, ankle, hip, shoulder, and orthopedic column |
Surgical oncology [93,94] | Supports bone regeneration following tumor elimination interventions in surgical oncology |
Odonto-stomatological implants [98] | Development of bioactive odonto-stomatological implants using hybrid ceramic–polymeric biomimetic material |
Bone remodeling stimulation [94] | Emphasis on creating bioactive scaffolding interfaces that stimulate healthy bone remodeling and growth |
Biomechanical compatibility [89,90] | Use of mechanically compatible hybrid hydrogels to enhance prosthesis adaptation and replicate biomechanical functions of cartilage and ligaments |
Key Findings and Applications | Description |
---|---|
Soft robots with shape-changing abilities [103] | Utilization of 4D-printed materials exhibiting shape memory effects or stimuli-responsive behavior, enabling robots to undergo controlled and reversible shape changes in response to external stimuli like temperature, light, or humidity. This allows for navigation of complex terrains, squeezing through tight spaces, and safe human interaction. |
Robotic systems with artificial muscles [104] | Integration of electroactive polymers (EAPs) into 4D-printed structures, enabling the development of robots with soft and compliant actuators that mimic the behavior and properties of natural muscles. This facilitates safer human–robot interactions, precise manipulation of objects, and enhanced robot adaptability in dynamic environments. |
Robotic systems with self-healing capabilities [105] | Exploration of materials that can autonomously repair themselves when damaged, ensuring longer operational lifetimes and reducing maintenance requirements. Integration of self-healing mechanisms into 4D-printed structures allows robots to recover from damages and enhance durability. |
Application of liquid crystals in robotics [106] | Investigation of liquid crystals, substances possessing properties of both liquids and crystalline solids. Research focuses on the isothermal cycles of specific metallic alloys, studying their behavior under different temperature and electric potential conditions, leading to improved understanding of their properties and applications in robotics. |
Integration of biomimetic smart materials for sensing and feedback [106] | Incorporation of biomimetic materials for sensing and feedback mechanisms in robots, allowing them to interact with their environment more effectively. These materials enable the development of robots with enhanced perception capabilities, facilitating tasks such as object manipulation, navigation, and adaptive responses to external stimuli. |
Key Findings and Applications | Description |
---|---|
Adaptive Building Facades [107,108,109] | Integration of biomimetic smart materials, such as those with shape memory effects or light-responsive behaviors, into 4D-printed facades, enabling the creation of dynamic building envelopes that adapt their shape, permeability, or shading properties in response to changes in temperature, light intensity, or humidity. |
Self-Assembling Structures [110,111] | Incorporation of materials that respond to specific triggers, such as temperature or moisture, allowing 4D-printed components to autonomously assemble into complex structures. This mimics the growth and self-assembly mechanisms observed in natural organisms, promoting efficient and sustainable construction methods and facilitating the creation of adaptable and reconfigurable spaces. |
Responsive Architectural Elements [112,113,114] | Utilization of materials that change their shape or porosity in response to external stimuli in 4D-printed components, optimizing airflow, daylighting, and thermal comfort within buildings. These responsive elements dynamically adapt to changing weather conditions, occupant preferences, or energy requirements, resulting in enhanced indoor environmental quality and reduced energy consumption. |
Bioclimatic Building Envelopes [115] | Development of building envelopes that regulate internal temperature and humidity based on external climatic conditions, mimicking adaptive features found in natural systems. These envelopes enable buildings to self-regulate and maintain optimal indoor environmental conditions, promoting energy efficiency and occupant comfort while reducing the overall environmental footprint. |
Natural Light Optimization [116] | Design of 4D-printed architectural components that manipulate natural light within a building, enhancing daylight penetration and distribution. Incorporation of light-responsive materials enables the creation of spaces that balance natural illumination and privacy, reducing energy consumption associated with artificial lighting and promoting a healthier and more productive indoor environment for occupants. |
Enhanced Acoustic Performance [117] | Implementation of innovative architectural solutions that enhance acoustic performance within buildings. Integration of materials inspired by natural sound-absorbing mechanisms effectively mitigates noise polution and reverberation, creating quieter and more comfortable indoo spaces conducive to work, relaxation, and social interaction. |
Adaptive Water Management Systems [118] | Utilization of biomimetic smart materials to develop adaptive water management systems that mimic the self-regulating capabilities of natural water-retention mechanisms. Integration of materials with responsive hydrophilic or hydrophobic properties enables efficient water flow management, reduces the risk of water-related damage, and promotes sustainable water conservation practices, enhancing the resilience and sustainability of building infrastructure. |
Key Findings and Applications | Description |
---|---|
Morphing wings and adaptive structures [120,121,122] | Integration of biomimetic smart materials into 4D-printed wing structures, enabling aircraft to dynamically change their shape during flight to optimize aerodynamic performance. Inspired by bird wings, these materials allow for efficient control of lift, drag, and maneuverability, leading to improved fuel efficiency, enhanced agility, and reduced noise emissions, contributing to more sustainable and advanced aircraft designs. |
Deployable structures and adaptive components [123] | Utilization of 4D-printed materials capable of shape changes or actuation in response to external stimuli, such as temperature or electrical fields, to design deployable systems that expand or fold during space missions or for compact storage during transport. These materials enable the development of lightweight and space-efficient structures that adapt to the operational requirements of spacecraft, satellites, or planetary rovers. |
Self-healing and self-repairing aerospace components [124] | Exploration of materials capable of autonomously repairing damages, such as microcracks or delamination, inspired by the regenerative capabilities of natural organisms. Incorporation of self-healing mechanisms into 4D-printed structures enables aircraft components to recover from structural damage, ensuring longer operational lifetimes, reducing maintenance costs, and enhancing safety in harsh environments. |
Aerospace robotics and actuators [125,126] | Integration of biomimetic smart materials into robotic systems and actuators, allowing engineers to create lightweight, adaptable, and efficient mechanisms. These biomimetic robotic systems can imitate the motions and behaviors of natural organisms, providing increased dexterity, flexibility, and efficiency in aerospace applications such as space exploration, satellite deployment, or maintenance operations. |
Property | SMAs | SMPs | EAPs |
---|---|---|---|
Material type | Metal alloys | Polymers | Polymers |
Response mechanism | Temperature-driven | Temperature-driven | Electrically-driven |
Actuation speed | Fast | Moderate to fast | Fast |
Reversibility | Fully reversible | Fully or partially reversible | Fully reversible |
Applications | Biomedical devices, aerospace components | Biomedical applications, soft robotics | Robotics, artificial muscles, haptic devices |
Cost | Relatively high | Moderate | Moderate to high |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kantaros, A.; Ganetsos, T.; Petrescu, F.I.T. Transforming Object Design and Creation: Biomaterials and Contemporary Manufacturing Leading the Way. Biomimetics 2024, 9, 48. https://doi.org/10.3390/biomimetics9010048
Kantaros A, Ganetsos T, Petrescu FIT. Transforming Object Design and Creation: Biomaterials and Contemporary Manufacturing Leading the Way. Biomimetics. 2024; 9(1):48. https://doi.org/10.3390/biomimetics9010048
Chicago/Turabian StyleKantaros, Antreas, Theodore Ganetsos, and Florian Ion Tiberiu Petrescu. 2024. "Transforming Object Design and Creation: Biomaterials and Contemporary Manufacturing Leading the Way" Biomimetics 9, no. 1: 48. https://doi.org/10.3390/biomimetics9010048
APA StyleKantaros, A., Ganetsos, T., & Petrescu, F. I. T. (2024). Transforming Object Design and Creation: Biomaterials and Contemporary Manufacturing Leading the Way. Biomimetics, 9(1), 48. https://doi.org/10.3390/biomimetics9010048