Antagonistic Feedback Control of Muscle Length Changes for Efficient Involuntary Posture Stabilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Muscle Control System of the Whole–Body Musculoskeletal Model
2.2. Simulation Conditions for Learning to Stabilize a Target Posture
2.3. Simulation Conditions for Arm Motion Predictions under Different Initial Postures
3. Results
3.1. RL for Stabilization to a Targeted Posture
3.2. Arm Motion Predictions from Different Initial Postures
4. Discussion
4.1. Comparisons between FCM–ML and FCM–JA
4.2. Comparisons between ACRL–NGN and DDPG
4.3. Comparisons with Previous Iterative Learning Methods
4.4. Versatility of ACRL–NGN with FCM–ML to Other Body Parts
4.5. Application Prospects of ACRL–NGN with FCM–ML
4.6. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Kato, D.; Nakahira, Y.; Atsumi, N.; Iwamoto, M. Development of human-body model THUMS Version 6 containing muscle controllers and application to injury analysis in frontal collision after brake deceleration. In Proceedings of the 2018 IRCOBI Conference—International Research Council on the Biomechanics of Injury, Athens, Greece, 12–14 September 2018. [Google Scholar]
- Rooij, L. Effect of various pre-crash braking strategies on simulated human kinematic response with varying levels of driver attention. In Proceedings of the 22nd Enhanced Safety of Vehicles Conference, Washington, DC, USA, 13–16 June 2011. [Google Scholar]
- Thelen, D.; Anderson, F.; Delp, S. Generating dynamics simulations of movement using computed muscle control. J. Biomech. 2003, 36, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Doya, K. Reinforcement learning in continuous time and space. Neural Comput. 2000, 12, 219–245. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, M.; Nakahira, Y.; Kimpara, H.; Sugiyama, T.; Min, K. Development of a human body finite element model with multiple muscles and their controller for estimating occupant motions and impact responses in frontal crash situations. Stapp Car Crash J. 2012, 56, 231–268. [Google Scholar] [PubMed]
- Kambara, H.; Kim, K.; Sato, M.; Koike, Y. Learning arm’s posture control using reinforcement learning and feedback-error-learning. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; pp. 486–489. [Google Scholar]
- Kambara, H.; Kim, K.; Shin, D.; Sato, M.; Koike, Y. Learning and generation of goal-directed arm reaching from scratch. Neural Netw. 2009, 22, 348–361. [Google Scholar] [CrossRef]
- Min, K.; Iwamoto, M.; Kakei, S.; Kimpara, H. Muscle Synergy-Driven Robust Motion Control. Neural Comput. 2018, 30, 1104–1131. [Google Scholar] [CrossRef]
- Min, K.; Lee, J.; Kakei, S. Dynamic modulation of a learned motor skill for its recruitment. Front. Comput. Neurosci. 2020, 14, 457682. [Google Scholar] [CrossRef]
- Iwamoto, M.; Kato, D. Efficient actor-critic reinforcement learning with embodiment of muscle tone for posture stabilization of the human arm. Neural Comput. 2021, 33, 129–156. [Google Scholar] [CrossRef]
- Neumann, D. Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Kuechle, D.; Newman, S.; Itoi, E.; Morrey, B.; An, K. Shoulder muscle moment arms during horizontal flexion and elevation. J. Shoulder Elb. Surg. 1997, 6, 429–439. [Google Scholar] [CrossRef]
- Kuechle, D.; Newman, S.; Itoi, E.; Morrey, B.; An, K. The relevance of the moment arm of shoulder muscles with respect to axial rotation of the glenohumeral joint in four positions. Clin. Biomech. 2000, 15, 322–329. [Google Scholar] [CrossRef]
- Murray, W.; Delp, S.; Buchanan, T. Variation of muscle moment arms with elbow and forearm position. J. Biomech. 1995, 28, 513–525. [Google Scholar] [CrossRef]
- Murray, W.; Buchanan, T.; Delp, S. The isometric functional capacity of muscles that cross the elbow. J. Biomech. 2000, 33, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Murray, W.; Buchanan, T.; Delp, S. Scaling of peak moment arms of elbow muscles with upper extremity bone dimensions. J. Biomech. 2002, 35, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Arnold, E.M.; Salinas, S.; Asakawa, D.J.; Delp, S.L. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput. Aided Surg. 2000, 5, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Buford, W.L.; Ivey, F.M.; Malone, J.D.; Patterson, R.M.; Pearce, G.; Nguyen, D.K.; Stewart, A.A. Muscle balance at the knee-moment arms for the normal knee and the ACL-minus knee. IEEE Trans. Rehabil. Eng. 1997, 5, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, D. Software for determining lower extremity muscle-tendon kinematics and moment arm lengths during flexion/extension movements. Comput. Biol. Med. 1992, 22, 59–71. [Google Scholar] [CrossRef]
- Nemeth, G.; Ohlsenp, H. In vivo moment arm lengths for hip extensor muscles at different angles of hip flexion. J. Biomech. 1985, 8, 129–140. [Google Scholar] [CrossRef]
- Doya, K. Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr. Opin. Neurobiol. 2000, 10, 732–739. [Google Scholar] [CrossRef]
- Morimoto, J.; Doya, K. Robust reinforcement learning. Neural Comput. 2005, 17, 335–359. [Google Scholar] [CrossRef]
- Tengwall, R.; Jackson, J.; Kimura, T.; Komenda, S.; Okada, S.; Preuschoft, H. Human posture in zero gravity. Curr. Anthr. 1982, 23, 657–666. [Google Scholar] [CrossRef]
- Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic Policy Gradient Algorithms. In Proceedings of the 31st International Conference on Machine Learning, Beijing, China, 21–26 June 2014. [Google Scholar]
- Yang, J.; Lee, J.; Lee, B.; Kim, S.; Shin, D.; Lee, Y.; Lee, J.; Han, D.; Choi, S. The Effects of Elbow Joint Angle Changes on Elbow Flexor and Extensor Muscle Strength and Activation. J. Phys. Ther. Sci. 2014, 26, 1079–1082. [Google Scholar] [CrossRef]
- Kröger, S.; Watkins, B. Muscle spindle function in healthy and diseased muscle. Skelet. Muscle 2021, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, R.; Geyer, H.; Jeka, J.; Schoner, G.; Reimann, H. A neuromuscular model of human locomotion combines spinal reflex circuits with voluntary movements. Sci. Rep. 2022, 12, 8189. [Google Scholar] [CrossRef]
- Arnold, A.S.; Delp, S.L. Fibre operating lengths of human lower limb muscles during walking. Phil. Trans. R. Soc. B 2011, 366, 1530–1539. [Google Scholar] [CrossRef]
- Fujimoto, S.; van Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; PMLR 80. pp. 1587–1596. [Google Scholar]
- Lyu, J.; Ma, X.; Yan, J.; Li, X. Efficient continuous control with double actors and regularized critics. In Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, Virtual venue, 22 February–1 March 2022; pp. 7655–7663. [Google Scholar]
- Angelini, F.; Santina, C.D.; Garabini, M.; Bianchi, M.; Bicchi, A. Control architecture for human-like motion with applications to articulated soft robots. Front. Robot. AI 2020, 7, 117. [Google Scholar] [CrossRef]
- Chen, J.; Zhong, S.; Kang, E.; Qiao, H. Realizing human-like manipulation with a musculoskeletal system and biologically inspired control scheme. Neurocomputing 2019, 339, 116–129. [Google Scholar] [CrossRef]
- Fan, J.; Jin, J.; Wang, Q. Humanoid muscle-skeleton robot arm design and control based on reinforcement learning. In Proceedings of the 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 9–13 November 2020; pp. 541–546. [Google Scholar]
- Kurumaya, S.; Suzumori, K.; Nabae, H.; Wakimoto, S. Musculoskeletal lower-limb robot driven by multifilament muscles. ROBOMECH J. 2016, 3, 18. [Google Scholar] [CrossRef]
- Thelen, D. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J. Biomech. Eng. 2003, 125, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, I.; Piro, S.; Anjani, S.; Smulders, M.; Song, Y.; Naddeo, A.; Vinkg, P. Future vehicles: The effect of seat configuration on posture and quality of conversation. Ergonomics 2019, 62, 1400–1414. [Google Scholar] [CrossRef] [PubMed]
- Gunev, D.; Ilievy, S. The basic geometric parameters of the driving position of a battery electric, prototype class vehicle for the shell eco-marathon competition. AIP Conf. Proc. 2021, 2439, 020002. [Google Scholar]
- Kim, K.H.; Young, K.S.; Rajulu, S.L. Neutral body posture in spaceflight. In Proceedings of the Human Factors and Ergonomics Society 2019 Annual Meeting, Washington, DC, USA, 28 October–1 November 2019; pp. 992–996. [Google Scholar]
- Haeufle, D.F.B.; Gunther, M.; Bayer, A.; Schmitt, S. Hill-type muscle model with serial damping and eccentric force-velocity relation. J. Biomech. 2014, 47, 1531–1536. [Google Scholar] [CrossRef]
Upper Extremity | Lower Extremity |
---|---|
Deltoid anterior | Rectus femoris |
Deltoid middle | Semitendinosus |
Deltoid posterior | Semimembranosus |
Teres major | Biceps femoris (long head) |
Teres minor | Biceps femoris (short head) |
Supraspinatus | Gluteus maximus |
Infraspinatus | Gastrocnemius (medial head) |
Subscapularis | Gastrocnemius (lateral head) |
Biceps brachii (long head) | Vastus lateralis |
Biceps brachii (short head) | Vastus intermedius |
Triceps brachii (long head ) | Vastus medialis |
Triceps brachii (lateral head) | Sartorius |
Triceps brachii (medial head) | Gracilis |
Brachialis | |
Brachioradialis | |
Pronator teres | |
Anconeus |
Learning Algorithm | FCM | 1st Trial | 2nd Trial | 3rd Trial | 20th Trial | 300th Trial | |
---|---|---|---|---|---|---|---|
Right upper extremity | ACRL | Muscle length (ML) | 3 | 5 | 5 | 5 | 5 |
Joint angle (JA) | 1 | 0 | 1 | 1 | 0 | ||
None | 0 | 1 | 0 | 1 | 1 | ||
DDPG | Muscle length (ML) | 1 | 1 | 4 | 2 | 4 | |
Joint angle (JA) | 1 | 0 | 1 | 0 | 1 | ||
None | 1 | 0 | 0 | 1 | 0 | ||
Right lower extremity | ACRL | Muscle length (ML) | 3 | 4 | 3 | 0 | 4 |
Joint angle (JA) | 2 | 2 | 1 | 1 | 2 | ||
None | 0 | 0 | 0 | 0 | 0 | ||
DDPG | Muscle length (ML) | 3 | 1 | 1 | 0 | 4 | |
Joint angle (JA) | 1 | 1 | 2 | 1 | 2 | ||
None | 1 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwamoto, M.; Atsumi, N.; Kato, D. Antagonistic Feedback Control of Muscle Length Changes for Efficient Involuntary Posture Stabilization. Biomimetics 2024, 9, 618. https://doi.org/10.3390/biomimetics9100618
Iwamoto M, Atsumi N, Kato D. Antagonistic Feedback Control of Muscle Length Changes for Efficient Involuntary Posture Stabilization. Biomimetics. 2024; 9(10):618. https://doi.org/10.3390/biomimetics9100618
Chicago/Turabian StyleIwamoto, Masami, Noritoshi Atsumi, and Daichi Kato. 2024. "Antagonistic Feedback Control of Muscle Length Changes for Efficient Involuntary Posture Stabilization" Biomimetics 9, no. 10: 618. https://doi.org/10.3390/biomimetics9100618
APA StyleIwamoto, M., Atsumi, N., & Kato, D. (2024). Antagonistic Feedback Control of Muscle Length Changes for Efficient Involuntary Posture Stabilization. Biomimetics, 9(10), 618. https://doi.org/10.3390/biomimetics9100618