Numerical Investigation of an NACA 13112 Morphing Airfoil
Abstract
:1. Introduction
2. Methods and Boundary Conditions
2.1. Analytical Method
2.2. Panel Method
- 1.
- Influence coefficient equation:
- 2.
- Kutta condition:
- 3.
- Linear system of equations:
- 4.
- Calculation of velocity and pressure coefficient:
2.3. CFD Method
3. Results and Discussion
3.1. Analytical Method
3.2. Panel Method
3.3. CFD Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pecora, R. Morphing Wing Flaps for Large Civil Aircraft: Evolution of a Smart Technology across the Clean Sky Program. Chin. J. Aeronaut. 2021, 34, 13–28. [Google Scholar] [CrossRef]
- Concilio, A.; Galasso, B.; Ameduri, S. Scaling Effects on Morphing Structures: Preliminary Guidelines for Managing the Effects on a Case Study. Actuators 2023, 12, 366. [Google Scholar] [CrossRef]
- Ajaj, R.M.; Parancheerivilakkathil, M.S.; Amoozgar, M.; Friswell, M.I.; Cantwell, W.J. Recent Developments in the Aeroelasticity of Morphing Aircraft. Prog. Aerosp. Sci. 2021, 120, 100682. [Google Scholar] [CrossRef]
- Taylor, G.K.; Carruthers, A.C.; Hubel, T.Y.; Walker, S.M. Wing Morphing in Insects, Birds and Bats: Mechanism and Function. In Morphing Aerospace Vehicles and Structures; Wiley: Hoboken, NJ, USA, 2012; pp. 11–40. [Google Scholar]
- Rose, J.B.R.; Natarajan, S.G.; Gopinathan, V.T. Biomimetic Flow Control Techniques for Aerospace Applications: A Comprehensive Review. Rev. Environ. Sci. Bio/Technol. 2021, 20, 645–677. [Google Scholar] [CrossRef]
- Rodriguez, A. Morphing Aircraft Technology Survey. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2007; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2007. [Google Scholar]
- Feraru, D.M.; Larco, C.M.; Grigorie, T.L. Morphing Concepts in the Field of Rotorcraft. INCAS Bull. 2023, 15, 123–135. [Google Scholar] [CrossRef]
- Wilbur, M.L.; Mistry, M.P.; Lorber, P.F.; Blackwell, R.; Barbarino, S.; Lawrence, T.H.; Arnold, U.T.P. Rotary Wings Morphing Technologies: State of the Art and Perspectives. In Morphing Wing Technologies: Large Commercial Aircraft and Civil Helicopters; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Gueraiche, D.; Popov, S. Winglet Geometry Impact on DLR-F4 Aerodynamics and an Analysis of a Hyperbolic Winglet Concept. Aerospace 2017, 4, 60. [Google Scholar] [CrossRef]
- Oktay, T.; Özen, E. Effects of Shape Changing of Morphing Rotary Wing Aircraft on Longitudinal and Lateral Flight. J. Aviat. 2022, 6, 251–259. [Google Scholar] [CrossRef]
- Amirsalari, B.; Rocha, J. Recent Advances in Airfoil Self-Noise Passive Reduction. Aerospace 2023, 10, 791. [Google Scholar] [CrossRef]
- Akhter, M.Z.; Omar, F.K.; Elnajjar, E. Aerodynamic and Aeroacoustic Characteristics of a Bionic Morphing Flap. Energy Rep. 2023, 9, 310–315. [Google Scholar] [CrossRef]
- Vale, J.; Lau, F.; Suleman, A.; Gamboa, P. Multidisciplinary Design Optimization of a Morphing Wing for an Experimental UAV. In Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, VA, USA, 6–8 September 2006; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2006. [Google Scholar]
- Abdessemed, C.; Yao, Y.; Bouferrouk, A.; Narayan, P. Morphing Airfoils Analysis Using Dynamic Meshing. Int. J. Numer. Methods Heat Fluid Flow 2018, 28, 1117–1133. [Google Scholar] [CrossRef]
- Renken, J.H. Mission–Adaptive Wing Camber Control Systems for Transport Aircraft. In Proceedings of the 3rd Applied Aerodynamics Conference, Colorado Springs, CO, USA, 14–16 October 1985. [Google Scholar]
- Szodruch, J.; Hilbig, R. Variable Wing Camber for Transport Aircraft. Prog. Aerosp. Sci. 1988, 25, 297–328. [Google Scholar] [CrossRef]
- Yeo, H. Assessment of Active Controls for Rotor Performance Enhancement. J. Am. Helicopter Soc. 2008, 53, 152–163. [Google Scholar] [CrossRef]
- Hunsaker, D.F.; Reid, J.T.; Moorthamers, B.; Joo, J.J. Geometry and Aerodynamic Performance of Parabolic Trailing-Edge Flaps. In Proceedings of the AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar]
- Woods, B.K.S.; Friswell, M.I. Multi-Objective Geometry Optimization of the Fish Bone Active Camber Morphing Airfoil. J. Intell. Mater. Syst. Struct. 2016, 27, 808–819. [Google Scholar] [CrossRef]
- Leishman, J.G. A History of Helicopter Flight; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Milgram, J.; Chopra, I.; Straub, F. Rotors with Trailing Edge Flaps: Analysis and Comparison with Experimental Data. J. Am. Helicopter Soc. 1998, 43, 319–332. [Google Scholar] [CrossRef]
- Yeo, H.; Jain, R.; Jayaraman, B. Investigation of Rotor Vibratory Loads of a UH-60A Individual Blade Control System. J. Am. Helicopter Soc. 2016, 61, 1–16. [Google Scholar] [CrossRef]
- Gandhi, F.; Frecker, M.; Nissly, A. Design Optimization of a Controllable Camber Rotor Airfoil. AIAA J. 2008, 46, 142–153. [Google Scholar] [CrossRef]
- Vos, R.; Gürdal, Z.; Abdalla, M. Mechanism for Warp-Controlled Twist of a Morphing Wing. J. Aircr. 2010, 47, 450–457. [Google Scholar] [CrossRef]
- Werter, N.P.M.; Sodja, J.; Spirlet, G.; De Breuker, R. Design and Experiments of a Warp Induced Camber and Twist Morphing Leading and Trailing Edge Device. In Proceedings of the 24th AIAA/AHS Adaptive Structures Conference, San Diego, CA, USA, 4–8 January 2016. [Google Scholar]
- Barbarino, S.; Gandhi, F.; Webster, S.D. Design of Extendable Chord Sections for Morphing Helicopter Rotor Blades. J. Intell. Mater. Syst. Struct. 2011, 22, 891–905. [Google Scholar] [CrossRef]
- Mkhoyan, T.; Thakrar, N.R.; Breuker, R.D.; Sodja, J. Design and Development of a Seamless Smart Morphing Wing Using Distributed Trailing Edge Camber Morphing for Active Control. In Proceedings of the AIAA Scitech 2021 Forum, Online, 11–15 and 19–21 January 2021. [Google Scholar]
- Training Manual for the IAR 330 PUMA Helicopter; IAR Brașov: Braşov, Romania, 2004.
- Wright, J.R.; Cooper, J.E. Introduction to Aircraft Aeroelasticity and Loads, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Houghton, E.L.; Carpenter, P.W.; Collicott, S.H.; Valentine, D.T. Aerodynamics for Engineering Students, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Flandro, G.A.; McMahon, H.M.; Roach, R.L. Basic Aerodynamics: Incompressible Flow; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Katz and, J.; Plotkin, A. Low-Speed Aerodynamics, Second Edition. J. Fluids Eng. 2004, 126, 293–294. [Google Scholar] [CrossRef]
- Fearn, R. Airfoil Aerodynamics Using Panel Methods. Math. J. 2008, 10, 15. [Google Scholar] [CrossRef]
- Kuethe, A.M.; Chow, C.Y. Foundations of Aerodynamics: Bases of Aerodynamic Design, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1976. [Google Scholar]
- Dayyani, I.; Woods, B.K.S.; Friswell, M.I.; Khodaparast, H.H. The Optimal Design of a Coated Corrugated Skin for the FishBAC Morphing Wing. In Proceedings of the 24th International Conference on Adaptive Structures and Technologies, Aruba, National Harbor, MD, USA, 6–9 October 2013. [Google Scholar]
- Rivero, A.E.; Cooper, J.E.; Woods, B.K.S. Numerically Efficient Three-Dimensional Fluid-Structure Interaction Analysis for Composite Camber Morphing Aerostructures. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; Volume 1. Part F. [Google Scholar]
- Zhou, H.; Zhu, H.; Main, H.H.; Wang, G. Modelling and Aerodynamic Prediction of Fish Bone Active Camber Morphing Airfoil. In Proceedings of the 2018 15th International Bhurban Conference on Applied Sciences and Technology, IBCAST 2018, Islamabad, Pakistan, 9–13 January 2018. [Google Scholar]
- Fournier, S.; Woods, B.K.S. Surrogate Modelling of the Steady Aeroelastic Performance of the Fish Bone Active Camber Concept. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar]
- Drela, M. XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. In Low Reynolds Number Aerodynamics; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar] [CrossRef]
- Woods, B.K.S.; Fincham, J.H.S.; Friswell, M.I. Aerodynamic Modelling of the Fish Bone Active Camber Morphin. In Proceedings of the RAeS Applied Aerodynamics Conference, Bristol, UK, 22–24 July 2014. [Google Scholar]
- Rauleder, J.; Van Der Wall, B.G.; Abdelmoula, A.; Komp, D.; Kumar, S.; Ondra, V.; Titurus, B.; Woods, B.K.S. Aerodynamic Performance of Morphing Blades and Rotor Systems. In Proceedings of the Annual Forum Proceedings–AHS International, Phoenix, AZ, USA, 14–17 May 2018. [Google Scholar]
- Li, D.; Zhao, S.; Da Ronch, A.; Xiang, J.; Drofelnik, J.; Li, Y.; Zhang, L.; Wu, Y.; Kintscher, M.; Monner, H.P.; et al. A Review of Modelling and Analysis of Morphing Wings. Prog. Aerosp. Sci. 2018, 100, 46–62. [Google Scholar] [CrossRef]
- Rajendran, R. Analysis of Morphing Airfoil Structures and Fabrication of the Wing Using the Concept of Additive Manufacturing. Int. J. Eng. Res. 2020, V9, 54–58. [Google Scholar] [CrossRef]
- Jo, B.W.; Majid, T. Aerodynamic Analysis of Camber Morphing Airfoils in Transition via Computational Fluid Dynamics. Biomimetics 2022, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoula, A.; Rauleder, J. Aerodynamic Performance of Morphed Camber Rotor Airfoils. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar]
- Dadone, L.U. US Army Helicopter Design DATCOM Volume I–Airfoils. Datcom 1976, I, 295. [Google Scholar]
- Jain, R.; Yeo, H.; Chopra, I. Examination of Rotor Loads Due to On-Blade Active Controls for Performance Enhancement. J. Aircr. 2010, 47, 2049–2066. [Google Scholar] [CrossRef]
- Khani Aminjan, K.; Ghodrat, M.; Heidari, M.; Rahmanivahid, P.; Naghdi Khanachah, S.; Chitt, M.; Escobedo-Diaz, J.P. Numerical and Experimental Investigation to Design a Novel Morphing Airfoil for Performance Optimization. Propuls. Power Res. 2023, 12, 83–103. [Google Scholar] [CrossRef]
- Ferede, E.; Karakalas, A.; Gandhi, F.; Lagoudas, D. Numerical Investigation of Autonomous Camber Morphing of a Helicopter Rotor Blade Using Shape Memory Alloys. In Proceedings of the 77th Annual Vertical Flight Society Forum and Technology Display, FORUM 2021: The Future of Vertical Flight, Online, 10–14 May 2021. [Google Scholar]
- Zhang, Z.; Li, Y.; Yu, X.; Li, X.; Wu, H.; Wu, H.; Jiang, S.; Chai, G. Bistable Morphing Composite Structures: A Review. Thin-Walled Struct. 2019, 142, 74–97. [Google Scholar] [CrossRef]
- Shen, J.; Chopra, I. Swashplateless Helicopter Rotor with Trailing-Edge Flaps. J. Aircr. 2004, 41, 208–214. [Google Scholar] [CrossRef]
- Bousman, W.G. Aerodynamic Characteristics of SC1095 and SC1094 R8 Airfoils; NASA/TP-2003-212265; U.S. Army Research, Development, and Engineering Command, Ames Research Center: Moffett Field, CA, USA, 2003. [Google Scholar]
- Pettitt, A.N.; Stephens, M.A. The Kolmogorov-Smirnov Goodness-of-Fit Statistic with Discrete and Grouped Data. Technometrics 1977, 19, 205–210. [Google Scholar] [CrossRef]
- Aqilah, F.; Islam, M.; Juretic, F.; Guerrero, J.; Wood, D.; Ani, F.N. Study of Mesh Quality Improvement for CFD Analysis of an Airfoil. IIUM Eng. J. 2018, 19, 203–212. [Google Scholar] [CrossRef]
- Shen, J.; Yang, M.; Chopra, I. Swashplateless Helicopter Rotor with Trailing-Edge Flaps for Flight and Vibration Control. J. Aircr. 2006, 43, 346–352. [Google Scholar] [CrossRef]
- Lee, J.H.; Natarajan, B.; Eun, W.J.; Viswamurthy, S.R.; Park, J.S.; Kim, T.; Shin, S.J. Structural and Mechanism De-sign of an Active Trailing-Edge Flap Blade. J. Mech. Sci. Technol. 2013, 27, 2605–2617. [Google Scholar] [CrossRef]
- Wilcox, D.C. Turbulence Modeling for CFD; DCW Industries Inc.: La Cañada Flintridge, CA, USA, 1993. [Google Scholar]
Property | Unit | Value |
---|---|---|
Control method | - | Active |
Airfoil type | - | NACA 13112 1 |
Rotor radius | m | 7.5 |
Blade chord | mm | 600 |
Blade twist | - | 8°37′ |
Rotation speed | rad/s | 27.8 |
Advance ratio | - | 0.42 |
Frequency | RPM | 265 |
Pressure at sea level | Pa | 101,325 |
Airfoil | Resolution (Number of Cells) | |
---|---|---|
Use Adaptive Sizing (No) | Use Adaptive Sizing (Yes) | |
Baseline | 262,000 | 360,800 |
319,200 | 360,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feraru, M.-D.; Măriuța, D.; Stoia-Djeska, M.; Grigorie, L.-T. Numerical Investigation of an NACA 13112 Morphing Airfoil. Biomimetics 2024, 9, 635. https://doi.org/10.3390/biomimetics9100635
Feraru M-D, Măriuța D, Stoia-Djeska M, Grigorie L-T. Numerical Investigation of an NACA 13112 Morphing Airfoil. Biomimetics. 2024; 9(10):635. https://doi.org/10.3390/biomimetics9100635
Chicago/Turabian StyleFeraru, Mădălin-Dorin, Daniel Măriuța, Marius Stoia-Djeska, and Lucian-Teodor Grigorie. 2024. "Numerical Investigation of an NACA 13112 Morphing Airfoil" Biomimetics 9, no. 10: 635. https://doi.org/10.3390/biomimetics9100635
APA StyleFeraru, M. -D., Măriuța, D., Stoia-Djeska, M., & Grigorie, L. -T. (2024). Numerical Investigation of an NACA 13112 Morphing Airfoil. Biomimetics, 9(10), 635. https://doi.org/10.3390/biomimetics9100635