Swarming Insects May Have Finely Tuned Characteristic Reynolds Numbers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Okubo, A. Dynamical aspects of animal grouping: Swarms, schools, flocks, and herds. Adv. Biophys. 1986, 22, 1–94. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.H.; Ouellette, N.T. Emergent dynamics of laboratory insect swarms. Sci. Rep. 2013, 3, 1073. [Google Scholar] [CrossRef] [PubMed]
- Attanasi, A.; Cavagna, A.; Del Castello, L.; Giardina, I.; Melillo, S.; Parisi, L.; Pohl, O.; Rossaro, B.; Shen, E.; Silvestri, E.; et al. Collective behaviour without collective order in wild swarms of midges. PLoS Comp. Biol. 2014, 10, e1003697. [Google Scholar] [CrossRef] [PubMed]
- Attanasi, A.; Cavagna, A.; Del Castello, L.; Giardina, I.; Melillo, S.; Parisi, L.; Pohl, O.; Rossaro, B.; Shen, E.; Silvestri, E.; et al. Finite-size scaling as a way to probe near-criticality in natural swarms. Phys. Rev. Lett. 2014, 113, 238102. [Google Scholar] [CrossRef] [PubMed]
- Puckett, J.G.; Ouellette, N.T. Determining asymptotically large population sizes of insect swarms. J. R. Soc. Interface 2014, 11, 20140710. [Google Scholar] [CrossRef]
- Sullivan, R.T. Insect swarming and mating. Fla. Entomol. 1981, 64, 44–65. [Google Scholar] [CrossRef]
- Cavagna, A.; Giardina, I.; Gucciardino, M.A.; Iacomelli, G.; Lombardi, M.; Melillo, S.; Monacchia, G.; Parisi, L.; Peirce, M.J.; Spaccapelo, R. Characterization of lab-based swarms of Anopheles gambiae mosquitoes using 3D-video tracking. Sci. Rep. 2023, 13, 8745. [Google Scholar] [CrossRef]
- Reynolds, A.M.; Sinhuber, M.; Ouellette, N.T. Are midge swarms bound together by an effective velocity-dependent gravity? Eur. Phys. J. E 2017, 40, 46. [Google Scholar] [CrossRef]
- Reynolds, A.M. Langevin dynamics encapsulate the microscopic and emergent macroscopic properties of midge swarms. J. R. Soc. Interface 2018, 15, 20170806. [Google Scholar] [CrossRef]
- Reynolds, A.M. On the emergence of gravitational-like forces in insect swarms. J. R. Soc. Interface 2019, 16, 20190404. [Google Scholar] [CrossRef]
- Reynolds, A.M. Mosquito swarms shear harden. Eur. Phys. J. E 2023, 46, 126. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.M. Why insect swarms seem unduly complicated. Eur. Phys. J. Plus 2024, 139, 610. [Google Scholar] [CrossRef]
- Ni, R.; Ouellette, N.T. On the tensile strength of insect swarms. Phys. Biol. 2016, 13, 045002. [Google Scholar] [CrossRef] [PubMed]
- van der Vaart, K.; Sinhuber, M.; Reynolds, A.M.; Ouellette, N.T. Mechanical spectroscopy of insect swarms. Sci. Adv. 2019, 5, eaaw9305. [Google Scholar] [CrossRef] [PubMed]
- van der Vaart, K.; Sinhuber, M.; Reynolds, A.M.; Ouellette, N.T. Environmental perturbations induce correlations in midge swarms. J. R. Soc. Interface 2020, 17, 20200018. [Google Scholar] [CrossRef]
- Reynolds, A.M. On the origin of the tensile strength of insect swarms. Phys. Biol. 2019, 16, 046002. [Google Scholar] [CrossRef]
- Reynolds, A.M. Understanding the thermodynamic properties of insect swarms. Sci. Rep. 2011, 11, 14979. [Google Scholar] [CrossRef]
- Sinhuber, M.; van der Vaart, K.; Feng, Y.; Reynolds, A.M.; Ouellette, N.T. An equation state for insect swarms. Sci. Rep. 2021, 11, 3773. [Google Scholar] [CrossRef]
- Sawford, B.L. Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys. Fluids A 1991, 3, 1577–1586. [Google Scholar] [CrossRef]
- Reynolds, A.M. Third order Lagrangian stochastic modelling. Phys. Fluids 2003, 15, 2773–2777. [Google Scholar] [CrossRef]
- Reynolds, A.M.; Yeo, K.; Lee, C. Anisotropy of acceleration in turbulent flows. Phys. Rev. E 2004, 70, 017302. [Google Scholar] [CrossRef] [PubMed]
- Viggiano, B.; Friedrich, J.; Volk, R.; Bourgoin, M.; Cal, R.B.; Chevillard, L. Modelling Lagrangian velocity and acceleration in turbulent flows as infinitely differentiable stochastic processes. J. Fluid Mech. 2020, 900, A27. [Google Scholar] [CrossRef]
- Sinhuber, M.; van der Vaart, K.; Ni, R.; Puckett, J.G.; Kelley, D.H.; Ouellette, N.T. Three-dimensional time-resolved trajectories from laboratory insect swarms. Sci. Data 2019, 6, 190036. [Google Scholar] [CrossRef]
- Reynolds, A.M. Insect swarms can be bound together by repulsive forces. Eur. Phys. J. E 2020, 43, 39. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.M.; Ouellette, N.T. Swarm dynamics may give rise to Lévy flights. Sci. Rep. 2016, 6, 30515. [Google Scholar] [CrossRef]
- Reynolds, A.M. Spatial correlations in laboratory insect swarms. J. R. Soc. Interface 2024, 21, 20240450. [Google Scholar] [CrossRef]
- Ni, R.; Ouellette, N.T. Velocity correlations in laboratory insect swarms. Eur. Phys. J. Spec. Top. 2015, 224, 3271–3277. [Google Scholar] [CrossRef]
- Puckett, J.G.; Kelley, D.H.; Ouellette, N.T. Searching for effective forces in laboratory swarms. Sci. Rep. 2014, 4, 4766. [Google Scholar] [CrossRef]
- Smith, N.M.; Dickerson, A.K.; Murphy, D. Organismal aggregations exhibit fluidic behaviours: A review. Bioinspiration Biomim. 2019, 14, 031001. [Google Scholar] [CrossRef]
- Ouellette, N.T. The most active matter of all. Matter 2019, 1, 297–299. [Google Scholar] [CrossRef]
- Ouellette, N.T. A physics perspective on collective animal behavior. Phys. Biol. 2022, 19, 021004. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynolds, A. Swarming Insects May Have Finely Tuned Characteristic Reynolds Numbers. Biomimetics 2024, 9, 660. https://doi.org/10.3390/biomimetics9110660
Reynolds A. Swarming Insects May Have Finely Tuned Characteristic Reynolds Numbers. Biomimetics. 2024; 9(11):660. https://doi.org/10.3390/biomimetics9110660
Chicago/Turabian StyleReynolds, Andy. 2024. "Swarming Insects May Have Finely Tuned Characteristic Reynolds Numbers" Biomimetics 9, no. 11: 660. https://doi.org/10.3390/biomimetics9110660
APA StyleReynolds, A. (2024). Swarming Insects May Have Finely Tuned Characteristic Reynolds Numbers. Biomimetics, 9(11), 660. https://doi.org/10.3390/biomimetics9110660