Bipedal Stepping Controller Design Considering Model Uncertainty: A Data-Driven Perspective
Abstract
:1. Introduction
2. Bipedal Robot Model and Control Framework
2.1. Bipedal Robot Model
2.2. Control Framework Overview
3. Robust Stepping Controller Design
3.1. S2S Dynamics in Data-Driven Perspective
3.2. Target Pre-Impact States in Data-Driven Form
3.3. Robust Data-Driven Feedback Controller Design
4. Trajectory Generation and Whole-Body Control
5. Results
5.1. Data Collection, Parameter Selection, and Feedback Gain
5.2. Simulation Results
5.2.1. Heavy Payload Task
5.2.2. Sloping Terrain Task
5.2.3. Push Recovery Task
5.2.4. Comparison with Indirect Data-Driven Methods
5.2.5. Sensitivity Analysis Under Different Noise Levels
5.2.6. Sim-to-Sim Experiments
6. Conclusions and Future Work
- We found that the stepping controller based on RDDC does not show significant improvement in speed tracking compared to the HLIP-based controller. This is because we only used the ellipsoidal matrix center of C as the reference dynamics. When the uncertainty range of C is large, it results in a large error invariant set.
- The S2S dynamics are inherently nonlinear. If a nonlinear mathematical structure is determined, a state-feedback controller can be constructed by feedback linearization of this system using [30].
- The system behavior obtained by the nominal controller (HLIP or other stepping controllers) is limited. When walking at higher speeds, the nonlinear effect of the swing leg inertia increases. DeePO [31] can be used for online updating of the K value to address this issue.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Faraji, S.; Ijspeert, A.J. 3LP: A linear 3D-walking model including torso and swing dynamics. Int. J. Robot. Res. 2017, 36, 436–455. [Google Scholar] [CrossRef]
- Kajita, S.; Morisawa, M.; Miura, K.; Nakaoka, S.; Harada, K.; Kaneko, K.; Kanehiro, F.; Yokoi, K. Biped walking stabilization based on linear inverted pendulum tracking. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 4489–4496. [Google Scholar]
- Khadiv, M.; Herzog, A.; Moosavian, S.A.A.; Righetti, L. Walking control based on step timing adaptation. IEEE Trans. Robot. 2020, 36, 629–643. [Google Scholar] [CrossRef]
- Lu, X.; Cannon, M. Robust adaptive model predictive control with persistent excitation conditions. Automatica 2023, 152, 110959. [Google Scholar] [CrossRef]
- Orin, D.E.; Goswami, A.; Lee, S.H. Centroidal dynamics of a humanoid robot. Auton. Robot. 2013, 35, 161–176. [Google Scholar] [CrossRef]
- Li, J.; Nguyen, Q. Dynamic walking of bipedal robots on uneven stepping stones via adaptive-frequency MPC. IEEE Control Syst. Lett. 2023, 7, 1279–1284. [Google Scholar] [CrossRef]
- Dafarra, S.; Romualdi, G.; Pucci, D. Dynamic complementarity conditions and whole-body trajectory optimization for humanoid robot locomotion. IEEE Trans. Robot. 2022, 38, 3414–3433. [Google Scholar] [CrossRef]
- Caron, S.; Escande, A.; Lanari, L.; Mallein, B. Capturability-Based Pattern Generation for Walking with Variable Height. IEEE Trans. Robot. 2020, 36, 517–536. [Google Scholar] [CrossRef]
- Mihalec, M.; Yi, J. Balance Gait Controller for a Bipedal Robotic Walker with Foot Slip. IEEE/ASME Trans. Mechatron. 2023, 28, 2012–2019. [Google Scholar] [CrossRef]
- Ding, J.; Han, L.; Ge, L.; Liu, Y.; Pang, J. Robust Locomotion Exploiting Multiple Balance Strategies: An Observer-Based Cascaded Model Predictive Control Approach. IEEE/ASME Trans. Mechatron. 2022, 27, 2089–2097. [Google Scholar] [CrossRef]
- Jeong, H.; Lee, I.; Oh, J.; Lee, K.K.; Oh, J.H. A Robust Walking Controller Based on Online Optimization of Ankle, Hip, and Stepping Strategies. IEEE Trans. Robot. 2019, 35, 1367–1386. [Google Scholar] [CrossRef]
- Xiong, X.; Ames, A. 3-d underactuated bipedal walking via h-lip based gait synthesis and stepping stabilization. IEEE Trans. Robot. 2022, 38, 2405–2425. [Google Scholar] [CrossRef]
- Ames, A.D.; Galloway, K.; Sreenath, K.; Grizzle, J.W. Rapidly exponentially stabilizing control lyapunov functions and hybrid zero dynamics. IEEE Trans. Autom. Control 2014, 59, 876–891. [Google Scholar] [CrossRef]
- Xiong, X.; Chen, Y.; Ames, A.D. Robust disturbance rejection for robotic bipedal walking: System-level-synthesis with step-to-step dynamics approximation. In Proceedings of the 2021 60th IEEE Conference on Decision and Control (CDC), Austin, TX, USA, 14–17 December 2021; pp. 697–704. [Google Scholar]
- Hinojosa, E.H.; Bhounsule, P.A. Data-driven Identification of a Non-homogeneous Inverted Pendulum Model for Enhanced Humanoid Control. In Proceedings of the 2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids), Austin, TX, USA, 12–14 December 2023; pp. 1–8. [Google Scholar]
- De Persis, C.; Tesi, P. Formulas for data-driven control: Stabilization, optimality, and robustness. IEEE Trans. Autom. Control 2019, 65, 909–924. [Google Scholar] [CrossRef]
- Dai, M.; Xiong, X.; Ames, A.D. Data-driven step-to-step dynamics based adaptive control for robust and versatile underactuated bipedal robotic walking. arXiv 2022, arXiv:2209.08458. [Google Scholar]
- Willems, J.C.; Rapisarda, P.; Markovsky, I.; De Moor, B.L. A note on persistency of excitation. Syst. Control Lett. 2005, 54, 325–329. [Google Scholar] [CrossRef]
- Markovsky, I.; Dörfler, F. Behavioral systems theory in data-driven analysis, signal processing, and control. Annu. Rev. Control 2021, 52, 42–64. [Google Scholar] [CrossRef]
- van Waarde, H.J.; Camlibel, M.K.; Mesbahi, M. From noisy data to feedback controllers: Nonconservative design via a matrix S-lemma. IEEE Trans. Autom. Control 2020, 67, 162–175. [Google Scholar] [CrossRef]
- Bisoffi, A.; De Persis, C.; Tesi, P. Data-driven control via Petersen’s lemma. Automatica 2022, 145, 110537. [Google Scholar] [CrossRef]
- Bisoffi, A.; De Persis, C.; Tesi, P. Learning controllers for performance through LMI regions. IEEE Trans. Autom. Control 2022, 68, 4351–4358. [Google Scholar] [CrossRef]
- Berberich, J.; Scherer, C.W.; Allgöwer, F. Combining prior knowledge and data for robust controller design. IEEE Trans. Autom. Control 2022, 68, 4618–4633. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, J.; Liu, Y.; Hong, D. Implementation of a robust dynamic walking controller on a miniature bipedal robot with proprioceptive actuation. In Proceedings of the 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids), Ginowan, Japan, 28–30 November 2022; pp. 39–46. [Google Scholar]
- Gibson, G.; Dosunmu-Ogunbi, O.; Gong, Y.; Grizzle, J. Terrain-adaptive, alip-based bipedal locomotion controller via model predictive control and virtual constraints. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 6724–6731. [Google Scholar]
- Ding, Y.; Khazoom, C.; Chignoli, M.; Kim, S. Orientation-aware model predictive control with footstep adaptation for dynamic humanoid walking. In Proceedings of the 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids), Ginowan, Japan, 28–30 November 2022; pp. 299–305. [Google Scholar]
- Agrawal, A.; Verschueren, R.; Diamond, S.; Boyd, S. A rewriting system for convex optimization problems. J. Control Decis. 2018, 5, 42–60. [Google Scholar] [CrossRef]
- Stellato, B.; Banjac, G.; Goulart, P.; Bemporad, A.; Boyd, S. OSQP: An operator splitting solver for quadratic programs. Math. Program. Comput. 2020, 12, 637–672. [Google Scholar] [CrossRef]
- Jenelten, F.; He, J.; Farshidian, F.; Hutter, M. Dtc: Deep tracking control. Sci. Robot. 2024, 9, eadh5401. [Google Scholar] [PubMed]
- De Persis, C.; Rotulo, M.; Tesi, P. Learning controllers from data via approximate nonlinearity cancellation. IEEE Trans. Autom. Control 2023, 68, 6082–6097. [Google Scholar] [CrossRef]
- Zhao, F.; Dörfler, F.; Chiuso, A.; You, K. Data-Enabled Policy Optimization for Direct Adaptive Learning of the LQR. arXiv 2024, arXiv:2401.14871. [Google Scholar]
Parameter | Symbol | Value |
---|---|---|
Torso Mass (kg) | ||
Each Leg Mass (kg) | ||
Torso Inertia (kg·m2) | // | // |
Leg Inertia (kg·m2) | // | // |
Rate of Mass | / |
Number of Steps | Feedback Gain | Success or Failure |
---|---|---|
500 | Failure | |
1000 | Failure | |
3000 | Success |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.; Zang, X.; Chen, B.; Heng, S.; Li, C.; Zhu, Y.; Zhao, J. Bipedal Stepping Controller Design Considering Model Uncertainty: A Data-Driven Perspective. Biomimetics 2024, 9, 681. https://doi.org/10.3390/biomimetics9110681
Song C, Zang X, Chen B, Heng S, Li C, Zhu Y, Zhao J. Bipedal Stepping Controller Design Considering Model Uncertainty: A Data-Driven Perspective. Biomimetics. 2024; 9(11):681. https://doi.org/10.3390/biomimetics9110681
Chicago/Turabian StyleSong, Chao, Xizhe Zang, Boyang Chen, Shuai Heng, Changle Li, Yanhe Zhu, and Jie Zhao. 2024. "Bipedal Stepping Controller Design Considering Model Uncertainty: A Data-Driven Perspective" Biomimetics 9, no. 11: 681. https://doi.org/10.3390/biomimetics9110681
APA StyleSong, C., Zang, X., Chen, B., Heng, S., Li, C., Zhu, Y., & Zhao, J. (2024). Bipedal Stepping Controller Design Considering Model Uncertainty: A Data-Driven Perspective. Biomimetics, 9(11), 681. https://doi.org/10.3390/biomimetics9110681