The Contribution of the Limbus and Collagen Fibrils to Corneal Biomechanical Properties: Estimation of the Low-Strain In Vivo Elastic Modulus and Tissue Strain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Weighted Displacement Versus Frequency Plots
2.2. Collection of OCT Images
2.3. Porcine Eye Dissection Experiments
2.4. Machine Learning Model for Bowman’s Layer Classification
2.5. Finite Element Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ludwig, P.E.; Lopez, M.J.; Sevensma, K.E. Anatomy, Head and Neck, Eye Cornea. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Sridhar, M.S. Anatomy of cornea and ocular surface. Indian J. Ophthalmol. 2018, 66, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Kling, S.; Hafezi, F. Corneal biomechanics—A review. Ophthalmic Physiol. Opt. 2017, 37, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Moral, M.; García-Posadas, L.; López-García, A.; Diebold, Y. Histological and immunohistochemical characterization of the porcine ocular surface. PLoS ONE 2020, 15, e0227732. [Google Scholar] [CrossRef]
- Boote, C.; Sigal, I.A.; Grytz, R.; Hua, Y.; Nguyen, T.D.; Girard, M.J.A. Scleral structure and biomechanics. Prog. Retin. Eye Res. 2020, 74, 100773. [Google Scholar] [CrossRef]
- Boote, C.; Kamma-Lorger, C.S.; Hayes, S.; Harris, J.; Burghammer, M.; Hiller, J.; Terrill, N.J.; Meek, K.M. Quantification of collagen organization in the peripheral human cornea at micron-scale resolution. Biophys. J. 2011, 101, 33–42. [Google Scholar] [CrossRef]
- Silver, F.H.; Deshmukh, T.; Benedetto, D.; Gonzalez-Mercedes, M.; Mesica, A. Measurement of the Elastic Modulus of Cornea, Sclera and Limbus: The Importance of the Corneal-Limbus-Scleral Biomechanical Unit. Front. Biosci. 2022, 14, 30. [Google Scholar] [CrossRef] [PubMed]
- Silver, F.; Benedetto, D.; Deshmukh, T.; Daher, N.A. Identification of Comparative Collagen Fibril Associated Changes in Normal and Keratoconus Corneas using Vibrational Optical Coherence Tomography and Machine Learning. Med. Discov. 2023, 2, 1093. [Google Scholar] [CrossRef]
- Luce, D.A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J. Cataract. Refract. Surg. 2005, 1, 156–162. [Google Scholar] [CrossRef]
- Roberts, C.J.; Dupps, W.J. Biomechanics of corneal ectasia and biomechanical treatments. J. Cataract. Refract. Surg. 2014, 40, 991–998. [Google Scholar] [CrossRef]
- Ambrosio, R.; Ramos, I.; Luz, A.; Faria, F.C.; Steinmueller, A.; Krug, M.; Belin, M.W.; Roberts, C.J. Dynamic ultrahigh speed Scheimpflug imaging for assessing corneal biomechanical properties. Rev. Bras. Oftalmol. 2013, 72, 99–102. [Google Scholar] [CrossRef]
- Scarcelli, G.; Pineda, R.; Yun, S.H. Brillouin optical microscopy for corneal biomechanics. Investig. Ophthalmol. Vis. Sci. 2012, 53, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, J.M.; Randall, J.T. Brillouin scattering, density and elastic properties of the lens and cornea of the eye. Nature 1980, 284, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Manduca, A.; Oliphant, T.E.; Dresner, M.A.; Mahowald, A.; Kruse, S.A.; Amromin, E.J.P.; Felmlee, J.P.; Greenleaf, J.F.; Ehman, R.L. Magnetic resonance elastography: Non-invasive mapping of tissue elasticity. Med. Image Anal. 2001, 5, 237–254. [Google Scholar] [CrossRef] [PubMed]
- De Stefano, V.S.; Ford, M.R.; Seven, I.; Dupps, W.J., Jr. Depth-dependent corneal biomechanical properties in normal and keratoconic subjects by optical coherence elastography. Transl. Vis. Sci. Technol. 2020, 9, 4. [Google Scholar] [CrossRef]
- Podoleanu, A.G. Optical coherence tomography. J. Microsc. 2012, 247, 209–219. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, S.; Larin, K.V. Optical coherence elastography for tissue characterization: A review. J. Biophotonics 2015, 8, 279–302. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dupps, W.J., Jr.; Wilson, S.E. Biomechanics and wound healing in the cornea. Exp. Eye Res. 2006, 83, 709–720. [Google Scholar] [CrossRef]
- Sedaghat, M.-R.; Momeni-Moghaddam, H.; Azimi, A.; Fakhimi, Z.; Ziaei, M.; Danesh, Z.; Roberts, C.J.; Monfared, N.; Jamali, A. Corneal Biomechanical Properties in Varying Severities of Myopia. Front. Bioeng. Biotechnol. 2021, 8, 595330. [Google Scholar] [CrossRef]
- Daher, N.D.; Saad, A.S.; Jimenez, H.J.; Milman, T.; Gonzalez-Martinez, O.G.; Deshmukh, T.; Pulido, J.S.; Silver, F.H.; Benedetto, D.A.; Rapuano, C.J.; et al. Identification of the Vibrational Optical Coherence Tomography Corneal Cellular Peak. Transl. Vis. Sci. Technol. 2023, 12, 11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Silver, F.S.; Shah, R.G.; Benedetto, D. Non-invasive and non-destructive determination of corneal and scleral biomechanics using vibrational optical coherence tomography: Preliminary observations. Mater. Sci. Appl. 2018, 9, 657–669. [Google Scholar] [CrossRef]
- Silver, F.H.; Deshmukh, T.; Benedetto, D.; Gonzalez-Mercedes, M.; Pulido, J. Energy Storage and Dissipation in the Eye: The Importance of the Biomechanical Connections between the Cornea-Limbus-Scleral Series Biomechanical Element and the Scleral-Optic Nerve-Posterior Segment Tissues in Protecting Sensitive Visual Components from Mechanical Damage. Austin J. Clin. Ophthalmol. 2023, 10, 1162. [Google Scholar]
- Silver, F.H.; Deshmukh, T.; Kelkar, N.; Ritter, K.; Ryan, N.; Nadiminti, H. The “Virtual Biopsy” of Cancerous Lesions in 3D: Non-Invasive Differentiation between Melanoma and Other Lesions Using Vibrational Optical Coherence Tomography. Dermatopathology 2021, 8, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Ben-Hur, A.; Horn, D.; Siegelmann, H.T.; Vapnick, V.L. Support Vector Clustering. J. Mach. Learn. Res. 2001, 2, 125–137. [Google Scholar] [CrossRef]
- Haoliang. Variational Inference in Bayesian Multivariate Gaussian Mixture Model. Towards Data Sci. Feb 20 2020. [Google Scholar]
- Pandolfi, A.; Manganiello, F. A Model for the Human Cornea: Constitutive Formulation and Numerical Analysis. Biomech. Model. Mechanobiol. 2006, 5, 237–246. [Google Scholar] [CrossRef]
- Rohrbach, D.; Ito, K.; Lloyd, H.O.; Silverman, R.H.; Yoshida, K.; Yamaguchi, T.; Mamou, J. Material Properties of Human Ocular Tissue at 7-Μm Resolution Ultrasonic. Imaging 2017, 39, 313–325. [Google Scholar] [CrossRef]
- Wang, Y.X.; Xu, L.; Wei, W.B.; Jonas, J.B. Intraocular pressure and its normal range adjusted for ocular and systemic parameters. The Beijing Eye Study 2011. PLoS ONE 2018, 13, e0196926. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aloy, M.A.; Adsuara, J.E.; Cerda-Duran, P.; Obergaulinger, M.; Esteve-Taboada, J.J.; Ferrer-Blasco, T.; Montes-Mico, R. Estimation of the mechanical properties of the eye through the study of its vibrational modes. PLoS ONE 2017, 12, e0183892. [Google Scholar] [CrossRef]
- Sharifi, R.; Yang, Y.; Adibnia, Y.; Dohlman, J.; Chodosh, J.; Gonzalez-Andrades, M. Finding an Optimal Corneal Xenograft Using Comparative Analysis of Corneal Matrix Proteins Across Species. Sci. Rep. 2019, 9, 1876. [Google Scholar] [CrossRef]
- Mikula, E.R.; Jester, J.V.; Juhasz, T. Measurement of an elastic modulus map in the human cornea. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3282–3286. [Google Scholar] [CrossRef]
- Ramier, A.; Eltony, A.M.; Chen, Y.T.; Clouser, F.; Birkenfeld, J.S.; Watts, A.; Yun, S.H. In vivo measurement of shear modulus of the human cornea using optical coherence elastography. Sci. Rep. 2020, 10, 17366. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.H.; Chernyak, D. Brillouin rmicroscopy: Assessing ocular tissue biomechanics. Curr. Opin. Ophthalmol. 2018, 29, 299–305. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alfonso, J.L.; Goldmann, W.H. Feeling the forces: Atomic force microscopy in cell biology. Life Sci. 2003, 73, 2553–2560. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Kawamoto, E.; Takagi, Y.; Akita, N.; Hayashi, T.; Park, E.J.; Suzuki, K.; Shimaoka, M. Gap junction-mediated regulation of endothelial cellular stiffness. Sci. Rep. 2017, 7, 6134. [Google Scholar] [CrossRef]
- Molladavo Molladavoodi, S.; Robichaud, M.; Wulff, D.; Gorbet, M. Corneal epithelial cells exposed to shear stress show altered cytoskeleton and migratory behaviour. PLoS ONE 2017, 12, e0178981. [Google Scholar] [CrossRef]
- Lijakovic, P.-I.; Milivojevic, M. Collective cell migration and residual stress accumulation: Rheological consideration. J. Biomech. 2020, 108, 109898. [Google Scholar] [CrossRef]
- Wilson, S.E. Bowman’s layer in the cornea-structure and function and regeneration. Exp. Eye Res. 2020, 195, 108033. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wilson, S.E. The Cornea: No Difference in the Wound Healing Response to Injury Related to Whether, or Not, There’s a Bowman’s Layer. Biomolecules 2023, 13, 771. [Google Scholar] [CrossRef]
- Shih, P.J.; Wang, I.J.; Cai, W.F.; Yen, J.Y. Biomechanical Simulation of Stress Concentration and Intraocular Pressure in Corneas Subjected to Myopic Refractive Surgical Procedures. Sci. Rep. 2017, 7, 13906. [Google Scholar] [CrossRef]
- Crespo, M.A.; Jimenez, H.J.; Deshmukh, T.; Pulido, J.S.; Saad, A.S.; Silver, F.H.; Benedetto, D.A.; Rapuano, C.J.; Syed, Z.A. In vivo determination of the human corneal elastic modulus using vibrational optical coherence tomography. Transl. Vis. Sci. Technol. 2022, 11, 11. [Google Scholar] [CrossRef]
- Seehra, G.P.; Silver, F.H. Viscoelastic properties of acid- and alkaline-treated human dermis: A correlation between total surface charge and elastic modulus. Ski. Res. Technol. 2006, 12, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Newsome, A.; Foidart, J.-M.; Hassell, J.R.; Krachemer, J.H.; Rodrigues, M.M.; Katz, S.I. Detection of specific collagen types in normal and keratoconus corneas. Investig. Ophthalmol. Vis. Sci. 1981, 20, 738–740. [Google Scholar]
- Choi, F.D.; Sung, C.T.; Juhasz, M.L.; Mesinkovsk, N.A. Oral Collagen Supplementation: A Systematic Review of Dermatological Applications. J. Drugs Dermatol. 2019, 18, 9–16. [Google Scholar] [PubMed]
- Silver, F.H.; Deshmukh, T. Do tensile and shear forces exerted on cells influence mechanotransduction through stored energy considerations? Biocell 2024, 48, 525–540. [Google Scholar] [CrossRef]
- Roberts, C.J.; Knoll, K.M.; Mahmoud, A.M.; Hendershot, A.J.; Yuhas, P.T. Corneal Stress Distribution Evolves from Thickness-Driven in Normal Corneas to Curvature-Driven with Progression in Keratoconus. Ophthalmol. Sci. 2023, 4, 100373. [Google Scholar] [CrossRef]
Model | Elastic Modulus (MPa) | Poisson’s Ratio | Density (g/cm) | IOP (Pa) |
---|---|---|---|---|
Keratoconic | 2.4 | 0.42 | 1.038 | 2000 |
Healthy | 3.1 | 0.42 | 1.038 | 2000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silver, F.H.; Deshmukh, T.; Benedetto, D.; Asfaw, M.; Doyle, O.; Kozachuk, N.; Li, K. The Contribution of the Limbus and Collagen Fibrils to Corneal Biomechanical Properties: Estimation of the Low-Strain In Vivo Elastic Modulus and Tissue Strain. Biomimetics 2024, 9, 758. https://doi.org/10.3390/biomimetics9120758
Silver FH, Deshmukh T, Benedetto D, Asfaw M, Doyle O, Kozachuk N, Li K. The Contribution of the Limbus and Collagen Fibrils to Corneal Biomechanical Properties: Estimation of the Low-Strain In Vivo Elastic Modulus and Tissue Strain. Biomimetics. 2024; 9(12):758. https://doi.org/10.3390/biomimetics9120758
Chicago/Turabian StyleSilver, Frederick H., Tanmay Deshmukh, Dominick Benedetto, Mickael Asfaw, Olivia Doyle, Nicholas Kozachuk, and Kamryn Li. 2024. "The Contribution of the Limbus and Collagen Fibrils to Corneal Biomechanical Properties: Estimation of the Low-Strain In Vivo Elastic Modulus and Tissue Strain" Biomimetics 9, no. 12: 758. https://doi.org/10.3390/biomimetics9120758
APA StyleSilver, F. H., Deshmukh, T., Benedetto, D., Asfaw, M., Doyle, O., Kozachuk, N., & Li, K. (2024). The Contribution of the Limbus and Collagen Fibrils to Corneal Biomechanical Properties: Estimation of the Low-Strain In Vivo Elastic Modulus and Tissue Strain. Biomimetics, 9(12), 758. https://doi.org/10.3390/biomimetics9120758