Color Masking Ability of Guided Enamel Regeneration with a Novel Self-Assembling Peptide and Resin Infiltration on Artificial Enamel Lesions Under Various Challenges: An In Vitro Spectrophotometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Color Measurement Technique
2.3. Artificial Enamel Lesion Induction
2.4. Treatment Groups
2.5. Subgroup Challenges
2.5.1. Subgroup 1: Remineralization
2.5.2. Subgroup 2: pH Cycling
2.5.3. Subgroup 3: Staining
2.5.4. Subgroup 4: Thermocycling
2.6. Statistical Analysis
3. Results
Group 1 (RI) | 95% CI | t | p-Value | Group 2 (CRFP-SAP) | 95% CI | t | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sound Enamel Mean ± SD | Artificial Enamel Lesion Mean ± SD | Mean ΔE Difference | Upper | Lower | Sound Enamel Mean ± SD | Artificial Enamel Lesion Mean ± SD | Mean ΔE Difference | Upper | Lower | ||||
8.47 ± 3.78 | 4.13 ± 2.26 | 4.34 # | 5.927 | 2.753 | 5.578 | <0.001 * | 9.65 ± 4.36 | 4.62 ± 3.25 | 5.02 # | 6.204 | 3.845 | 8.689 | <0.001 * |
Group 1 (RI) | 95% CI | t | p-Value | Group 2 (CRFP-SAP) | 95% CI | t | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sound Enamel Mean ± SD | Resin Infiltrated Mean ± SD | Mean ΔE Difference | Upper | Lower | Sound Enamel Mean ± SD | CRFP-SAP Mean ± SD | Mean ΔE Difference | Upper | Lower | ||||
8.47 ± 3.78 | 10.30 ± 2.26 | −1.828 # | −0.069 | −3.587 | −2.120 | 0.042 * | 9.65 ± 4.36 | 8.55 ± 4.08 | 1.093 # | 2.141 | 0.045 | 2.128 | 0.041 * |
Group 1 (RI) | 95% CI | t | p-Value | Group 2 (CRFP-SAP) | 95% CI | t | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RI-Treated Samples Mean ± SD | RI-Treated Remineralized Subgroup 1 Mean ± SD | Mean ΔE Difference | Upper | Lower | CRFP-SP-Treated Samples Mean ± SD | CRFP-SP -Treated Remineralized Subgroup 1 Mean ± SD | Mean ΔE Difference | Upper | Lower | ||||
11.48 ± 3.99 | 7.13 ± 3.65 | 4.35 # | 5.903 | 2.796 | 6.623 | <0.001 * | 10.43 ± 5.11 | 7.72 ± 3.51 | 2.71 # | 5.170 | 0.254 | 2.609 | 0.035 * |
Group 1 (RI) | 95% CI | t | p-Value | Group 2 (CRFP-SAP) | 95% CI | t | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RI-Treated Samples Mean ± SD | RI-Treated pH-Cycled Subgroup 2 Mean ± SD | Mean ΔE Difference | Upper | Lower | CRFP-SP-Treated Samples Mean ± SD | CRFP-SP-Treated pH-Cycled Subgroup 2 Mean ± SD | Mean ΔE Difference | Upper | Lower | ||||
11.81 ± 4.88 | 7.27 ± 4.32 | 4.53 # | 8.355 | 0.719 | 2.180 | 0.026 * | 6.91 ± 4.65 | 4.98 ± 3.68 | 1.92 # | 3.413 | 0.436 | 3.058 | 0.018 * |
Group 1 (RI) | 95% CI | t | p-Value | Group 2 (CRFP-SAP) | 95% CI | t | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RI-Treated Samples Mean ± SD | RI-Treated Stained Subgroup 3 Mean ± SD | Mean ΔE Difference | Upper | Lower | CRFP-SP-Treated Samples Mean ± SD | CRFP-SP-Treated Stained Subgroup 3 Mean ± SD | Mean ΔE Difference | Upper | Lower | ||||
9.58 ± 2.46 | 4.15 ± 2.35 | 5.43 # | 7.284 | 3.590 | 6.962 | <0.001 * | 10.46 ± 1.79 | 12.77 ± 5.35 | −2.31 # | 1.709 | −6.334 | −1.360 | 0.216 |
Group 1 (RI) | 95% CI | t | p-Value | Group 2 (CRFP-SAP) | 95% CI | t | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RI-Treated Samples Mean ± SD | RI-Treated Thermocycled Subgroup Mean ± SD | Mean ΔE Difference | Upper | Lower | CRFP-SP-Treated Samples Mean ± SD | CRFP-SP-Treated Thermocycled Subgroup Mean ± SD | Mean ΔE Difference | Upper | Lower | ||||
8.33 ± 3.91 | 14.52 ± 5.21 | −6.187 # | −3.840 | −8.534 | −6.234 | <0.001 * | 6.41 ± 2.49 | 10.71 ± 5.16 | −4.300 # | −1.765 | −6.834 | −4.012 | 0.05 * |
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Srikant, N.; Intern, A.S.; Vaishnavi, G.; Yellapurkar, S.; Jose, N.P.; Jathanna, V.; Naik, D.G. Tooth Shade Variation in Indian Population: An Objective Guide to Age Estimation. Heliyon 2021, 7, e06164. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-K.; Powers, J.M. Calculation of Colour Resulting from Composite/Compomer Layering Techniques. J. Oral Rehabil. 2004, 31, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Hardan, L.; Bourgi, R.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M.; Monjarás-Ávila, A.J.; Zarow, M.; Jakubowicz, N.; Jorquera, G.; Ashi, T.; Mancino, D.; et al. Novel Trends in Dental Color Match Using Different Shade Selection Methods: A Systematic Review and Meta-Analysis. Materials 2022, 15, 468. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, K. Factors Affecting the Formation, Severity and Location of White Spot Lesions during Orthodontic Treatment with Fixed Appliances. J. Oral Maxillofac. Res. 2014, 5, e4. [Google Scholar] [CrossRef] [PubMed]
- Telatar, G.Y.; Telatar, B.C. Oral Health Status after Orthodontic Treatment: A Retrospective Study. Odovtos-Int. J. Dent. Sci. 2021, 29, 441–448. [Google Scholar] [CrossRef]
- Kim, S.; Kim, E.-Y.; Jeong, T.-S.; Kim, J.-W. The Evaluation of Resin Infiltration for Masking Labial Enamel White Spot Lesions. Int. J. Paediatr. Dent. 2011, 21, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Karlinsey, R.L.; Mackey, A.C.; Stookey, G.K.; Pfarrer, A.M. In Vitro Assessments of Experimental NaF Dentifrices Containing a Prospective Calcium Phosphate Technology. Am. J. Dent. 2009, 22, 180–184. [Google Scholar] [PubMed]
- Puleio, F.; Di Spirito, F.; Lo Giudice, G.; Pantaleo, G.; Rizzo, D.; Lo Giudice, R. Long-Term Chromatic Durability of White Spot Lesions through Employment of Infiltration Resin Treatment. Medicina 2023, 59, 749. [Google Scholar] [CrossRef]
- Malekipoor, M.; Shirani, F.; Mousavinasab, S.M.; Jafari, N.; Sharifinejad, N. Spectrophotometric Evaluation of the Color Change of Artificial White Spot Lesions Treated with Three Different Commercially Available Remineralizing Agents. Dent. Hypotheses 2022, 13, 90–93. [Google Scholar] [CrossRef]
- Chistyakov, E.M.; Kolpinskaya, N.; Posokhova, V.; Chuev, V. Dental Composition Modified with Aryloxyphosphazene Containing Carboxyl Groups. Polymers 2020, 12, 1176. [Google Scholar] [CrossRef]
- Singer, L.; Fouda, A.; Bourauel, C. Biomimetic Approaches and Materials in Restorative and Regenerative Dentistry: Review Article. BMC Oral Health 2023, 23, 105. [Google Scholar] [CrossRef]
- Wang, S.; Takarini, V.; Putri, R.M.; Asri, L.A.T.W. Hardness and Compressive Strength Evaluation of Dental Composites Containing Biosilica-Encapsulated Healing Liquid. Mater. Sci. For. 2022, 1069, 111–119. [Google Scholar] [CrossRef]
- Zhang, J.; Boyes, V.; Festy, F.; Lynch, R.J.M.; Watson, T.F.; Banerjee, A. In-Vitro Subsurface Remineralisation of Artificial Enamel White Spot Lesions Pre-Treated with Chitosan. Dent. Mater. 2018, 34, 1154–1167. [Google Scholar] [CrossRef]
- Muşat, V.; Anghel, E.M.; Zaharia, A.; Atkinson, I.; Mocioiu, O.C.; Buşilă, M.; Alexandru, P. A Chitosan-Agarose Polysaccharide-Based Hydrogel for Biomimetic Remineralization of Dental Enamel. Biomolecules 2021, 11, 1137. [Google Scholar] [CrossRef] [PubMed]
- Premnath, P.; John, J.; Manchery, N.; Subbiah, G.K.; Nagappan, N.; Subramani, P. Effectiveness of Theobromine on Enamel Remineralization: A Comparative in-Vitro Study. Cureus 2019, 11, e5686. [Google Scholar] [CrossRef] [PubMed]
- Pooja, H.R.; Nagar, P.; Mascarenhas, A.N.; Chandana, K.; Vatsala, N.; Pallavi, U. Effect of Liquorice Candies on Remineralization of Initial Enamel Carious Lesion. Int. J. Clin. Pediatr. Dent. 2023, 16, S33–S38. [Google Scholar] [CrossRef]
- O’Hagan-Wong, K.; Enax, J.; Meyer, F.; Ganss, B. The Use of Hydroxyapatite Toothpaste to Prevent Dental Caries. Odontology 2022, 110, 223–230. [Google Scholar] [CrossRef]
- Obead, N.; Bubteina, N.; Salem, K.A.; Peeran, S.W.; Karobari, M.I.; Basheer, S.N. The Effect of Non-Invasive Treatment Techniques on the Color Masking Ability and Surface Roughness of Induced Enamel Lesions (an in Vitro Study). J. Pharm. Bioallied Sci. 2024, 16, S1566–S1573. [Google Scholar] [CrossRef] [PubMed]
- Hariri, I.; Sadr, A.; Nakashima, S.; Shimada, Y.; Tagami, J.; Sumi, Y. Estimation of the Enamel and Dentin Mineral Content from the Refractive Index. Caries Res. 2013, 47, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Gousalya, V.; Prabu, D.; Raj, M.M.; Dhamodhar, D.; Bharathwaj, V.V.; Sindhu, R.; Elakiya, S. Systematic Review on the Efficacy of Icon Resin Infiltration on White Spot Lesions. Indian J. Contemp. Dent. 2023, 11, 18–24. [Google Scholar] [CrossRef]
- Chow, L.W.; Bitton, R.; Webber, M.J.; Carvajal, D.; Shull, K.R.; Sharma, A.K.; Stupp, S.I. A Bioactive Self-Assembled Membrane to Promote Angiogenesis. Biomaterials 2011, 32, 1574–1582. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.N.; Shah, N.A.; Del Rosario Lim, M.M.; Hsieh, C.; Nuber, G.; Stupp, S.I. Supramolecular Design of Self-Assembling Nanofibers for Cartilage Regeneration. Proc. Natl. Acad. Sci. USA 2010, 107, 3293–3298. [Google Scholar] [CrossRef]
- Matson, J.B.; Stupp, S.I. Self-Assembling Peptide Scaffolds for Regenerative Medicine. Chem. Commun. 2012, 48, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Üstün, N.; Aktören, O. Analysis of Efficacy of the Self-Assembling Peptide-Based Remineralization Agent on Artificial Enamel Lesions. Microsc. Res. Tech. 2019, 82, 1065–1072. [Google Scholar] [CrossRef]
- Stoleriu, S.; Iovan, G.; Pancu, G.; Nica, I.; Georgescu, A.; Tofan, N.; Andrian, S.; Buhatel, D. Study Regarding the Capacity of Self-Assembling Peptides to Remineralize the Acute and Chronic Incipient Caries Lesions. Rev. Chim. 2019, 70, 3073–3076. [Google Scholar] [CrossRef]
- Kharbot, B.; Askar, H.; Gruber, D.; Paris, S. Biomimetic Remineralization of Artificial Caries Lesions with a Calcium Coacervate, Its Components and Self-Assembling Peptide P11-4 in Vitro. Bioengineering 2024, 11, 465. [Google Scholar] [CrossRef] [PubMed]
- Keeper, J.H.; Kibbe, L.J.; Thakkar-Samtani, M.; Heaton, L.J.; Desrosiers, C.; Vela, K.; Amaechi, B.T.; Jablonski-Momeni, A.; Young, D.A.; MacLean, J.; et al. Systematic Review and Meta-Analysis on the Effect of Self-Assembling Peptide P11-4 on Arrest, Cavitation, and Progression of Initial Caries Lesions. J. Am. Dent. Assoc. 2023, 154, 580–591.e11. [Google Scholar] [CrossRef]
- Rathore, K.; Patnana, A.K.; Chugh, V.K.; Chugh, A.; Kumar, P. Self-Assembling Peptides for Managing White Spot Lesions: A Systematic Review and Meta-Analysis. Eur. Arch. Paediatr. Dent. 2023, 24, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, R.N.; Basha, S.; Al-Thomali, Y.; Saleh Alshamrani, A.; Salem Alzahrani, F.; Tawfik Enan, E. Self-Assembling Peptide P11-4 in Remineralization of Enamel Caries—A Systematic Review of in-Vitro Studies. Acta Odontol. Scand. 2021, 79, 139–146. [Google Scholar] [CrossRef] [PubMed]
- B K, A.; R, Y.; Puranik, M.P. Remineralization of Early Enamel Caries Lesions Using Self-Assembling Peptides P11-4: Systematic Review and Meta-Analysis. J. Oral Biol. Craniofac. Res. 2022, 12, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Alkilzy, M.; Qadri, G.; Splieth, C.H.; Santamaría, R.M. Biomimetic Enamel Regeneration Using Self-Assembling Peptide P11-4. Biomimetics 2023, 8, 290. [Google Scholar] [CrossRef]
- AlGhazali, N.; Burnside, G.; Smith, R.W.; Preston, A.J.; Jarad, F.D. Performance Assessment of Vita Easy Shade Spectrophotometer on Colour Measurement of Aesthetic Dental Materials. Eur. J. Prosthodont. Restor. Dent. 2011, 19, 168–174. [Google Scholar]
- Yeslam, H.E.; AlZahrani, S.J. Time-Dependent Effect of Intense Capsule-Coffee and Bleaching on the Color of Resin-Infiltrated Enamel White Spot Lesions: An in Vitro Study. PeerJ 2022, 10, e14135. [Google Scholar] [CrossRef] [PubMed]
- Kohn, W.G.; Collins, A.S.; Cleveland, J.L.; Harte, J.A.; Eklund, K.J.; Malvitz, D.M.; Centers for Disease Control and Prevention (CDC). Guidelines for Infection Control in Dental Health-Care Settings--2003. MMWR Recomm. Rep. 2003, 52, 1–61. [Google Scholar] [PubMed]
- Mehta, R.; Nandlal, B.; Prashanth, S. Comparative Evaluation of Remineralization Potential of Casein Phosphopeptide-Amorphous Calcium Phosphate and Casein Phosphopeptide-Amorphous Calcium Phosphate Fluoride on Artificial Enamel White Spot Lesion: An in Vitro Light Fluorescence Study. Indian J. Dent. Res. 2013, 24, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Alahdal, K.; Almohareb, T.; Aldeeb, L.; Maawadh, A.; Alshamrani, A.S.; Alrahlah, A. Use of Reparative Agents Topical Fluoride Activated by CO2 Laser and CurodontTM Repair and NR-5TM on Vickers Hardness and Micro-Shear Bond Strength of Eroded Enamel to Composite Restoration. Appl. Sci. 2023, 13, 12717. [Google Scholar] [CrossRef]
- Metwally, N.; Niazy, M.; El-Malt, M. Remineralization of Early Carious Lesions Using Biomimetic Selfassembling Peptides Versus Fluoride Agent. (In Vitro and In Vivo Study). Al-Azhar Dent. J. Girls 2017, 4, 179–188. [Google Scholar] [CrossRef]
- Sato, Y.; Sato, T.; Niwa, M.; Aoki, H. Precipitation of Octacalcium Phosphates on Artificial Enamel in Artificial Saliva. J. Mater. Sci. Mater. Med. 2006, 17, 1173–1177. [Google Scholar] [CrossRef]
- Liu, G.; Yang, L.; Gao, L.; Ma, Y.; Wu, X.; Wang, X. Durability of Infiltrated Resin Application on White Spot Lesions after Diffeliuliurent Challenges: An Ex Vivo Study. J. Prosthet. Dent. 2024, 131, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Gale, M.S.; Darvell, B.W. Thermal Cycling Procedures for Laboratory Testing of Dental Restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
- Johnston, W.M.; Kao, E.C. Assessment of Appearance Match by Visual Observation and Clinical Colorimetry. J. Dent. Res. 1989, 68, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Aidaros, N.; Badra, H. Evaluation of the Effect of Intra-Coronal Bleaching after Using C-Phycocyanin as a Photosensitizing Agent- in Vitro Study. Ahram Can. Dent. J. 2024, 3, 1–15. [Google Scholar] [CrossRef]
- Todorović, A.; Todorović, A.; Gostović, A.S.; Lazić, V.; Milicić, B.; Djurisić, S. Reliability of Conventional Shade Guides in Teeth Color Determination. Vojnosanit. Pregl. 2013, 70, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Floriani, F.; Brandfon, B.-A.; Sawczuk, N.J.; Lopes, G.-C.; Rocha, M.-G.; Oliveira, D. Color Difference between the Vita Classical Shade Guide and Composite Veneers Using the Dual-Layer Technique. J. Clin. Exp. Dent. 2022, 14, e615–e620. [Google Scholar] [CrossRef]
- Hamid, T.; Awad, D.; El-Gabrouny, M.; Atta, O. The Effect of Low Temperature Degradation on Color Stability of Two Types of Monolithic Translucent Zirconia Crowns. Egypt. Dent. J. 2018, 64, 467–474. [Google Scholar] [CrossRef]
- Fekrazad, R.; Alimazandarani, S.; Kalhori, K.A.; Assadian, H.; Mirmohammadi, S.-M. Comparison of Laser and Power Bleaching Techniques in Tooth Color Change. J. Clin. Exp. Dent. 2017, 9, e511–e515. [Google Scholar] [CrossRef]
- Aydın, B.; Pamir, T.; Baltaci, A.; Orman, M.N.; Turk, T. Effect of Storage Solutions on Microhardness of Crown Enamel and Dentin. Eur. J. Dent. 2015, 9, 262–266. [Google Scholar] [CrossRef]
- Almulhim, K.; Khan, A.S.; Alabdulghani, H.; Albasarah, S.; Al-Dulaijan, Y.; Al-Qarni, F.D. Effect of Ageing Process and Brushing on Color Stability and Surface Roughness of Treated White Spot Lesions: An in Vitro Analysis. Clin. Cosmet. Investig. Dent. 2021, 13, 413–419. [Google Scholar] [CrossRef]
- Ferreira, R.I.; Haiter-Neto, F.; Tabchoury, C.P.M.; Bóscolo, F.N. In Vitro Induction of Enamel Subsurface Demineralization for Evaluation of Diagnostic Imaging Methods. J. Appl. Oral Sci. 2007, 15, 392–398. [Google Scholar] [CrossRef]
- Itthagarun, A.; Wei, S.H.; Wefel, J.S. Morphology of Initial Lesions of Enamel Treated with Different Commercial Dentifrices Using a PH Cycling Model: Scanning Electron Microscopy Observations. Int. Dent. J. 1999, 49, 352–360. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, M.; Ma, Y.; Cao, L.; Xu, H.H.K.; Zhang, K.; Bai, Y. Effects of Fluoride and Calcium Phosphate Materials on Remineralization of Mild and Severe White Spot Lesions. BioMed Res. Int. 2019, 2019, 1271523. [Google Scholar] [CrossRef]
- Ko, A.C.-T.; Choo-Smith, L.-P.; Hewko, M.; Leonardi, L.; Sowa, M.G.; Dong, C.C.S.; Williams, P.; Cleghorn, B. Ex Vivo Detection and Characterization of Early Dental Caries by Optical Coherence Tomography and Raman Spectroscopy. J. Biomed. Opt. 2005, 10, 031118. [Google Scholar] [CrossRef] [PubMed]
- Dikmen, B. Icdas II Criteria (International Caries Detection and Assessment System). J. Istanb. Univ. Fac. Dent. 2015, 49, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Kobbe, C.; Fritz, U.; Wierichs, R.J.; Meyer-Lueckel, H. Evaluation of the Value of Re-Wetting Prior to Resin Infiltration of Post-Orthodontic Caries Lesions. J. Dent. 2019, 91, 103243. [Google Scholar] [CrossRef] [PubMed]
- Kamal, D.; Hassanein, H.; Elkassas, D.; Hamza, H. Complementary Remineralizing Effect of Self-Assembling Peptide (P11-4) with CPP-ACPF or Fluoride: An in Vitro Study. J. Clin. Exp. Dent. 2020, 12, e161–e168. [Google Scholar] [CrossRef]
- Sabti, M.Y.; Alfarhan, I.Y.; Akbar, A.A.; Qudeimat, M.A. Evaluating Color Stability and Enamel Surface Roughness Following Resin Infiltration Treatment. Clin. Exp. Dent. Res. 2024, 10, e2834. [Google Scholar] [CrossRef]
- Amin, O.; Shaalan, O.; Riad, M. Remineralization Potential of Curodont Repair Flouride plus versus Cpp-Acp in White Spot Lesions. Adv. Dent. J. 2023, 5, 110–118. [Google Scholar] [CrossRef]
- Wierichs, R.J.; Kogel, J.; Lausch, J.; Esteves-Oliveira, M.; Meyer-Lueckel, H. Effects of Self-Assembling Peptide P11-4, Fluorides, and Caries Infiltration on Artificial Enamel Caries Lesions in Vitro. Caries Res. 2017, 51, 451–459. [Google Scholar] [CrossRef]
- Doğu Kaya, B.; Manav Özen, A.; Yılmaz Atalı, P.; Sarıalioğlu Güngör, A.; Dalkılıç, E.; Alkan, E.; Tağtekin, D.; Türkmen, C. Effect of the Use of Remineralization Agents before Resin Infiltration on the Treatment of Initial Enamel Lesions: An in-Vitro Study. BMC Oral Health 2024, 24, 868. [Google Scholar] [CrossRef]
- Kind, L.; Stevanovic, S.; Wuttig, S.; Wimberger, S.; Hofer, J.; Müller, B.; Pieles, U. Biomimetic Remineralization of Carious Lesions by Self-Assembling Peptide. J. Dent. Res. 2017, 96, 790–797. [Google Scholar] [CrossRef] [PubMed]
- de Almendra Freitas, M.C.C.; Nunes, L.V.; Comar, L.P.; Rios, D.; Magalhães, A.C.; Honório, H.M.; Wang, L. In Vitro Effect of a Resin Infiltrant on Different Artificial Caries-like Enamel Lesions. Arch. Oral Biol. 2018, 95, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Nóbrega, M.T.C.; de Andrade Dantas, E.L.; Alonso, R.C.B.; de Almeida, L.d.F.D.; Puppin-Rontani, R.M.; Sousa, F.B.D.E. Hydrolytic Degradation of Different Infiltrant Compositions within Different Histological Zones of Enamel Caries Like-Lesions. Dent. Mater. J. 2020, 39, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Chabuk, M.M.; Al-Shamma, A.M. Surface Roughness and Microhardness of Enamel White Spot Lesions Treated with Different Treatment Methods. Heliyon 2023, 9, e18283. [Google Scholar] [CrossRef]
- Kirkham, J.; Firth, A.; Vernals, D.; Boden, N.; Robinson, C.; Shore, R.C.; Brookes, S.J.; Aggeli, A. Self-Assembling Peptide Scaffolds Promote Enamel Remineralization. J. Dent. Res. 2007, 86, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Ertaş, E.; Güler, A.U.; Yücel, A.C.; Köprülü, H.; Güler, E. Color Stability of Resin Composites after Immersion in Different Drinks. Dent. Mater. J. 2006, 25, 371–376. [Google Scholar] [CrossRef]
- Hasanain, F.A. Effect of Ageing, Staining and Polishing on the Colour Stability of a Single, a Group Shade and Nano Fill Dental Composite: An in-Vitro Study. J. Clin. Diagn. Res. 2022, 16, ZC26–ZC30. [Google Scholar] [CrossRef]
- Magalhães, G.d.A.P.; Fraga, M.A.A.; de Souza Araújo, I.J.; Pacheco, R.R.; Correr, A.B.; Puppin-Rontani, R.M. Effect of a Self-Assembly Peptide on Surface Roughness and Hardness of Bleached Enamel. J. Funct. Biomater. 2022, 13, 79. [Google Scholar] [CrossRef]
- Gönülol, N.; Ertaş, E.; Yılmaz, A.; Çankaya, S. Effect of Thermal Aging on Microleakage of Current Flowable Composite Resins. J. Dent. Sci. 2015, 10, 376–382. [Google Scholar] [CrossRef]
- Elsayed, H. Evaluation of the State and Shade of White Spot Lesions after Treatment with Different Remineralizing Agents (An in-Vivo Comparative Study). Al-Azhar J. Dent. Sci. 2021, 24, 239–245. [Google Scholar] [CrossRef]
- Gayas, Z.; Azher, U.; Paul, S.T.; Selvan, A.; Reddy, C.D.; Raghu, D.; Uday, V. Comparative Evaluation of Antimicrobial Efficacy of Fluoride-Based and Self-Assembling Peptide P11-4-Based Tooth Remineralization Agents on Streptococcus Mutans: A Microbiological Study. Contemp. Clin. Dent. 2023, 14, 141–144. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albar, N.; Basheer, S.N.; Moaleem, M.M.A.; Ageel, S.; Abbas, R.; Hakami, R.; Daghrery, A.; Sawady, M.; Peeran, S.W.; Vinothkumar, T.S.; et al. Color Masking Ability of Guided Enamel Regeneration with a Novel Self-Assembling Peptide and Resin Infiltration on Artificial Enamel Lesions Under Various Challenges: An In Vitro Spectrophotometric Analysis. Biomimetics 2024, 9, 764. https://doi.org/10.3390/biomimetics9120764
Albar N, Basheer SN, Moaleem MMA, Ageel S, Abbas R, Hakami R, Daghrery A, Sawady M, Peeran SW, Vinothkumar TS, et al. Color Masking Ability of Guided Enamel Regeneration with a Novel Self-Assembling Peptide and Resin Infiltration on Artificial Enamel Lesions Under Various Challenges: An In Vitro Spectrophotometric Analysis. Biomimetics. 2024; 9(12):764. https://doi.org/10.3390/biomimetics9120764
Chicago/Turabian StyleAlbar, Nassreen, Syed Nahid Basheer, Mohammed M. Al Moaleem, Sana Ageel, Rehab Abbas, Rafaa Hakami, Arwa Daghrery, Mohammed Sawady, Syed Wali Peeran, Thilla Sekar Vinothkumar, and et al. 2024. "Color Masking Ability of Guided Enamel Regeneration with a Novel Self-Assembling Peptide and Resin Infiltration on Artificial Enamel Lesions Under Various Challenges: An In Vitro Spectrophotometric Analysis" Biomimetics 9, no. 12: 764. https://doi.org/10.3390/biomimetics9120764
APA StyleAlbar, N., Basheer, S. N., Moaleem, M. M. A., Ageel, S., Abbas, R., Hakami, R., Daghrery, A., Sawady, M., Peeran, S. W., Vinothkumar, T. S., & Zidane, B. (2024). Color Masking Ability of Guided Enamel Regeneration with a Novel Self-Assembling Peptide and Resin Infiltration on Artificial Enamel Lesions Under Various Challenges: An In Vitro Spectrophotometric Analysis. Biomimetics, 9(12), 764. https://doi.org/10.3390/biomimetics9120764