Size Control of Biomimetic Curved-Edge Vaterite with Chiral Toroid Morphology via Sonochemical Synthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Acid-Etching Irradiation of Titanium Surface
2.3. Preparation of Curved-Edge Vaterite with Chiral Toroid Calcium Carbonate Particles
2.4. Characterization of Vaterite Calcium Carbonate
2.4.1. Scanning Electron Microscopy (SEM) Analysis
2.4.2. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Analysis
2.4.3. X-ray Diffraction (XRD) Analysis
2.4.4. Fluorescence Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Morphological Analysis
3.2. XRD and FTIR Analysis
3.3. Loading Efficiency of Curved-Edge Vaterite with Chiral Toroid Morpholoy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen, M.M. Perspectives on asymmetry: The erickson lecture. Am. J. Med. Genet. A 2012, 158a, 2981–2998. [Google Scholar] [CrossRef]
- Jiang, W.G.; Pacella, M.S.; Athanasiadou, D.; Nelea, V.; Vali, H.; Hazen, R.M.; Gray, J.J.; McKee, M.D. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate. Nat. Commun. 2017, 8, 15066. [Google Scholar] [CrossRef]
- Jia, S.Z.; Tao, T.T.; Sun, J.; Du, J.; Xie, Y.J.; Yu, L.Y.; Tang, W.W.; Wang, J.K.; Gong, J.B. Understanding Hierarchical Structure Construction Strategies and Biomimetic Design Principles: A Review. Small Struct. 2023, 4, 2300139. [Google Scholar] [CrossRef]
- Ueshima, R.; Asami, T. Evolution: Single-gene speciation by left-right reversal. Nature 2003, 425, 679. [Google Scholar] [CrossRef]
- Tapanila, L.; Pruitt, J.; Pradel, A.; Wilga, C.D.; Ramsay, J.B.; Schlader, R.; Didier, D.A. Jaws for a spiral-tooth whorl: CT images reveal novel adaptation and phylogeny in fossil. Biol. Lett. 2013, 9, 20130057. [Google Scholar] [CrossRef]
- Wright, C.G.; Rouse, R.C.; Zajic, G.H.; Schaefer, S.D.; Hubbard, D.G.; Barnard, L.A. A Calcareous Concretion in the Posterior Semicircular Duct of a Human Labyrinth. Am. J. Otolaryngol. 1982, 3, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Addadi, L.; Weiner, S. Biomineralization—Crystals, asymmetry and life. Nature 2001, 411, 753–755. [Google Scholar] [CrossRef] [PubMed]
- Bandy, O.L. The Geologic Significance of Coiling Ratios in the Foraminifer Globigerina-Pachyderma (Ehrenberg). J. Paleontol. 1960, 34, 671–681. [Google Scholar]
- Ferreira, A.M.; Vikulina, A.S.; Volodkin, D. CaCO3 crystals as versatile carriers for controlled delivery of antimicrobials. J. Control. Release 2020, 328, 470–489. [Google Scholar] [CrossRef] [PubMed]
- Bushuev, Y.G.; Finney, A.R.; Rodger, P.M. Stability and Structure of Hydrated Amorphous Calcium Carbonate. Cryst. Growth Des. 2015, 15, 5269–5279. [Google Scholar] [CrossRef]
- Chaka, A.M. Ab Initio Thermodynamics of Hydrated Calcium Carbonates and Calcium Analogues of Magnesium Carbonates: Implications for Carbonate Crystallization Pathways. ACS Earth Space Chem. 2018, 2, 210–224. [Google Scholar] [CrossRef]
- Morse, J.W.; Arvidson, R.S.; Lüttge, A. Calcium carbonate formation and dissolution. Chem. Rev. 2007, 107, 342–381. [Google Scholar] [CrossRef]
- Demichelis, R.; Raiteri, P.; Gale, J.D.; Dovesi, R. A new structural model for disorder in vaterite from first-principles calculations. CrystEngComm 2012, 14, 44–47. [Google Scholar] [CrossRef]
- Kralj, D.; Brecevic, L.; Nielsen, A.E. Vaterite Growth and Dissolution in Aqueous-Solution 2. Kinetics of Dissolution. J. Cryst. Growth 1994, 143, 269–276. [Google Scholar] [CrossRef]
- Liu, Y.X.; Chen, Y.P.; Huang, X.C.; Wu, G. Biomimetic synthesis of calcium carbonate with different morphologies and polymorphs in the presence of bovine serum albumin and soluble starch. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 79, 457–464. [Google Scholar] [CrossRef]
- Trushina, D.B.; Bukreeva, T.V.; Kovalchuk, M.V.; Antipina, M.N. CaCO3 vaterite microparticles for biomedical and personal care applications. Mater. Sci. Eng. C 2014, 45, 644–658. [Google Scholar] [CrossRef]
- Bahrom, H.; Goncharenko, A.A.; Fatkhutdinova, L.I.; Peltek, O.O.; Muslimov, A.R.; Koval, O.Y.; Eliseev, I.E.; Manchey, A.; Gorin, D.; Shishkin, I.I.; et al. Controllable Synthesis of Calcium Carbonate with Different Geometry: Comprehensive Analysis of Particle Formation, Cellular Uptake, and Biocompatibility. ACS Sustain. Chem. Eng. 2019, 7, 19142–19156. [Google Scholar] [CrossRef]
- Savelyeva, M.S.; Abalymov, A.A.; Lyubun, G.P.; Vidyasheva, I.V.; Yashchenok, A.M.; Douglas, T.E.L.; Gorin, D.A.; Parakhonskiy, B.V. Vaterite coatings on electrospun polymeric fibers for biomedical applications. J. Biomed. Mater. Res. A 2017, 105, 94–103. [Google Scholar] [CrossRef]
- Kim, S.; Park, C.B. Mussel-inspired transformation of CaCO3 to bone minerals. Biomaterials 2010, 31, 6628–6634. [Google Scholar] [CrossRef]
- Naka, K.; Tanaka, Y.; Chujo, Y. Effect of anionic starburst dendrimers on the crystallization of CaCO3 in aqueous solution: Size control of spherical vaterite particles. Langmuir 2002, 18, 3655–3658. [Google Scholar] [CrossRef]
- Vikulina, A.; Voronin, D.; Fakhrullin, R.; Vinokurov, V.; Volodkin, D. Naturally derived nano- and micro-drug delivery vehicles: Halloysite, vaterite and nanocellulose. New J. Chem. 2020, 44, 5638–5655. [Google Scholar] [CrossRef]
- Trushina, D.B.; Bukreeva, T.V.; Antipina, M.N. Size-Controlled Synthesis of Vaterite Calcium Carbonate by the Mixing Method: Aiming for Nanosized Particles. Cryst. Growth Des. 2016, 16, 1311–1319. [Google Scholar] [CrossRef]
- Vikulina, A.; Webster, J.; Voronin, D.; Ivanov, E.; Fakhrullin, R.; Vinokurov, V.; Volodkin, D. Mesoporous additive-free vaterite CaCO3 crystals of untypical sizes: From submicron to Giant. Mater. Des. 2021, 197, 109220. [Google Scholar] [CrossRef]
- Svenskaya, Y.I.; Pavlov, A.M.; Gorin, D.A.; Gould, D.J.; Parakhonskiy, B.V.; Sukhorukov, G.B. Photodynamic therapy platform based on localized delivery of photosensitizer by vaterite submicron particles. Colloid. Surf. B 2016, 146, 171–179. [Google Scholar] [CrossRef]
- Said, F.A.; Bousserrhine, N.; Alphonse, V.; Michely, L.; Belbekhouche, S. Antibiotic loading and development of antibacterial capsules by using porous CaCO3 microparticles as starting material. Int. J. Pharm. 2020, 579, 119175. [Google Scholar] [CrossRef]
- Lu, H.; Hood, M.A.; Mauri, S.; Baio, J.E.; Bonn, M.; Muñoz-Espí, R.; Weidner, T. Biomimetic vaterite formation at surfaces structurally templated by oligo(glutamic acid) peptides. Chem. Commun. 2015, 51, 15902–15905. [Google Scholar] [CrossRef]
- Hood, M.A.; Landfester, K.; Muñoz-Espí, R. The Role of Residue Acidity on the Stabilization of Vaterite by Amino Acids and Oligopeptides. Cryst. Growth Des. 2014, 14, 1077–1085. [Google Scholar] [CrossRef]
- Njegic-Dzakula, B.; Falini, G.; Brecevic, L.; Skoko, Z.; Kralj, D. Effects of initial supersaturation on spontaneous precipitation of calcium carbonate in the presence of charged poly-L-amino acids. J. Colloid. Interf. Sci. 2010, 343, 553–563. [Google Scholar] [CrossRef]
- Krattiger, P.; Nassif, N.; Völkel, A.; Mastai, Y.; Wennemers, H.; Cölfen, H. Investigation of active crystal morphogenesis peptide sequences from peptide libraries by crystallization on peptide functionalized beads. Colloid. Surf. A 2010, 354, 218–225. [Google Scholar] [CrossRef]
- Tong, H.; Ma, W.T.; Wang, L.L.; Wan, P.; Hu, J.M.; Cao, L.X. Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process. Biomaterials 2004, 25, 3923–3929. [Google Scholar] [CrossRef]
- Hazen, R.M.; Filley, T.R.; Goodfriend, G.A. Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality. Proc. Natl. Acad. Sci. USA 2001, 98, 5487–5490. [Google Scholar] [CrossRef]
- Viedma, C. Enantiomeric crystallization from DL-aspartic and DL-glutamic acids: Implications for biomolecular chirality in the origin of life. Orig. Life Evol. Biosph. 2001, 31, 501–509. [Google Scholar] [CrossRef]
- Stajner, L.; Kontrec, J.; Dzakula, B.N.; Maltar-Strmecki, N.; Plodinec, M.; Lyons, D.M.; Kralj, D. The effect of different amino acids on spontaneous precipitation of calcium carbonate polymorphs. J. Cryst. Growth 2018, 486, 71–81. [Google Scholar] [CrossRef]
- Naka, K.; Huang, S.C.; Chujo, Y. Formation of stable vaterite with poly(acrylic acid) by the delayed addition method. Langmuir 2006, 22, 7760–7767. [Google Scholar] [CrossRef]
- Mihai, M.; Schwarz, S.; Doroftei, F.; Simionescu, B.C. Calcium Carbonate/Polymers Microparticles Tuned by Complementary Polyelectrolytes as Complex Macromolecular Templates. Cryst. Growth Des. 2014, 14, 6073–6083. [Google Scholar] [CrossRef]
- Sonobe, Y.; Watamura, H.; Hirasawa, I. Polymorphism, Size and Shape Control of Calcium Carbonate Crystals in the Presence of a Polyelectrolyte. Chem. Eng. Technol. 2015, 38, 1053–1058. [Google Scholar] [CrossRef]
- Zhu, W.J.; Lin, J.P.; Cai, C.H.; Lu, Y.Q. Biomimetic mineralization of calcium carbonate mediated by a polypeptide-based copolymer. J. Mater. Chem. B 2013, 1, 841–849. [Google Scholar] [CrossRef]
- Reddy, M.M.; Hoch, A.R. Calcite crystal growth rate inhibition by polycarboxylic acids. J. Colloid Interface Sci. 2001, 235, 365–370. [Google Scholar] [CrossRef]
- Korchef, A. Effect of Iron Ions on the Crystal Growth Kinetics and Microstructure of Calcium Carbonate. Cryst. Growth Des. 2019, 19, 6893–6902. [Google Scholar] [CrossRef]
- Nindiyasari, F.; Griesshaber, E.; Fernández-Díaz, L.; Astilleros, J.M.; Sánchez-Pastor, N.; Ziegler, A.; Schmahl, W.W. Effects of Mg and Hydrogel Solid Content on the Crystallization of Calcium Carbonate in Biomimetic Counter-diffusion Systems. Cryst. Growth Des. 2014, 14, 4790–4802. [Google Scholar] [CrossRef]
- Kirboga, S.; Oner, M.; Akyol, E. The effect of ultrasonication on calcium carbonate crystallization in the presence of biopolymer. J. Cryst. Growth 2014, 401, 266–270. [Google Scholar] [CrossRef]
- Kojima, Y.; Yamaguchi, K.; Nishimiya, N. Effect of amplitude and frequency of ultrasonic irradiation on morphological characteristics control of calcium carbonate. Ultrason. Sonochem. 2010, 17, 617–620. [Google Scholar] [CrossRef]
- Wang, B.; Pan, Z.H.; Cheng, H.G.; Chen, Z.L.; Cheng, F.Q. High-yield synthesis of vaterite microparticles in gypsum suspension system ultrasonic probe vibration/magnetic stirring. J. Cryst. Growth 2018, 492, 122–131. [Google Scholar] [CrossRef]
- Cheng, H.G.; Wang, X.; Wang, B.; Zhao, J.; Liu, Y.; Cheng, F.Q. Effect of ultrasound on the morphology of the CaCO3 precipitated from CaSO4-NH3-CO2-H2O system. J. Cryst. Growth 2017, 469, 97–105. [Google Scholar] [CrossRef]
- Nishida, I. Precipitation of calcium carbonate by ultrasonic irradiation. Ultrason. Sonochem. 2004, 11, 423–428. [Google Scholar] [CrossRef]
- López-Periago, A.M.; Pacciani, R.; Vega, L.F.; Domingo, C. Monitoring the Effect of Mineral Precursor, Fluid Phase CO2-H2O Composition, and Stirring on CaCO3 Crystallization in a Supercritical-Ultrasound Carbonation Process. Cryst. Growth Des. 2011, 11, 5324–5332. [Google Scholar] [CrossRef]
- Febrida, R.; Setianto, S.; Herda, E.; Cahyanto, A.; Joni, I.M. Structure and phase analysis of calcium carbonate powder prepared by a simple solution method. Heliyon 2021, 7, e08344. [Google Scholar] [CrossRef]
- Wehrmeister, U.; Jacob, D.E.; Soldati, A.L.; Loges, N.; Häger, T.; Hofmeister, W. Amorphous, nanocrystalline and crystalline calcium carbonates in biological materials. J. Raman Spectrosc. 2011, 42, 926–935. [Google Scholar] [CrossRef]
- Luo, X.P.; Song, X.W.; Lai, C.H.; Wang, J.F.; Cao, Y.W. Sonochemical Synthesis of Vaterite-Type Calcium Carbonate Using Steamed Ammonia Liquid Waste without Additives. ACS Omega 2021, 6, 23846–23854. [Google Scholar] [CrossRef]
- Konopacka-Lyskawa, D. Synthesis Methods and Favorable Conditions for Spherical Vaterite Precipitation: A Review. Crystals 2019, 9, 223. [Google Scholar] [CrossRef]
- Wagterveld, R.M.; Miedema, H.; Witkamp, G.J. Effect of Ultrasonic Treatment on Early Growth during CaCO3 Precipitation. Cryst. Growth Des. 2012, 12, 4403–4410. [Google Scholar] [CrossRef]
- Berdonosov, S.S.; Znamenskaya, I.V.; Melikhov, I.V. Mechanism of the Vaterite-to-calcite phase transition under sonication. Inorg. Mater. 2005, 41, 1308–1312. [Google Scholar] [CrossRef]
- Fu, L.H.; Dong, Y.Y.; Ma, M.G.; Yue, W.; Sun, S.L.; Sun, R.C. Why to synthesize vaterite polymorph of calcium carbonate on the cellulose matrix via sonochemistry process? Ultrason. Sonochem 2013, 20, 1188–1193. [Google Scholar] [CrossRef]
- Svenskaya, Y.I.; Fattah, H.; Inozemtseva, O.A.; Ivanova, A.G.; Shtykov, S.N.; Gorin, D.A.; Parakhonskiy, B.V. Key Parameters for Size- and Shape-Controlled Synthesis of Vaterite Particles. Cryst. Growth Des. 2018, 18, 331–337. [Google Scholar] [CrossRef]
- Jiang, W.G.; Athanasiadou, D.; Zhang, S.D.; Demichelis, R.; Koziara, K.B.; Raiteri, P.; Nelea, V.; Mi, W.B.; Ma, J.A.; Gale, J.D.; et al. Homochirality in biomineral suprastructures induced by assembly of single-enantiomer amino acids from a nonracemic mixture. Nat. Commun. 2019, 10, 2318. [Google Scholar] [CrossRef]
- Malkaj, P.; Dalas, E. Calcium carbonate crystallization in the presence of aspartic acid. Cryst. Growth Des. 2004, 4, 721–723. [Google Scholar] [CrossRef]
- Hou, W.T.; Feng, Q.L. Morphologies and growth model of biomimetic fabricated calcite crystals using amino acids and insoluble matrix membranes of. Cryst. Growth Des. 2006, 6, 1086–1090. [Google Scholar] [CrossRef]
- Ryu, M.; Kim, H.; Lim, M.; You, K.; Ahn, J. Comparison of Dissolution and Surface Reactions Between Calcite and Aragonite in L-Glutamic and L-Aspartic Acid Solutions. Molecules 2010, 15, 258–269. [Google Scholar] [CrossRef]
- Fu, L.H.; Qi, C.; Hu, Y.R.; Mei, C.G.; Ma, M.G. Cellulose/vaterite nanocomposites: Sonochemical synthesis, characterization, and their application in protein adsorption. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 96, 426–435. [Google Scholar] [CrossRef]
- Svenskaya, Y.I.; Fattah, H.; Zakharevich, A.M.; Gorin, D.A.; Sukhorukov, G.B.; Parakhonskiy, B.V. Ultrasonically assisted fabrication of vaterite submicron-sized carriers. Adv. Powder Technol. 2016, 27, 618–624. [Google Scholar] [CrossRef]
- Polat, S.; Sayan, P. Ultrasonic-assisted eggshell extract-mediated polymorphic transformation of calcium carbonate. Ultrason. Sonochem 2020, 66, 105093. [Google Scholar] [CrossRef]
- Jiang, W.G.; Pacella, M.S.; Vali, H.; Gray, J.J.; McKee, M.D. Chiral switching in biomineral suprastructures induced by homochiral L-amino acid. Sci. Adv. 2018, 4, eaas9819. [Google Scholar] [CrossRef]
- Abidi, L.; Amiard, F.; Delorme, N.; Ouhenia, S.; Gibaud, A. Using saponified olive oil to make cost effective calcium carbonate particles superhydrophobic. Adv. Powder Technol. 2022, 33, 103399. [Google Scholar] [CrossRef]
- Longkaew, K.; Tessanan, W.; Daniel, P.; Phinyocheep, P.; Gibaud, A. Using sucrose to prepare submicrometric CaCO3 vaterite particles stable in natural rubber. Adv. Powder Technol. 2023, 34, 103924. [Google Scholar] [CrossRef]
- Wulf, A.; Mendgaziev, R.I.; Fakhrullin, R.; Vinokurov, V.; Volodkin, D.; Vikulina, A.S. Porous Alginate Scaffolds Designed by Calcium Carbonate Leaching Technique. Adv. Funct. Mater. 2022, 32, 2109824. [Google Scholar] [CrossRef]
- Ilyasoglu, H.; Anankanbil, S.; Nadzieja, M.; Guo, Z. Lipophilization of chitin as novel polymeric stabilizer for improved oil-in-water emulsions. Colloid Polym. Sci. 2018, 296, 1841–1848. [Google Scholar] [CrossRef]
- Petrov, A.I.; Volodkin, D.V.; Sukhorukov, G.B. Protein-calcium carbonate coprecipitation: A tool for protein encapsulation. Biotechnol. Progr. 2005, 21, 918–925. [Google Scholar] [CrossRef]
- Ivanova, M.M.; Dao, J.; Kasaci, N.; Adewale, B.; Fikry, J.; Goker-Alpan, O. Rapid Clathrin-Mediated Uptake of Recombinant α-Gal-A to Lysosome Activates Autophagy. Biomolecules 2020, 10, 837. [Google Scholar] [CrossRef]
Additive | Ultrasonic Irradiation | Morphology | Chiral-Curved Vaterite Size (μm) |
---|---|---|---|
L-Asp | - | Platelets, Helicoid | 13.40 ± 0.63 |
D-Asp | - | Platelets, Helicoid | 16.98 ± 0.87 |
L-Asp | 90 s | Platelets, Helicoid | 6.56 ± 0.56 |
D-Asp | 90 s | Platelets, Helicoid | 9.0 ± 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, K.H.; Kim, D.H.; Pack, S.P. Size Control of Biomimetic Curved-Edge Vaterite with Chiral Toroid Morphology via Sonochemical Synthesis. Biomimetics 2024, 9, 174. https://doi.org/10.3390/biomimetics9030174
Min KH, Kim DH, Pack SP. Size Control of Biomimetic Curved-Edge Vaterite with Chiral Toroid Morphology via Sonochemical Synthesis. Biomimetics. 2024; 9(3):174. https://doi.org/10.3390/biomimetics9030174
Chicago/Turabian StyleMin, Ki Ha, Dong Hyun Kim, and Seung Pil Pack. 2024. "Size Control of Biomimetic Curved-Edge Vaterite with Chiral Toroid Morphology via Sonochemical Synthesis" Biomimetics 9, no. 3: 174. https://doi.org/10.3390/biomimetics9030174
APA StyleMin, K. H., Kim, D. H., & Pack, S. P. (2024). Size Control of Biomimetic Curved-Edge Vaterite with Chiral Toroid Morphology via Sonochemical Synthesis. Biomimetics, 9(3), 174. https://doi.org/10.3390/biomimetics9030174