A Sheet-Shaped Transforming Robot That Can Be Thrown from the Air
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Fall Prevention Effect of Plant Fruit Wings
2.2. Four-Blade Origami Robot Spinning and Falling
2.3. Energy Conservation Law
2.4. Rotation Mechanism
2.5. Drag and Lift Forces Acting on the Robot
2.6. Equation of Motion
3. Experiments
3.1. Configuration of Sheet-Type Robot
3.2. Walking and Falling Experiments
3.3. Discussion
4. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kossett, A.; Papanikolopoulos, N. A robust miniature robot design for land/air hybrid locomotion. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 4595–4600. [Google Scholar]
- Boria, F.; Bachmann, R.; Ifju, P.; Quinn, R.; Vaidyanathan, R.; Perry, C. A sensor platform capable of aerial and terrestrial. In Proceedings of the 2005 IEEE/RSJ International Conference, Edmonton, AB, Canada, 2–6 September 2005; pp. 3959–3964. [Google Scholar]
- Yim, M.; Shen, W.M.; Salemi, B.; Rus, D.; Moll, M.; Lipson, H.; Klavins, E.; Chirikjian, G.S. Modular Self-Reconfigurable Robot Systems. IEEE Robot. Autom. Mag. 2007, 14, 19–32. [Google Scholar] [CrossRef]
- Fukuda, T.; Nakagawa, S. Dynamically reconfigurable robotic system. In Proceedings of the IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA, 24–29 April 1988; pp. 1581–1586. [Google Scholar]
- Yim, M. New locomotion gaits. In Proceedings of the IEEE International Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994; pp. 2508–2514. [Google Scholar]
- Gilpin, K.; Kotay, K.; Rus, D. Miche Modular shape formation by self-disassembly. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 May 2007. [Google Scholar]
- Kurokawa, H.; Tomita, K.; Kamimura, A.; Kokaji, S.; Hasuo, T.; Murata, S. Distributed Self-Reconfiguration of M-TRAN III Modular Robotic System. Int. J. Robot. Res. 2008, 27, 373–386. [Google Scholar] [CrossRef]
- Kamimura, A.; Kurokawa, H.; Yoshida, E.; Murata, S.; Tomita, K.; Kokaji, S. Automatic Locomotion Design and Experiments for a Modular Robotic System. IEEE/ASME Trans. Mechatron. 2005, 10, 314–325. [Google Scholar] [CrossRef]
- Kurokawa, H.; Yoshida, E.; Tomita, K.; Kamimura, A.; Murata, S.; Kokaji, S. Self-reconfigurable M-TRAN structures and walker generation. Robot. Auton. Syst. 2006, 54, 142–149. [Google Scholar] [CrossRef]
- Paik, J.; An, B.; Rus, D.; Wood, R.J. Robotic origamis: Self-morphing modular robots. In Proceedings of the 2nd International Conference on Morphological Computation, Venice, Italy, 12–14 September 2011. [Google Scholar]
- Hawkes, E.; An, B.; Benbernou, N.M.; Tanaka, H.; Kim, S.; Demaine, E.D.; Rus, D.; Wood, R.J. Programmable matter by folding. Proc. Natl. Acad. Sci. USA 2010, 107, 12441–12445. [Google Scholar] [CrossRef]
- Boncheva, M.; Andreev, S.A.; Mahadevan, L.; Winkleman, A.; Reichman, D.R.; Prentiss, M.G.; Whitesides, S.; Whitesides, G.M. Magnetic self-assembly of three-dimensional surfaces from planar sheets. Proc. Natl. Acad. Sci. USA 2005, 102, 3924–3929. [Google Scholar] [CrossRef] [PubMed]
- Gregory, J.; Fink, J.; Stump, E.; Twigg, J.; Rogers, J.; Baran, D.; Fung, N.; Young, S. Application of Multi-Robot Systems to Disaster-Relief Scenarios with Limited Communication. In Field and Service Robotics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 639–653. [Google Scholar] [CrossRef]
- Kamegawa, T.; Akiyama, T.; Sakai, S.; Fujii, K.; Une, K.; Ou, E.; Matsumura, Y.; Kishutani, T.; Nose, E.; Yoshizaki, Y.; et al. Development of a separable search-and-rescue robot composed of a mobile robot and a snake robot. Adv. Robot. 2020, 34, 132–139. [Google Scholar] [CrossRef]
- Deng, W.; Huang, K.; Chen, X.; Zhou, Z.; Shi, C.; Guo, R.; Zhang, H. Semantic RGB-D SLAM for Rescue Robot Navigation. IEEE Access 2020, 8, 221320–221329. [Google Scholar] [CrossRef]
- Hebert, P.; Bajracharya, M.; Ma, J.; Hudson, N.; Aydemir, A.; Reid, J.; Bergh, C.; Borders, J.; Frost, M.; Hagman, M.; et al. Mobile Manipulation and Mobility as Manipulation—Design and Algorithms of RoboSimian. J. Field Robot. 2015, 32, 255–274. [Google Scholar] [CrossRef]
- Kawauchi, N.; Shiotani, S.; Kanazawa, H.; Sasaki, T.; Tsuji, H. A plant maintenance humanoid robot system. In Proceedings of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 14–19 September 2003; pp. 2973–2978. [Google Scholar]
- Win, L.S.T.; Win, S.K.H.; Sufiyan, D.; Soh, G.S.; Foong, S. Achieving Efficient Controlled Flight with a Single Actuator. In Proceedings of the 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Boston, MA, USA, 6–9 July 2020; pp. 1625–1631. [Google Scholar]
- Evan, D.J.P.; Ulrich, R.; Humbert, J.S. From falling to flying: The path to powered flight of a robotic samara nano air vehicle. Bioinspiration Biomim. 2010, 5, 045009. [Google Scholar]
- Win, S.K.H.; Win, L.S.T.; Sufiyan, D.; Soh, G.S.; Foong, S. Dynamics and control of a collaborative and separating descent of samara autorotating wings. IEEE Robot. Autom. Lett. 2019, 4, 3067–3074. [Google Scholar] [CrossRef]
- Varshney, K.; Chang, S.; Wang, Z.J. The kinematics of falling maple seeds and the initial transition to a helical motion. Nonlinearity 2011, 25, C1–C8. [Google Scholar] [CrossRef]
- Bouabdallah, S.; Siegwart, R. Full control of a quadrotor. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 153–158. [Google Scholar]
- Kawasaki, K.; Motegi, Y.; Zhao, M.; Okada, K.; Inaba, M. Dual connected Bi-Copter with new wall trace locomotion feasibility that can fly at arbitrary tilt angle. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–October 2015; pp. 524–531. [Google Scholar]
- Zhang, J.; Fei, F.; Tu, Z.; Deng, X. Design optimization and system integration of robotic hummingbird. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017; pp. 5422–5428. [Google Scholar]
- Felton, S.; Tolley, M.; Demaine, E.; Rus, D.; Wood, R. A method for building self-folding machines. Science 2014, 345, 644–646. [Google Scholar] [CrossRef] [PubMed]
- Amir, F.; Paik, J. Robogami: A fully integrated low-profile robotic origami. J. Mech. Robot. 2015, 7, 021009. [Google Scholar]
- Ishida, Y.; Matsumoto, M. Sheet Type Transformable Plate Ware. IEEE Access 2019, 7, 91593–91601. [Google Scholar] [CrossRef]
- Iida, N.; Matsumoto, M. A Transformable Sheet Type Robot That Can Be Thrown from the Air. Biomimetics 2022, 7, 114. [Google Scholar] [CrossRef]
- Arena, P.; Bucolo, M.; Buscarino, A.; Fortuna, L.; Frasca, M. Reviewing Bioinspired Technologies for Future Trends: A Complex Systems Point of View. Front. Phys. 2021, 9, 750090. [Google Scholar] [CrossRef]
- Ortega-Jimenez, V.M.; Jusufi, A.; Brown, C.E.; Zeng, Y.; Kumar, S.; Siddall, R.; Kim, B.; Challita, E.J.; Pavlik, Z.; Priess, M.; et al. Air-to-land transitions: From wingless animals and plant seeds to shuttlecocks and bio-inspired robots. Bioinspir. Biomim. 2023, 18, 051001. [Google Scholar] [CrossRef] [PubMed]
- Siddall, R.; Ibanez, V.; Byrnes, G.; Full, R.J.; Jusufi, A. Mechanisms for mid-air reorientation using tail rotation in gliding geckos. Integr. Comp. Biol. 2021, 61, 478–490. [Google Scholar] [CrossRef]
- Fukushima, T.; Siddall, R.; Schwab, F.; Toussaint, S.L.; Byrnes, G.; Nyakatura, J.A.; Jusufi, A. Inertial tail effects during righting of squirrels in unexpected falls: From behavior to robotics. Integr. Comp. Biol. 2021, 61, 589–602. [Google Scholar] [CrossRef]
- Cummins, C.; Seale, M.; Macente, A.; Certini, D.; Mastropaolo, E.; Viola, I.M.; Nakayama, N. A separated vortex ring underlies the flight of the dandelion. Nature 2018, 562, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Jimenez, V.M.; Kim, S.-W.N.; Dudley, R. Superb autorotator: Rapid decelerations in impulsively launched samaras. J. R. Soc. Interface 2019, 16, 20181456. [Google Scholar] [CrossRef] [PubMed]
- Maxemow, S. That’s a Drag: The Effects of Drag Forces. Undergrad. J. Math. Model. 2009, 2, 4. [Google Scholar] [CrossRef]
(Rad) | Falling Velocity (m/s) |
---|---|
2π/12 | 1.69 ± 0.04 |
3π/12 | 1.77 ± 0.03 |
4π/12 | 2.08 ± 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iida, N.; Matsumoto, M. A Sheet-Shaped Transforming Robot That Can Be Thrown from the Air. Biomimetics 2024, 9, 287. https://doi.org/10.3390/biomimetics9050287
Iida N, Matsumoto M. A Sheet-Shaped Transforming Robot That Can Be Thrown from the Air. Biomimetics. 2024; 9(5):287. https://doi.org/10.3390/biomimetics9050287
Chicago/Turabian StyleIida, Naoki, and Mitsuharu Matsumoto. 2024. "A Sheet-Shaped Transforming Robot That Can Be Thrown from the Air" Biomimetics 9, no. 5: 287. https://doi.org/10.3390/biomimetics9050287
APA StyleIida, N., & Matsumoto, M. (2024). A Sheet-Shaped Transforming Robot That Can Be Thrown from the Air. Biomimetics, 9(5), 287. https://doi.org/10.3390/biomimetics9050287