Research on Deployable Wings for MAVs Bioinspired by the Hind Wings of the Beetle Protaetia brevitarsis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Beetle
2.2. Geometric Model
2.2.1. Vein Structure
2.2.2. Hind Wing Folding Method
2.3. Analysis of Mechanical Properties of BD-W
2.3.1. Static Analysis
2.3.2. Aerodynamic Characteristic Analysis
- (1)
- Bionic deployable wing aerodynamic model
- (2)
- Parameterization of fluid mechanics simulation
- Inlet boundary: The velocity inlet boundary is selected, and the velocity value size is set according to the test.
- Outlet boundary: The pressure outlet boundary is selected, and the outlet pressure value is set to standard atmospheric pressure.
- (3)
- Aerodynamic characterization of bionic deployable wing
2.4. Fabrication of BD-W and Wind Tunnel Test
3. Results and Discussion
3.1. Statics Mechanism Analysis of the Designed BD-W
3.2. Aerodynamic Characteristics of BD-W
3.2.1. The Influence of Incoming Flow Velocity
3.2.2. The Effect of Flapping Frequency
3.2.3. The Effect of the Angle of Attack
3.2.4. Lift-to-Drag Ratio at Different Parameter Values
3.2.5. Simulation Results of BD-W under Optimal Parameters
3.3. Biomimetic Deployable Wing Wind Tunnel Test
3.3.1. Influence of Incoming Flow Velocity on Aerodynamic Characteristics of BD-W
3.3.2. Influence of the Flapping Frequency on the Aerodynamic Characteristics of BD-W
3.3.3. Influence of the Angle of Attack on the Aerodynamic Characteristics of BD-W
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Geisler, T. Observations and measurements of wing parameters of the selected beetle species and the design of a mechanism structure implementing a complex wing movement. Int. J. Appl. Mech. Eng. 2016, 21, 837–847. [Google Scholar] [CrossRef]
- Xiao, S.J.; Hu, K.; Huang, B.X.; Deng, H.C.; Ding, X.L. A review of research on the mechanical design of hoverable flapping wing micro-air vehicles. J. Bionic Eng. 2021, 18, 1235–1254. [Google Scholar] [CrossRef]
- Faber, J.A.; Arrieta, A.F.; Studart, A.R. Bioinspired spring origami. Science 2018, 359, 1386–1391. [Google Scholar] [CrossRef] [PubMed]
- Deiters, J.; Kowalczyk, W.; Seidl, T. Simultaneous optimisation of earwig hindwings for flight and folding. Biol. Open 2016, 5, 638–644. [Google Scholar] [CrossRef]
- Saito, K.; Yamamoto, S.; Maruyama, M.; Okabe, Y. Asymmetric hindwing foldings in rove beetles. Proc. Natl. Acad. Sci. USA 2014, 111, 16349–16352. [Google Scholar] [CrossRef]
- Haas, F.; Wootton, R.J. Two basic mechanisms in insect wing folding. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1996, 263, 1651–1658. [Google Scholar]
- Phan, H.V.; Park, H.C. Mechanisms of collision recovery in flying beetles and flapping-wing robots. Science 2021, 370, 1214–1218. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, N.; Qu, F.Y. Bio-Inspired flapping wing robots with foldable or deformable wings: A review. Bioinspir. Biomim. 2022, 18, 011002. [Google Scholar] [CrossRef] [PubMed]
- Ha, N.S.; Nguyen, Q.V.; Goo, N.S.; Park, H.C. Static and dynamic characteristics of an artificial wing mimicking an Allomyrina Dichotoma beetle’s hind wing for flapping-wing micro air vehicles. Exp. Mech. 2022, 52, 1535–1549. [Google Scholar] [CrossRef]
- Truong, Q.T.; Argyoganendro, B.W.; Park, H.C. Design and demonstration of insect mimicking foldable artificial wing using four-bar linkage systems. J. Bionic Eng. 2014, 11, 449–458. [Google Scholar] [CrossRef]
- Li, X.; Guo, C.; Ma, Y.; Zheng, Y. Design of bionic foldable wing mimicking the hind wings of the C. buqueti bamboo weevil. J. Mech. Des. 2021, 143, 083303. [Google Scholar] [CrossRef]
- Dufour, L.; Owen, K.; Mintchev, S.; Floreano, D. A drone with insect-inspired folding wings. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, Republic of Korea, 9–14 October 2016; IEEE Press: NewYork, NY, USA, 2016; pp. 1576–1581. [Google Scholar]
- Sun, J.Y.; Liu, C.; Li, F.D.; Bhushan, B.; Wu, W.; Tong, J. Effect of vein microstructure and nanomechanical behaviors on wind-resistant performance of Asian ladybeetle hindwing. Tribol. Int. 2020, 142, 105717. [Google Scholar] [CrossRef]
- Liu, C.; Li, P.P.; Song, F.; Stamhuis, E.J.; Sun, J.Y. Design optimization and wind tunnel investigation of a flapping system based on the flapping wing trajectories of a beetle’s hindwings. Comput. Biol. Med. 2022, 140, 105085. [Google Scholar] [CrossRef]
- Abramowicz, M.; Kamieniecki, K.; Piechna, A.; Rubach, P.; Piechna, J. Using ANSYS and SORCER modeling framework for the optimization of the design of a flap wing bionic object. Mach. Dyn. Res. 2016, 39, 21–36. [Google Scholar]
- Deng, S.H.; Wang, J.; Liu, H.R. Experimental study of a bio-inspired flapping wing MAV by means of force and PIV measurements. Aerosp. Sci. Technol. 2019, 94, 105382. [Google Scholar] [CrossRef]
- Deng, S.H.; Percin, M.; van Oudheusden, B.; Remes, B.; Bijl, H. Experimental investigation on the aerodynamics of a bio-inspired flexible flapping wing micro air vehicle. Int. J. Micro Air Veh. 2014, 6, 105–115. [Google Scholar] [CrossRef]
- Nian, P.; Song, B.F.; Xuan, J.L.; Zhou, W.H.; Xue, D. Study on flexible flapping wings with three dimensional asymmetric passive deformation in a flapping cycle. Aerosp. Sci. Technol. 2020, 104, 105944. [Google Scholar] [CrossRef]
- Srygley, R.B.; Thomas, A.L.R. Unconventional lift-generating mechanisms in free-flying butterflies. Nature 2002, 420, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Urca, T.; Debnath, A.K.; Stefanini, J.; Gurka, R.; Ribak, G. The aerodynamics and power requirements of forward flapping flight in the mango stem borer beetle (Batocera rufomaculata). Integr. Org. Biol. 2020, 2, obaa026. [Google Scholar] [CrossRef]
- Bhat, S.S.; Zhao, J.S.; Sheridan, J.; Hourigan, K.; Thompson, M.C. The leading-edge vortex on a rotating wing changes markedly beyond a certain central body size. R. Soc. Open Sci. 2018, 5, 172197. [Google Scholar] [CrossRef]
- McCullough, E.L.; Tobalske, B.W. Elaborate horns in a giant rhinoceros beetle incur negligible aerodynamic costs. Proc. R. Soc. B 2013, 280, 20130197. [Google Scholar] [CrossRef] [PubMed]
- Nian, P.; Song, B.F.; Xuan, J.L.; Yang, W.Q.; Dong, Y.B. A wind tunnel experimental study on the flexible flapping wing with an attached airfoil to the root. IEEE Access 2019, 7, 47891–47903. [Google Scholar] [CrossRef]
- Chen, P.; Joshi, S.; Swartz, S.M.; Breuer, K.; Reich, G.W. Bat inspired flapping flight. In Proceedings of the 22nd AIAA/ASME/AHS Adaptive Structures Conference (Maryland: AIAA), National Harbor, MD, USA, 13–17 January 2014; p. 1120. [Google Scholar]
- Bahlman, J.W.; Swartz, S.M.; Breuer, K.S. Design and characterization of a multi-articulated robotic bat wing. Bioinspir. Biomim. 2013, 8, 016009. [Google Scholar] [CrossRef]
- O’Callaghan, F.; Sarig, A.; Ribak, G.; Lehamnn, F. Efficiency and aerodynamic performance of bristled insect wings depending on reynolds number in flapping flight. Fluids 2022, 7, 75. [Google Scholar] [CrossRef]
- Sun, J.Y. Miniaturization of robots that fly on beetles’ wings. Science 2021, 370, 1165. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, A.; Nguyen, Q.V.; Park, H.C.; Hwang, D.Y.; Byun, D.; Goo, N.S. Improvement of artificial foldable wing models by mimicking the unfolding/folding mechanism of a beetle hind wing. J. Bionic Eng. 2010, 7, 134–141. [Google Scholar] [CrossRef]
- Sun, J.Y.; Li, P.P.; Yan, Y.W.; Fa, S.; Zhang, Z.J. Micro-structures, nanomechanical properties and flight performance of three beetles with different folding ratio. Beilstein J. Nanotechnol. 2022, 13, 845–856. [Google Scholar] [CrossRef]
- Truong, T.V.; Nguyen, Q.V.; Lee, H.P. Bio-Inspired flexible flapping wings with elastic deformation. Aerospace 2017, 4, 37. [Google Scholar] [CrossRef]
- Zhu, X.Q.; Sun, X.C.; Wang, X. Numerical study of high performance on the influence of angle of attack on aerodynamic performance of wing flapping. Acta Aerodyn. Sin. 2022, 40, 50–60. [Google Scholar]
- Qing, Z.; Yanfei, D.; Heng, L. Computational investigation of overall aerodynamic characteristics for spanwise adaptive wing. J. Xi’an Jiaotong Univ. 2020, 54, 174–184. [Google Scholar]
- Wang, C.; Zhou, C.; Xie, P. Numerical investigation into the effects of stroke trajectory on the aerodynamic performance of insect hovering flight. J. Mech. Sci. Technol. 2016, 30, 1659–1669. [Google Scholar] [CrossRef]
C+ScA1 | C+ScA2 | MP1 | MP2 | CuA | AP1 | AP2 | ||||||||
C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | |
Dmaj, mm | 4.20 | 2.20 | 2.84 | 0.80 | 2.00 | 2.70 | 2.70 | 0.40 | 1.70 | 0.75 | 3.20 | 0.92 | 1.60 | 0.80 |
Dmin, mm | 1.94 | 1.95 | 2.09 | 0.29 | 1.05 | 2.00 | 2.00 | 0.12 | 1.20 | 0.51 | 1.25 | 0.34 | 0.75 | 0.24 |
Characteristic Parameter | Parameter Range |
---|---|
Flapping angle (°) | 90 |
Wind speed (m/s) | 1, 3, 5 |
Angle of attack (°) | 0, 5, 15, 25, 35 |
Flapping frequency (Hz) | 4, 6, 8, 10 |
Test Section Parameters | Value |
---|---|
Working section shape | Rectangle |
Working section area (mm2) | 650 × 450 |
Length of working section (mm) | 1000 |
Turbulent intensity (%) | <0.3 |
Regulator form of wind speed | Hot-wire sensor |
Range of wind speed (m/s) | 0–10 |
Airflow nonuniformity of working section (%) | <3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Wang, W.; Li, P.; Zhang, Z. Research on Deployable Wings for MAVs Bioinspired by the Hind Wings of the Beetle Protaetia brevitarsis. Biomimetics 2024, 9, 313. https://doi.org/10.3390/biomimetics9060313
Sun J, Wang W, Li P, Zhang Z. Research on Deployable Wings for MAVs Bioinspired by the Hind Wings of the Beetle Protaetia brevitarsis. Biomimetics. 2024; 9(6):313. https://doi.org/10.3390/biomimetics9060313
Chicago/Turabian StyleSun, Jiyu, Wenzhe Wang, Pengpeng Li, and Zhijun Zhang. 2024. "Research on Deployable Wings for MAVs Bioinspired by the Hind Wings of the Beetle Protaetia brevitarsis" Biomimetics 9, no. 6: 313. https://doi.org/10.3390/biomimetics9060313
APA StyleSun, J., Wang, W., Li, P., & Zhang, Z. (2024). Research on Deployable Wings for MAVs Bioinspired by the Hind Wings of the Beetle Protaetia brevitarsis. Biomimetics, 9(6), 313. https://doi.org/10.3390/biomimetics9060313