Aminolysis-Based Zwitterionic Immobilization on Polyethersulfone Membranes for Enhanced Hemocompatibility: Experimental, Computational, and Ex Vivo Investigations
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Experimental Approaches
2.3. Membrane Characterization and Analysis
2.3.1. Attenuated Total Reflectance-Fourier Transmission Infrared (ATR-FTIR)
2.3.2. X-Ray Photoelectron Spectroscopy (XPS)
2.3.3. Atomic Force Microscopy (AFM)
2.3.4. Surface Charge Measurement
2.3.5. Gravimetry
2.3.6. Equilibrium Water Content (EWC)
2.3.7. Differential Scanning Calorimetry (DSC)
2.3.8. Brunauer–Emmett–Teller (BET)
2.4. Computational Studies
2.4.1. Force Field and Software
2.4.2. Structures and Simulations
2.5. Hemocompatibility Measurements
3. Results and Discussion
3.1. Characterization of Neat and Functionalized PES Membranes
3.2. Hydrogen Bonding Assessment
3.3. Surface Roughness
3.4. Surface Charge Analysis
3.5. Gravimetry-Assisted Grafting Amount Measurement
3.6. Equilibrium Water Content (EWC)
3.7. Stable Non-Freezable Water Content
3.8. Pore Size Assessments
3.9. Hydrogen Bonding Simulation
3.10. Mobility Simulation
3.11. Induction of Hemocompatibility Assessment and Its Stability
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
Name | Abbreviation |
Atomic force microscopy | AFM |
Attuned total reflectance–Fourier transmission infrared | ATR-FTIR |
Brunauer–Emmett–Teller | BET |
Differential scanning calorimetry | DSC |
Diethyl triamine | DETA |
End-stage renal disease | ESRD |
Equilibrium water content | EWC |
Interleukin | IL |
Molecular dynamics | MD |
Phosphobetaine | PB |
Polyethersulfone | PES |
Polysulfone | PSF |
Polyvinyl pyrrolidone | PVP |
Polyvinylidene fluoride | PVDF |
Polyethylene-co-vinyl alcohol | EVOL |
Polylactic acid | PLA |
Polyvinyl chloride | PVC |
Picograms per milliliter | pg/mL |
Root mean square | RMS |
Sodium polystyrene sulfonate | PSSNa |
Sulfobetaine | SB |
Surface area | SA |
Tumor necrosis factor | TNF |
Von Willebrand factor | vWF |
X-ray photoelectron spectroscopy | XPS |
Zwitterionic | ZW |
References
- Mollahosseini, A.; Abdelrasoul, A.; Shoker, A. A critical review of recent advances in hemodialysis membranes hemocompatibility and guidelines for future development. Mater. Chem. Phys. 2020, 248, 122911. [Google Scholar] [CrossRef]
- Mollahosseini, A.; Abdelrasoul, A. Introductory chapter: An overview of recent advances in membrane technologies. In Advances in Membrane Technologies; IntechOpen: London, UK, 2020; p. 1. [Google Scholar]
- Mollahosseini, A.; Abdelrasoul, A. Novel Insights in Hemodialysis: Most Recent Theories on the Membrane Hemocompatibility Improvement. Biomed. Eng. Adv. 2022, 3, 100034. [Google Scholar] [CrossRef]
- Yamashita, A.C.; Sakurai, K. Dialysis membranes–physico-chemical structures and features. In Updates in Hemodialysis; IntechOpen: London, UK, 2015; pp. 159–187. [Google Scholar]
- Krieter, D.H.; Wanner, C. Membranes for dialysis and hemofiltration. In Management of Acute Kidney Problems; Springer: Berlin/Heidelberg, Germany, 2010; pp. 491–505. [Google Scholar]
- Bowry, S.K.; Gatti, E.; Vienken, J. Contribution of polysulfone membranes to the success of convective dialysis therapies. High-Perform. Membr. Dialyzers 2011, 173, 110–118. [Google Scholar]
- Mukherjee, S.; Roy, D.; Bhattacharya, P. Comparative performance study of polyethersulfone and polysulfone membranes for trypsin isolation from goat pancreas using affinity ultrafiltration. Sep. Purif. Technol. 2008, 60, 345–351. [Google Scholar] [CrossRef]
- Irfan, M.; Idris, A. Overview of PES biocompatible/hemodialysis membranes: PES–blood interactions and modification techniques. Mater. Sci. Eng. C 2015, 56, 574–592. [Google Scholar] [CrossRef] [PubMed]
- Mollahosseini, A.; Abdelrasoul, A.; Shoker, A. Latest advances in zwitterionic structures modified dialysis membranes. Mater. Today Chem. 2020, 15, 100227. [Google Scholar] [CrossRef]
- Al Wakeel, J.S.; Mitwalli, A.H.; Al Mohaya, S.; Abu-Aisha, H.; Tarif, N.; Malik, G.H.; Hammad, D. Morbidity and mortality in ESRD patients on dialysis. Saudi J. Kidney Dis. Transplant. 2002, 13, 473. [Google Scholar]
- Mollahosseini, A.; Saadati, S.; Abdelrasoul, A. A Comparative Assessment of Human Serum Proteins Interactions with Hemodialysis Clinical Membranes using Molecular Dynamics Simulation. Macromol. Theory Simul. 2022, 31, 2200016. [Google Scholar] [CrossRef]
- Cozzolino, M.; Mangano, M.; Stucchi, A.; Ciceri, P.; Conte, F.; Galassi, A. Cardiovascular disease in dialysis patients. Nephrol. Dial. Transplant. 2018, 33, iii28–iii34. [Google Scholar] [CrossRef]
- Mollahosseini, A.; Abdelrasoul, A.; Shoker, A. Challenges and advances in hemodialysis membranes. In Advances in Membrane Technologies; IntechOpen: London, UK, 2020; p. 151. [Google Scholar]
- Song, X.; Ji, H.; Zhao, W.; Sun, S.; Zhao, C. Hemocompatibility enhancement of polyethersulfone membranes: Strategies and challenges. Adv. Membr. 2021, 1, 100013. [Google Scholar] [CrossRef]
- Salimi, E.; Ghaee, A.; Ismail, A.F.; Othman, M.H.D.; Sean, G.P. Current approaches in improving hemocompatibility of polymeric membranes for biomedical application. Macromol. Mater. Eng. 2016, 301, 771–800. [Google Scholar] [CrossRef]
- Nazari, S.; Abdelrasoul, A. Surface Zwitterionization of HemodialysisMembranesfor Hemocompatibility Enhancement and Protein-mediated anti-adhesion: A Critical Review. Biomed. Eng. Adv. 2022, 3, 100026. [Google Scholar] [CrossRef]
- Mollahosseini, A. Improving Hemocompatibility of Poly Ether Sulfone Hemodialysis Membranes Using Zwitterionic Materials. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, November 2023. [Google Scholar]
- Mollahosseini, A.; Abdelrasoul, A. Novel uremic metabolite-based zwitterionic polyethersulfone (PES) hemodialysis membrane for improved hemocompatibility: Towards the fourth generation of hemodialysis modifiers. Chem. Eng. Res. Des. 2023, 195, 466–479. [Google Scholar] [CrossRef]
- Patra, A.; Bahig, J.; Kalugin, D.; Mollahosseini, A.; Shoker, A.; Abdelrasoul, A. Enhancing the hemocompatibility of polyethersulfone (PES) hemodialysis membranes using synthesized pseudo zwittronic polymers with various orientations. Results Surf. Interfaces 2023, 13, 100159. [Google Scholar] [CrossRef]
- PV, M.; Bhatt, A. Sulfobetaine-functionalized electrospun poly (ethylene-co-vinyl alcohol) membranes for blood filtration. J. Appl. Polym. Sci. 2019, 136, 47057. [Google Scholar]
- Gu, S.; Xia, H.; Du, J.; Yang, L.; Cai, Y.; Zhou, Y.; Huang, J. Surface modification of polysulfones via one-pot ATRP and click chemistry: Zwitterionic graft complex and their hemocompatibility. Fibers Polym. 2016, 17, 161–165. [Google Scholar] [CrossRef]
- Wang, J.J.; Wu, M.B.; Xiang, T.; Wang, R.; Sun, S.D.; Zhao, C.S. Antifouling and blood-compatible poly (ether sulfone) membranes modified by zwitterionic copolymers via In situ crosslinked copolymerization. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Zhu, L.-J.; Liu, F.; Yu, X.-M.; Gao, A.-L.; Xue, L.-X. Surface zwitterionization of hemocompatible poly (lactic acid) membranes for hemodiafiltration. J. Membr. Sci. 2015, 475, 469–479. [Google Scholar] [CrossRef]
- Chang, Y.; Chang, W.-J.; Shih, Y.-J.; Wei, T.-C.; Hsiue, G.-H. Zwitterionic sulfobetaine-grafted poly (vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization. ACS Appl. Mater. Interfaces 2011, 3, 1228–1237. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Huang, J.; Xu, C.; Gu, S.; Xu, W. Surface functionalization of cellulose membrane via heterogeneous “click” grafting of zwitterionic sulfobetaine. Polym. Bull. 2014, 71, 2559–2569. [Google Scholar] [CrossRef]
- Zhou, R.; Ren, P.-F.; Yang, H.-C.; Xu, Z.-K. Fabrication of antifouling membrane surface by poly (sulfobetaine methacrylate)/polydopamine co-deposition. J. Membr. Sci. 2014, 466, 18–25. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Venault, A.; Zheng, H.; Lo, C.-T.; Yang, C.-C.; Chang, Y. Failure of sulfobetaine methacrylate as antifouling material for steam-sterilized membranes and a potential alternative. J. Membr. Sci. 2021, 620, 118929. [Google Scholar] [CrossRef]
- Liu, P.; Chen, Q.; Li, L.; Lin, S.; Shen, J. Anti-biofouling ability and cytocompatibility of the zwitterionic brushes-modified cellulose membrane. J. Mater. Chem. B 2014, 2, 7222–7231. [Google Scholar] [CrossRef] [PubMed]
- Venault, A.; Chang, Y.; Yang, H.-S.; Lin, P.-Y.; Shih, Y.-J.; Higuchi, A. Surface self-assembled zwitterionization of poly (vinylidene fluoride) microfiltration membranes via hydrophobic-driven coating for improved blood compatibility. J. Membr. Sci. 2014, 454, 253–263. [Google Scholar] [CrossRef]
- Xiang, T.; Zhang, L.-S.; Wang, R.; Xia, Y.; Su, B.-H.; Zhao, C.-S. Blood compatibility comparison for polysulfone membranes modified by grafting block and random zwitterionic copolymers via surface-initiated ATRP. J. Colloid Interface Sci. 2014, 432, 47–56. [Google Scholar] [CrossRef]
- Lin, X.; Wu, K.; Zhou, Q.; Jain, P.; Boit, M.O.K.; Li, B.; Hung, H.-C.; Creason, S.A.; Himmelfarb, J.; Ratner, B.D. Photoreactive Carboxybetaine Copolymers Impart Biocompatibility and Inhibit Plasticizer Leaching on Polyvinyl Chloride. ACS Appl. Mater. Interfaces 2020, 12, 41026–41037. [Google Scholar] [CrossRef]
- Zhao, Y.-F.; Zhu, L.-P.; Yi, Z.; Zhu, B.-K.; Xu, Y.-Y. Improving the hydrophilicity and fouling-resistance of polysulfone ultrafiltration membranes via surface zwitterionicalization mediated by polysulfone-based triblock copolymer additive. J. Membr. Sci. 2013, 440, 40–47. [Google Scholar] [CrossRef]
- Yi, Z.; Zhu, L.-P.; Xu, Y.-Y.; Gong, X.-N.; Zhu, B.-K. Surface zwitterionicalization of poly (vinylidene fluoride) porous membranes by post-reaction of the amphiphilic precursor. J. Membr. Sci. 2011, 385, 57–66. [Google Scholar] [CrossRef]
- Wang, M.; Yuan, J.; Huang, X.; Cai, X.; Li, L.; Shen, J. Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility. Colloids Surf. B Biointerfaces 2013, 103, 52–58. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, J.; Zang, X.; Shen, J.; Lin, S. Improvement of blood compatibility on cellulose membrane surface by grafting betaines. Colloids Surf. B Biointerfaces 2003, 30, 147–155. [Google Scholar] [CrossRef]
- Mollahosseini, A.; Abdelrasoul, A. Zwitterionization of common hemodialysis membranes: Assessment of different immobilized structure impact on hydrophilicity and biocompatibility of poly aryl ether sulfone (PAES) and cellulose triacetate (CTA) hemodialysis membranes. Struct. Chem. 2022, 33, 1965–1982. [Google Scholar] [CrossRef]
- Mollahosseini, A.; Saadati, S.; Abdelrasoul, A. Effects of mussel-inspired co-deposition of 2-hydroxymethyl methacrylate and poly (2-methoxyethyl acrylate) on the hydrophilicity and binding tendency of common hemodialysis membranes: Molecular dynamics simulations and molecular docking studies. J. Comput. Chem. 2022, 43, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Mollahosseini, A.; Argumeedi, S.; Abdelrasoul, A.; Shoker, A. A case study of poly (aryl ether sulfone) hemodialysis membrane interactions with human blood: Molecular dynamics simulation and experimental analyses. Comput. Methods Programs Biomed. 2020, 197, 105742. [Google Scholar] [CrossRef] [PubMed]
- Mollahosseini, A.; Abdelrasoul, A. Molecular dynamics simulation for membrane separation and porous materials: A current state of art review. J. Mol. Graph. Model. 2021, 107, 107947. [Google Scholar] [CrossRef]
- Saadati, S.; Eduok, U.; Westphalen, H.; Abdelrasoul, A.; Shoker, A.; Choi, P.; Doan, H.; Ein-Mozaffari, F.; Zhu, N. In situ synchrotron imaging of human serum proteins interactions, molecular docking and inflammatory biomarkers of hemocompatible synthesized zwitterionic polymer coated-polyvinylidene fluoride (PVDF) dialysis membranes. Surf. Interfaces 2021, 27, 101505. [Google Scholar] [CrossRef]
- Wang, L.; Cai, Y.; Jing, Y.; Zhu, B.; Zhu, L.; Xu, Y. Route to hemocompatible polyethersulfone membranes via surface aminolysis and heparinization. J. Colloid Interface Sci. 2014, 422, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Hoseinpour, V.; Ghaee, A.; Vatanpour, V.; Ghaemi, N. Surface modification of PES membrane via aminolysis and immobilization of carboxymethylcellulose and sulphated carboxymethylcellulose for hemodialysis. Carbohydr. Polym. 2018, 188, 37–47. [Google Scholar] [CrossRef]
- Zhu, J.; Su, Y.; Zhao, X.; Li, Y.; Zhao, J.; Fan, X.; Jiang, Z. Improved antifouling properties of poly (vinyl chloride) ultrafiltration membranes via surface zwitterionicalization. Ind. Eng. Chem. Res. 2014, 53, 14046–14055. [Google Scholar] [CrossRef]
- Zhu, J.; Su, Y.; Zhao, X.; Li, Y.; Zhang, R.; Fan, X.; Ma, Y.; Liu, Y.; Jiang, Z. Constructing a zwitterionic ultrafiltration membrane surface via multisite anchorage for superior long-term antifouling properties. RSC Adv. 2015, 5, 40126–40134. [Google Scholar] [CrossRef]
- Mi, Y.-F.; Zhao, F.-Y.; Guo, Y.-S.; Weng, X.-D.; Ye, C.-C.; An, Q.-F. Constructing zwitterionic surface of nanofiltration membrane for high flux and antifouling performance. J. Membr. Sci. 2017, 541, 29–38. [Google Scholar] [CrossRef]
- Mollahosseini, A.; Rahimpour, A. Interfacially polymerized thin film nanofiltration membranes on TiO2 coated polysulfone substrate. J. Ind. Eng. Chem. 2014, 20, 1261–1268. [Google Scholar] [CrossRef]
- Rahimpour, A.; Jahanshahi, M.; Mollahosseini, A.; Rajaeian, B. Structural and performance properties of UV-assisted TiO2 deposited nano-composite PVDF/SPES membranes. Desalination 2012, 285, 31–38. [Google Scholar] [CrossRef]
- Meng, J.-Q.; Chen, C.-L.; Huang, L.-P.; Du, Q.-Y.; Zhang, Y.-F. Surface modification of PVDF membrane via AGET ATRP directly from the membrane surface. Appl. Surf. Sci. 2011, 257, 6282–6290. [Google Scholar] [CrossRef]
- Li, Q.; Bi, Q.-Y.; Zhou, B.; Wang, X.-L. Zwitterionic sulfobetaine-grafted poly (vinylidene fluoride) membrane surface with stably anti-protein-fouling performance via a two-step surface polymerization. Appl. Surf. Sci. 2012, 258, 4707–4717. [Google Scholar] [CrossRef]
- Guan, R.; Dai, H.; Li, C.; Liu, J.; Xu, J. Effect of casting solvent on the morphology and performance of sulfonated polyethersulfone membranes. J. Membr. Sci. 2006, 277, 148–156. [Google Scholar] [CrossRef]
- Ahmed, I.; Idris, A.; Noordin, M.Y.; Rajput, R. High performance ultrafiltration membranes prepared by the application of modified microwave irradiation technique. Ind. Eng. Chem. Res. 2011, 50, 2272–2283. [Google Scholar] [CrossRef]
- Venault, A.; Zhou, R.-J.; Galeta, T.A.; Chang, Y. Engineering sterilization-resistant and fouling-resistant porous membranes by the vapor-induced phase separation process using a sulfobetaine methacrylamide amphiphilic derivative. J. Membr. Sci. 2022, 658, 120760. [Google Scholar] [CrossRef]
- Sato, K.; Kobayashi, S.; Kusakari, M.; Watahiki, S.; Oikawa, M.; Hoshiba, T.; Tanaka, M. The Relationship Between Water Structure and Blood Compatibility in Poly (2-methoxyethyl Acrylate)(PMEA) Analogues. Macromol. Biosci. 2015, 15, 1296–1303. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Wakui, M.; Iwata, Y.; Tanaka, M. Poly (ω-methoxyalkyl acrylate) s: Nonthrombogenic polymer family with tunable protein adsorption. Biomacromolecules 2017, 18, 4214–4223. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, K.; Wang, K.; Xie, Z.; Ladewig, B.; Wang, H. Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J. Membr. Sci. 2012, 423, 362–370. [Google Scholar] [CrossRef]
- Lalani, R.; Liu, L. Synthesis, characterization, and electrospinning of zwitterionic poly (sulfobetaine methacrylate). Polymer 2011, 52, 5344–5354. [Google Scholar] [CrossRef]
- Saadati, S.; Westphalen, H.; Eduok, U.; Abdelrasoul, A.; Shoker, A.; Choi, P.; Doan, H.; Ein-Mozaffari, F.; Zhu, N. Biocompatibility enhancement of hemodialysis membranes using a novel zwitterionic copolymer: Experimental, in situ synchrotron imaging, molecular docking, and clinical inflammatory biomarkers investigations. Mater. Sci. Eng. C 2020, 117, 111301. [Google Scholar] [CrossRef]
- Mayo, S.L.; Olafson, B.D.; Goddard, W.A. DREIDING: A generic force field for molecular simulations. J. Phys. Chem. 1990, 94, 8897–8909. [Google Scholar] [CrossRef]
- Mollahosseini, A.; Min Lee, K.; Abdelrasoul, A.; Doan, H.; Zhu, N. Innovative In-situ Investigations Using Synchrotron-based Micro Tomography and Molecular Dynamics Simulation for Fouling Assessment in Ceramic Membranes for Dairy and Food Industry. Int. J. Appl. Ceram. Technol. 2021, 18, 2143–2157. [Google Scholar] [CrossRef]
- Ashkezari, A.Z.; Jolfaei, N.A.; Jolfaei, N.A.; Hekmatifar, M.; Toghraie, D.; Sabetvand, R.; Rostami, S. Calculation of the thermal conductivity of human serum albumin (HSA) with equilibrium/non-equilibrium molecular dynamics approaches. Comput. Methods Programs Biomed. 2020, 188, 105256. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, A.; Warchomicka, F.; Sommitsch, C.; Zamanian, A. Investigation of the oxidation mechanism of dopamine functionalization in an AZ31 magnesium alloy for biomedical applications. Coatings 2019, 9, 584. [Google Scholar] [CrossRef]
- Karimipour, A.; Karimipour, A.; Jolfaei, N.A.; Hekmatifar, M.; Toghraie, D.; Sabetvand, R.; Rostami, S. Prediction of the interaction between HIV viruses and human serum albumin (HSA) molecules using an equilibrium dynamics simulation program for application in bio medical science. J. Mol. Liq. 2020, 318, 113989. [Google Scholar] [CrossRef]
- Ibrahim, M.; Saeed, T.; Hekmatifar, M.; Sabetvand, R.; Chu, Y.-M.; Toghraie, D. Investigation of dynamical behavior of 3LPT protein-water molecules interactions in atomic structures using molecular dynamics simulation. J. Mol. Liq. 2021, 329, 115615. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; In’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D. LAMMPS-A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2021, 271, 108171. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef]
- Mieda, S. Analysis of the Interaction between a Protein and Polymer Membranes Using Steered Molecular Dynamics Simulation to Interpret the Fouling Behavior. Bull. Chem. Soc. Jpn. 2020, 93, 1443–1448. [Google Scholar] [CrossRef]
- Abdelrasoul, A.; Westphalen, H.; Saadati, S.; Shoker, A. Hemodialysis biocompatibility mathematical models to predict the inflammatory biomarkers released in dialysis patients based on hemodialysis membrane characteristics and clinical practices. Sci. Rep. 2021, 11, 23080. [Google Scholar] [CrossRef]
- Westphalen, H.; Saadati, S.; Eduok, U.; Abdelrasoul, A.; Shoker, A.; Choi, P.; Doan, H.; Ein-Mozaffari, F. Case studies of clinical hemodialysis membranes: Influences of membrane morphology and biocompatibility on uremic blood-membrane interactions and inflammatory biomarkers. Sci. Rep. 2020, 10, 14808. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Fan, L.; Yang, Z.; Zhang, R.; Liu, Y.-N.; He, M.; Su, Y.; Jiang, Z. Loose nanofiltration membrane for dye/salt separation through interfacial polymerization with in-situ generated TiO2 nanoparticles. Appl. Surf. Sci. 2017, 410, 494–504. [Google Scholar] [CrossRef]
- Jo, Y.J.; Choi, E.Y.; Kim, S.W.; Kim, C. Fabrication and characterization of a novel polyethersulfone/aminated polyethersulfone ultrafiltration membrane assembled with zinc oxide nanoparticles. Polymer 2016, 87, 290–299. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, M.; He, C. A zwitterionic polymer/PES membrane for enhanced antifouling performance and promoting hemocompatibility. J. Membr. Sci. 2020, 606, 118119. [Google Scholar] [CrossRef]
- Weng, X.-D.; Bao, X.-J.; Jiang, H.-D.; Chen, L.; Ji, Y.-L.; An, Q.-F.; Gao, C.-J. pH-responsive nanofiltration membranes containing carboxybetaine with tunable ion selectivity for charge-based separations. J. Membr. Sci. 2016, 520, 294–302. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Ahmadipouya, S.; Molavi, H.; Arjmand, M. Amino-silane-grafted NH 2-MIL-53 (Al)/polyethersulfone mixed matrix membranes for CO2/CH4 separation. Dalton Trans. 2019, 48, 13555–13566. [Google Scholar] [CrossRef]
- Xiang, T.; Yue, W.-W.; Wang, R.; Liang, S.; Sun, S.-D.; Zhao, C.-S. Surface hydrophilic modification of polyethersulfone membranes by surface-initiated ATRP with enhanced blood compatibility. Colloids Surf. B Biointerfaces 2013, 110, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.-W.; Lim, Y.-D.; Lee, S.-H.; Jeong, Y.-G.; Hong, T.-W.; Kim, W.-G. Preparation and characterization of sulfonated amine-poly (ether sulfone) s for proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2010, 35, 13088–13095. [Google Scholar] [CrossRef]
- Lingegowda, D.C.; Kumar, J.K.; Prasad, A.D.; Zarei, M.; Gopal, S. FTIR spectroscopic studies on Cleome gynandra–comparative analysis of functional group before and after extraction. Rom. J. Biophys. 2012, 22, 137–143. [Google Scholar]
- Al-Shaeli, M.; Smith, S.J.; Shamsaei, E.; Wang, H.; Zhang, K.; Ladewig, B.P. Highly fouling-resistant brominated poly (phenylene oxide) membranes using surface grafted diethylenetriamine. RSC Adv. 2017, 7, 37324–37330. [Google Scholar] [CrossRef]
- Shafi, H.Z.; Khan, Z.; Yang, R.; Gleason, K.K. Surface modification of reverse osmosis membranes with zwitterionic coating for improved resistance to fouling. Desalination 2015, 362, 93–103. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, S.; Jiang, S. Dual-functional biomimetic materials: Nonfouling poly (carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 2006, 7, 3311–3315. [Google Scholar] [CrossRef] [PubMed]
- Salimi, P.; Aroujalian, A.; Iranshahi, D. Graft copolymerization of zwitterionic monomer on the polyethersulfone membrane surface by corona air plasma for separation of oily wastewater. Sep. Purif. Technol. 2021, 258, 117939. [Google Scholar] [CrossRef]
- Semak, V.; Eichhorn, T.; Weiss, R.; Weber, V. Polyzwitterionic Coating of Porous Adsorbents for Therapeutic Apheresis. J. Funct. Biomater. 2022, 13, 216. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, L.; Zhou, J.; Ye, L.; Hu, H.; Luo, Z.; Zhou, L. Surface modification of PVA hydrogel membranes with carboxybetaine methacrylate via PET-RAFT for anti-fouling. Polymer 2019, 162, 80–90. [Google Scholar] [CrossRef]
- Yuan, J.; Lin, S.; Shen, J. Enhanced blood compatibility of polyurethane functionalized with sulfobetaine. Colloids Surf. B Biointerfaces 2008, 66, 90–95. [Google Scholar] [CrossRef]
- Zhao, Y.-H.; Wee, K.-H.; Bai, R. Highly hydrophilic and low-protein-fouling polypropylene membrane prepared by surface modification with sulfobetaine-based zwitterionic polymer through a combined surface polymerization method. J. Membr. Sci. 2010, 362, 326–333. [Google Scholar] [CrossRef]
- Kitano, H. Characterization of polymer materials based on structure analyses of vicinal water. Polym. J. 2016, 48, 15–24. [Google Scholar] [CrossRef]
- Ichikawa, K.; Mori, T.; Kitano, H.; Fukuda, M.; Mochizuki, A.; Tanaka, M. Fourier transform infrared study on the sorption of water to various kinds of polymer thin films. J. Polym. Sci. Part B Polym. Phys. 2001, 39, 2175–2182. [Google Scholar] [CrossRef]
- Kitano, H.; Nagaoka, K.; Tada, S.; Gemmei-Ide, M.; Tanaka, M. Structure of Water Incorporated in Amphoteric Polymer Thin Films as Revealed by FT-IR Spectroscopy. Macromol. Biosci. 2008, 8, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Kitano, H.; Ichikawa, K.; Fukuda, M.; Mochizuki, A.; Tanaka, M. The Structure of Water Sorbed to Polymethoxyethylacrylate Film as Examined by FT–IR Spectroscopy. J. Colloid Interface Sci. 2001, 242, 133–140. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Wang, P.; Zheng, Q.; Li, J. The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. J. Membr. Sci. 2007, 288, 231–238. [Google Scholar] [CrossRef]
- Gao, A.; Liu, F.; Xue, L. Preparation and evaluation of heparin-immobilized poly (lactic acid)(PLA) membrane for hemodialysis. J. Membr. Sci. 2014, 452, 390–399. [Google Scholar] [CrossRef]
- Umezu, M.; Yamada, T.; Fujimasu, H.; Fujimoto, T.; Ranawake, M.; Nogawa, A.; Kijima, T. Effects of surface roughness on mechanical hemolysis. Artif. Organs 1996, 20, 575–578. [Google Scholar] [CrossRef] [PubMed]
- Ekdahl, K.N.; Soveri, I.; Hilborn, J.; Fellström, B.; Nilsson, B. Cardiovascular disease in haemodialysis: Role of the intravascular innate immune system. Nat. Rev. Nephrol. 2017, 13, 285–296. [Google Scholar] [CrossRef]
- Mehrparvar, A.; Rahimpour, A.; Jahanshahi, M. Modified ultrafiltration membranes for humic acid removal. J. Taiwan Inst. Chem. Eng. 2014, 45, 275–282. [Google Scholar] [CrossRef]
- Rahimpour, A.; Madaeni, S.S. Improvement of performance and surface properties of nano-porous polyethersulfone (PES) membrane using hydrophilic monomers as additives in the casting solution. J. Membr. Sci. 2010, 360, 371–379. [Google Scholar] [CrossRef]
- Pertosa, G.; Tarantino, E.A.; Gesualdo, L.; Montinaro, V.; Schena, F.P. C5b-9 generation and cytokine production in hemodialyzed patients. Kidney Int. Suppl. 1993, 41, pS-221. [Google Scholar]
- Pertosa, G.; Grandaliano, G.; Gesualdo, L.; Schena, F.P. Clinical relevance of cytokine production in hemodialysis. Kidney Int. 2000, 58, S104–S111. [Google Scholar] [CrossRef] [PubMed]
- Pertosa, G.; Gesualdo, L.; Bottalico, D.; Schena, F. Endotoxins modulate chronically tumour necrosis factor α and interleukin 6 release by uraemic monocytes. Nephrol. Dial. Transplant. 1995, 10, 328–333. [Google Scholar] [PubMed]
- Varela, M.P.; Kimmel, P.L.; Phillips, T.M.; Mishkin, G.J.; Lew, S.Q.; Bosch, J.P. Biocompatibility of hemodialysis membranes: Interrelations between plasma complement and cytokine levels. Blood Purif. 2001, 19, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Hörl, W.H. Hemodialysis membranes: Interleukins, biocompatibility, and middle molecules. J. Am. Soc. Nephrol. 2002, 13, S62–S71. [Google Scholar] [PubMed]
- Rahmati, M.; Mozafari, M. Protein adsorption on polymers. Mater. Today Commun. 2018, 17, 527–540. [Google Scholar] [CrossRef]
- Whitford, D. Protein expression, purification and characterization. In Proteins Structure and Function; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2005; Volume 314. [Google Scholar]
- Schaller, J.; Gerber, S.; Kaempfer, U.; Lejon, S.; Trachsel, C. Human Blood Plasma Proteins: Structure and Function; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Chenoweth, D.E. The properties of human C5a anaphylatoxin. The significance of C5a formation during hemodialysis. Contrib. Nephrol. 1987, 59, 51–71. [Google Scholar]
- Kourtzelis, I.; Markiewski, M.M.; Doumas, M.; Rafail, S.; Kambas, K.; Mitroulis, I.; Panagoutsos, S.; Passadakis, P.; Vargemezis, V.; Magotti, P. Complement anaphylatoxin C5a contributes to hemodialysis-associated thrombosis. Blood J. Am. Soc. Hematol. 2010, 116, 631–639. [Google Scholar]
- Abdelrasoul, A.; Shoker, A. Induced hemocompatibility of polyethersulfone (PES) hemodialysis membrane using polyvinylpyrrolidone: Investigation on human serum fibrinogen adsorption and inflammatory biomarkers released. Chem. Eng. Res. Des. 2022, 177, 615–624. [Google Scholar] [CrossRef]
- Sioulis, A.; Malindretos, P.; Makedou, A.; Makris, P.; Grekas, D. Coagulation factors as biological risk markers of endothelial dysfunction. Association with the thrombotic episodes of chronic hemodialysis patients. Hippokratia 2009, 13, 237. [Google Scholar] [PubMed]
- ABDELRASOUL, A.; Shoker, A. POS-600 Investigations on the Impact of Hemodialysis Clinical Practices on Human Plasma Proteins Loss and von Willebrand factor. Kidney Int. Rep. 2022, 7, S258. [Google Scholar] [CrossRef]
- Lenting, P.J.; Christophe, O.D.; Denis, C.V. von Willebrand factor biosynthesis, secretion, and clearance: Connecting the far ends. Blood J. Am. Soc. Hematol. 2015, 125, 2019–2028. [Google Scholar] [CrossRef] [PubMed]
- Péquériaux, N.C.; Fijnheer, R.; Gemen, E.F.; Barendrecht, A.D.; Dekker, F.W.; Krediet, R.T.; Beutler, J.J.; Boeschoten, E.W.; Roest, M. Plasma concentration of von Willebrand factor predicts mortality in patients on chronic renal replacement therapy. Nephrol. Dial. Transplant. 2012, 27, 2452–2457. [Google Scholar] [CrossRef] [PubMed]
- Kizhakkedathu, J.N.; Conway, E.M. Biomaterial and cellular implants: Foreign surfaces where immunity and coagulation meet. Blood J. Am. Soc. Hematol. 2022, 139, 1987–1998. [Google Scholar] [CrossRef] [PubMed]
- Lubbers, R.; Van Essen, M.; Van Kooten, C.; Trouw, L. Production of complement components by cells of the immune system. Clin. Exp. Immunol. 2017, 188, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Poppelaars, F.; Gaya da Costa, M.; Berger, S.P.; Assa, S.; Meter-Arkema, A.H.; Daha, M.R.; van Son, W.J.; Franssen, C.F.; Seelen, M.A. Strong predictive value of mannose-binding lectin levels for cardiovascular risk of hemodialysis patients. J. Transl. Med. 2016, 14, 236. [Google Scholar] [CrossRef] [PubMed]
- Poppelaars, F.; Gaya da Costa, M.; Faria, B.; Berger, S.P.; Assa, S.; Daha, M.R.; Medina Pestana, J.O.; Van Son, W.J.; Franssen, C.F.; Seelen, M.A. Intradialytic complement activation precedes the development of cardiovascular events in hemodialysis patients. Front. Immunol. 2018, 9, 2070. [Google Scholar] [CrossRef]
- Schmaldienst, S.; Hörl, W.H. Degranulation of polymorphonuclear leukocytes by dialysis membranes—The mystery clears up? Nephrol. Dial. Transplant. 2000, 15, 1909–1910. [Google Scholar] [CrossRef]
Bonds | r0 (Å) |
---|---|
C-C | 1.53 |
N-N | 1.022 |
O-S | 1.69 |
C-H | 0.98 |
N-C | 1.46 |
O-C | 1.42 |
S-C | 1.8 |
N-H | 1.02 |
O-H | 0.98 |
Central Atom | Angle θ0 (Degree) |
---|---|
Carbon | 109.47 |
Hydrogen | 180 |
Nitrogen | 106.7 |
Sulfur | 92.1 |
Oxygen | 104.51 |
Atom | ε (kcal/mol) | σ (Å) |
---|---|---|
C | 0.0238 | 3.473 |
H | 0.0038 | 2.846 |
N | 0.0194 | 3.263 |
O | 0.0239 | 3.033 |
S | 0.0860 | 3.590 |
Name | Structure | |
---|---|---|
1 | Polyethersulfone (PES) | |
2 | Polyethersulfone-carboxybetaine (PES-CB) | |
3 | Polyethersulfone-sulfobetaine (PES-SB) |
System | Simulation | Number of Polymers | Number of Water Molecules | Number of Overall Atoms in the Simulation |
---|---|---|---|---|
PES | Hydrogen bonding | 1 | 60 | 205 |
PES-CB | Hydrogen bonding | 1 | 60 | 223 |
PES-SB | Hydrogen bonding | 1 | 60 | 230 |
PES | Mobility | 10 | 200 | 850 |
PES-CB | Mobility | 10 | 200 | 1030 |
PES-SB | Mobility | 10 | 200 | 1100 |
Sample Name | Carbon (%) | Oxygen (%) | Nitrogen (%) | Sulfur (%) |
---|---|---|---|---|
PES | 72.78 | 20.41 | 0.92 | 5.90 |
PES-NH2 | 75.27 | 15.26 | 4.26 | 5.21 |
PES-SB | 73.46 | 15.19 | 4.74 | 6.61 |
PES-CB | 75.39 | 16.54 | 3.18 | 4.90 |
Membrane | GA (mg) | STD | Error (%) |
---|---|---|---|
PES-SB | 0.27 | 0.12 | ±0.07 |
PES-CB | 0.23 | 0.15 | ±0.09 |
Membrane | EWC (%) | STD | Error (%) |
---|---|---|---|
PES | 43.13 | 2.98 | ±1.72 |
PES-CB | 49.81 | 3.81 | ±2.2 |
PES-SB | 52.27 | 5.22 | ±3.01 |
Membrane | Non-Freezable Water (%) |
---|---|
PES | 2.83 |
PES-CB | 12.85 |
PES-SB | 16.28 |
Membranes | BET-Specific Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter Range (nm) |
PES | 78.10 | 0.06 | More than 50 |
PES-CB | 93.50 | 0.07 | 2–50 |
PES-SB | 89.60 | 0.16 | 2–50 |
System | Energy of Hydrogen Bonding (kcal/mol) | Number of Hydrogen Bonding | E/n (kcal/mol per Bond) |
---|---|---|---|
PES | −14.37 | 3 | −4.79 |
PES-CB | −1.45 | 11 | −0.13182 |
PES-SB | −0.03 | 2 | −0.015 |
System | Mobility Value (Unitless) | RMV | RMV (%) |
---|---|---|---|
PES | 6.96 × 10−6 | 1.00 × 100 | 100.00 |
PES-CB | 5.74 × 10−6 | 8.25 × 10−1 | 82.47 |
PES-SB | 5.49 × 10−6 | 7.89 × 10−1 | 78.88 |
Membrane | C5a [pg/mL] | IL-1β [pg/mL] | IL-1α [pg/mL] | IL-6 [pg/mL] | vWF [pg/mL] | Properdin [pg/mL] | C5b-9 [pg/mL] |
---|---|---|---|---|---|---|---|
PES | 139,501.51 | 4.86 | 5.28 | 12.65 | 496.92 | 5,054,008.33 | 3805.92 |
CB | 150,640.66 | 3.50 | 5.65 | 13.10 | 421.50 | 3,829,791.67 | 2722.32 |
CB-L | 158,791.63 | 4.95 | 6.33 | 12.64 | 446.17 | 3,823,391.67 | 2779.05 |
SB | 158,265.52 | 2.73 | 4.87 | 13.33 | 580.97 | 4,237,863.89 | 2633.90 |
SB-L | 150,828.66 | 4.95 | 6.34 | 12.64 | 277.32 | 5,000,008.33 | 3301.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollahosseini, A.; Bahig, J.; Shoker, A.; Abdelrasoul, A. Aminolysis-Based Zwitterionic Immobilization on Polyethersulfone Membranes for Enhanced Hemocompatibility: Experimental, Computational, and Ex Vivo Investigations. Biomimetics 2024, 9, 320. https://doi.org/10.3390/biomimetics9060320
Mollahosseini A, Bahig J, Shoker A, Abdelrasoul A. Aminolysis-Based Zwitterionic Immobilization on Polyethersulfone Membranes for Enhanced Hemocompatibility: Experimental, Computational, and Ex Vivo Investigations. Biomimetics. 2024; 9(6):320. https://doi.org/10.3390/biomimetics9060320
Chicago/Turabian StyleMollahosseini, Arash, Jumanah Bahig, Ahmed Shoker, and Amira Abdelrasoul. 2024. "Aminolysis-Based Zwitterionic Immobilization on Polyethersulfone Membranes for Enhanced Hemocompatibility: Experimental, Computational, and Ex Vivo Investigations" Biomimetics 9, no. 6: 320. https://doi.org/10.3390/biomimetics9060320
APA StyleMollahosseini, A., Bahig, J., Shoker, A., & Abdelrasoul, A. (2024). Aminolysis-Based Zwitterionic Immobilization on Polyethersulfone Membranes for Enhanced Hemocompatibility: Experimental, Computational, and Ex Vivo Investigations. Biomimetics, 9(6), 320. https://doi.org/10.3390/biomimetics9060320