Neuromorphic Sensor Based on Force-Sensing Resistors
Abstract
:1. Introduction
1.1. Force-Sensing Resistors
1.2. Compression Load Cells
1.3. SMA Actuators
1.4. The Goal of the Current Research
2. Materials and Methods
2.1. Electronic Neuron
2.2. The Neuromorphic Sensor
2.3. The Structure of the SNN
2.4. Experimental Setup
3. Results
3.1. Sensors Response with the Load Mass
3.2. The Control of the Robotic Finger
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CLC | Compression load cell |
FSR | Force-sensing resistor |
NS | Neuromorphic sensor |
SMA | Shape memory alloy |
SNN | Spiking neural network |
SN | Spiking neuron |
SG | Strain gauge |
SOMA | Neuron’s Soma |
SYN | Synapse |
References
- Wunderlich, T.; Kungl, A.F.; Müller, E.; Hartel, A.; Stradmann, Y.; Aamir, S.A.; Grübl, A.; Heimbrecht, A.; Schreiber, K.; Stöckel, D.; et al. Demonstrating Advantages of Neuromorphic Computation: A Pilot Study. Front. Neurosci. 2019, 13, 260. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; He, Y.; Zhang, C.; Wan, Q. Neuromorphic Devices for Bionic Sensing and Perception. Front. Neurosci. 2021, 15, 690950. [Google Scholar] [CrossRef] [PubMed]
- Nagahama, S.; Migita, K.; Sugano, S. Soft Magnetic Powdery Sensor for Tactile Sensing. Sensors 2019, 19, 2677. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ye, J.; Lin, Z.; Huang, S.; Wang, H.; Wu, H. A piezoresistive tactile sensor for a large area employing neural network. Sensors 2019, 19, 27. [Google Scholar] [CrossRef] [PubMed]
- Merker, L.; Fischer Calderon, S.J.; Scharff, M.; Alencastre Miranda, J.H.; Behn, C. Effects of multi-point contacts during object contour scanning using a biologically-inspired tactile sensor. Sensors 2020, 20, 2077. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Shen, H.; Huang, D.; Di, C.; Zhu, D. A dual-organic-transistor-based tactile-perception system with signal-processing functionality. Adv. Mater. 2017, 29, 1606088. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.; Kim, J.S.; Yoo, Y.; Choi, Y.; Jung, S.J.; Jang, D.; Lee, G.; Song, K.I.; Nam, K.S.; Youn, I.; et al. An artificial neural tactile sensing system. Nat. Electron. 2021, 4, 429–438. [Google Scholar] [CrossRef]
- Yogeswaran, N.; Navaraj, W.T.; Gupta, S.; Liu, F.; Vinciguerra, V.; Lorenzelli, L.; Dahiya, R. Piezoelectric graphene field effect transistor pressure sensors for tactile sensing. Appl. Phys. Lett. 2018, 113, 014102. [Google Scholar] [CrossRef]
- Birkoben, T.; Winterfeld, H.; Fichtner, S.; Petraru, A.; Kohlstedt, H. A spiking and adapting tactile sensor for neuromorphic applications. Sci. Rep. 2020, 10, 17260. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Liu, Q.; Zhao, X.; Wei, J.; Cao, R.; Yao, Z.; Zhu, X.; Zhang, F.; Lv, H.; et al. An artificial neuron based on a threshold switching memristor. IEEE Electron Dev. Lett. 2018, 39, 308–311. [Google Scholar] [CrossRef]
- Li, Y.; Su, K.; Chen, H.; Zou, X.; Wang, C.; Man, H.; Liu, K.; Xi, X.; Li, T. Research progress of neural synapses based on memristors. Electronics 2023, 12, 3298. [Google Scholar] [CrossRef]
- Camuñas-Mesa, L.A.; Linares-Barranco, B.; Serrano-Gotarredona, T. Neuromorphic spiking neural networks and their Memristor-CMOS hardware implementations. Materials 2019, 12, 2745. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhang, X.; Wang, M.; Wang, R.; Chen, P.; Cheng, L.; Liu, Q. An artificial spiking nociceptor integrating pressure sensors and memristors. IEEE Electron Dev. Lett. 2022, 43, 962–965. [Google Scholar] [CrossRef]
- Zhang, X.; Zhuo, Y.; Luo, Q.; Wu, Z.; Midya, R.; Wang, Z.; Song, W.; Wang, R.; Upadhyay, N.K.; Fang, Y.; et al. An artificial spiking afferent nerve based on Mott memristors for neurorobotics. Nat. Commun. 2020, 11, 51. [Google Scholar] [CrossRef] [PubMed]
- Yaniger, S.I. Force Sensing Resistors: A Review of the Technology; Electro International: New York, NY, USA, 1991; pp. 666–668. [Google Scholar]
- Paredes-Madrid, L.; Palacio, C.A.; Matute, A.; Parra Vargas, C.A. Underlying physics of conductive polymer composites and force sensing resistors (FSRs) under static loading conditions. Sensors 2017, 17, 2108. [Google Scholar] [CrossRef] [PubMed]
- Wang, L. “Piezoresistive sensor based on conductive polymer composite with transverse electrodes. IEEE Trans. Electron. Dev. 2015, 62, 1299–1305. [Google Scholar] [CrossRef]
- Flórez, J.A.; Velásquez, A. Calibration of Force Sensing Resistors (fsr) for Static and Dynamic Applications. In Proceedings of the 2010 IEEE Andescon, Bogota, Colombia, 15–17 September 2010; pp. 1–6. [Google Scholar]
- Paredes-Madrid, L.; Matute, A.; Bareño, J.O.; Parra Vargas, C.A.; Gutierrez Velásquez, E.I. Underlying physics of conductive polymer composites and force sensing resistors (FSRs). A study on creep response and dynamic loading. Materials 2017, 10, 1334. [Google Scholar] [CrossRef] [PubMed]
- Castellini, C.; Ravindra, V. A wearable low-cost device based upon force-sensing resistors to detect single-finger forces. In Proceedings of the 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Sao Paulo, Brazil, 12–15 August 2014; pp. 199–203. [Google Scholar]
- Dontha, B.; Swearingen, K.; Swearingen, S.; Thrane, S.E.; Kiourti, A. Wearable sensors based on force-sensitive resistors for touch-based collaborative digital gaming. Sensors 2022, 22, 342. [Google Scholar] [CrossRef]
- Swanson, E.C.; Weathersby, E.J.; Cagle, J.C.; Sanders, J.E. Evaluation of force sensing resistors for the measurement of interface pressures in lower limb prosthetics. J. Biomech. Eng. 2019, 141, 1010091–10100913. [Google Scholar] [CrossRef]
- Haghi, M.; Asadov, A.; Boiko, A.; Ortega, J.A.; Martínez Madrid, N.; Seepold, R. Validating force sensitive resistor strip sensors for cardiorespiratory measurement during sleep: A preliminary study. Sensors 2023, 23, 3973. [Google Scholar] [CrossRef]
- Avrum, H.; Wanderley, M. Evaluation of commercial force-sensing resistors. In Proceedings of the International Conference on New Interfaces for Musical Expression, Paris, France, 4–8 June 2006. [Google Scholar]
- Choi, H.S.; Lee, C.H.; Shim, M.; Han, J.I.; Baek, Y.S. Design of an artificial neural network algorithm for a low-cost insole sensor to estimate the ground reaction force (GRF) and calibrate the center of pressure (CoP). Sensors 2018, 18, 4349. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.H.; Wang, P.N.; Yeh, J.P.; Wu, B.H. Design and analysis of compression low profile load cells. In Proceedings of the 2017 2nd International Conference on Advances in Materials, Mechatronics and Civil Engineering, Guangzhou, China, 19–20 January 2017; pp. 261–264. [Google Scholar]
- Muller, I.; de Brito, R.M.; Pereira, C.E.; Brusamarello, V. Load cells in force sensing analysis—Theory and a novel application. IEEE Instrum. Meas. Mag. 2010, 13, 15–19. [Google Scholar] [CrossRef]
- Moallem, M.; Tabrizi, V.A. Tracking control of an antagonistic shape memory alloy actuator pair. IEEE Trans. Cont. Syst. 2009, 17, 184–190. [Google Scholar] [CrossRef]
- Hulea, M.; Uleru, G.I.; Caruntu, C.F. Adaptive SNN for Anthropomorphic Finger Control. Sensors 2021, 21, 2730. [Google Scholar] [CrossRef] [PubMed]
- Uleru, G.-I.; Hulea, M.; Burlacu, A. Bio-Inspired Control System for Fingers Actuated by Multiple SMA Actuators. Biomimetics 2022, 7, 62. [Google Scholar] [CrossRef]
- Sadun, A.S.; Jalani, J.; Sukor, J.A. Force sensing resistor (FSR): A brief overview and the low-cost sensor for active compliance control. In Proceedings Volume 10011, First International Workshop on Pattern Recognition; SPIE: Tokyo, Japan, 2016; p. 1001112. [Google Scholar]
- Jiang, X.; Merhi, L.-K.; Menon, C. Force exertion affects grasp classification using force myography. IEEE Trans. Hum. Mach. Syst. 2018, 48, 219–226. [Google Scholar] [CrossRef]
- Grillner, S. The Motor Infrastructure from ion channels to neuronal networks. Nat. Rev. Neurosci. 2003, 4, 573–586. [Google Scholar] [CrossRef]
- Asghar, M.S.; Arslan, S.; Kim, H.A. Low-power spiking neural network chip based on a compact LIF neuron and binary exponential charge injector synapse circuits. Sensors 2021, 21, 4462. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barleanu, A.; Hulea, M. Neuromorphic Sensor Based on Force-Sensing Resistors. Biomimetics 2024, 9, 326. https://doi.org/10.3390/biomimetics9060326
Barleanu A, Hulea M. Neuromorphic Sensor Based on Force-Sensing Resistors. Biomimetics. 2024; 9(6):326. https://doi.org/10.3390/biomimetics9060326
Chicago/Turabian StyleBarleanu, Alexandru, and Mircea Hulea. 2024. "Neuromorphic Sensor Based on Force-Sensing Resistors" Biomimetics 9, no. 6: 326. https://doi.org/10.3390/biomimetics9060326
APA StyleBarleanu, A., & Hulea, M. (2024). Neuromorphic Sensor Based on Force-Sensing Resistors. Biomimetics, 9(6), 326. https://doi.org/10.3390/biomimetics9060326