Innovative Design of a 3D Printed Esophageal Stent Inspired by Nature: Mitigating Migration Challenges in Palliative Esophageal Cancer Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.1.1. The Patient-Specific Esophageal Stent
2.1.2. Suction Cup
2.1.3. The New Bioinspired Esophageal Stent
2.2. Fabrication
2.3. Evaluation
2.3.1. Compression–Recovery Test
2.3.2. Self-Expansion Test
2.3.3. Anti-Migration Force Test and Finite Element Analysis
2.3.4. Tensile Tests
3. Results
3.1. Compression–Recovery Test Results
3.2. Self-Expansion Test Results
3.3. Anti-Migration Test Results Assisted by FEA
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tanaka, Y.; Yoshida, K.; Suetsugu, T.; Imai, T.; Matsuhashi, N.; Yamaguchi, K. Recent Advancements in Esophageal Cancer Treatment in Japan. Ann. Gastroenterol. Surg. 2018, 2, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Sjoquist, K.M.; Burmeister, B.H.; Smithers, B.M.; Zalcberg, J.R.; Simes, R.J.; Barbour, A.; Gebski, V. Survival after Neoadjuvant Chemotherapy or Chemoradiotherapy for Resectable Oesophageal Carcinoma: An Updated Meta-Analysis. Lancet Oncol. 2011, 12, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Bosetti, C.; Levi, F.; Ferlay, J.; Garavello, W.; Lucchini, F.; Bertuccio, P.; Negri, E.; Vecchia, C.L. Trends in Oesophageal Cancer Incidence and Mortality in Europe. Int. J. Cancer 2007, 122, 1118–1129. [Google Scholar] [CrossRef] [PubMed]
- Mergener, K.; Kozarek, R.A. Stenting of the Gastrointestinal Tract. Dig. Dis. 2002, 20, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, B.D.; Siersema, P.D. Esophageal Stenting in Clinical Practice: An Overview. Curr. Treat. Options Gastroenterol. 2018, 16, 260–273. [Google Scholar] [CrossRef] [PubMed]
- Spaander, M.; Baron, T.; Siersema, P.; Fuccio, L.; Schumacher, B.; Escorsell, À.; Garcia-Pagán, J.-C.; Dumonceau, J.-M.; Conio, M.; de Ceglie, A.; et al. Esophageal Stenting for Benign and Malignant Disease: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline. Endoscopy 2016, 48, 939–948. [Google Scholar] [CrossRef] [PubMed]
- van Heel, N.C.M.; Haringsma, J.; Spaander, M.C.W.; Bruno, M.J.; Kuipers, E.J. Short-Term Esophageal Stenting in the Management of Benign Perforations. Am. J. Gastroenterol. 2010, 105, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Halsema, E.E. van Clinical Outcomes of Self-Expandable Stent Placement for Benign Esophageal Diseases: A Pooled Analysis of the Literature. WJGE 2015, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Galzerano, G.; Pasqui, E.; Anzaldi, M.G.; Leil, M.A.; Baldi, C.; de Donato, G. Use of Self-Expanding Nitinol Stent Constructed From 2 Layers of Tubular Braided Nitinol Wire Mesh in Complex Femoropopliteal Revascularization. J. Vasc. Surg. 2024, 79, 41. [Google Scholar] [CrossRef]
- Rioja Artal, S.; González Martínez, V.; Royo Serrando, J.; Delgado Daza, R.; Moga Donadeu, L. Results of Palliative Stenting in Malignant Superior Vena Cava Syndrome Analyzing Self-Expanding Stainless Steel and Nitinol Venous Bare Metal Stents. J. Endovasc. Ther. 2024. [Google Scholar] [CrossRef]
- Baron, T.H. Expandable Metal Stents for the Treatment of Cancerous Obstruction of the Gastrointestinal Tract. N. Engl. J. Med. 2001, 344, 1681–1687. [Google Scholar] [CrossRef] [PubMed]
- Gadzhiev, N.; Gorelov, D.; Malkhasyan, V.; Akopyan, G.; Harchelava, R.; Mazurenko, D.; Kosmala, C.; Okhunov, Z.; Petrov, S. Comparison of silicone versus polyurethane ureteral stents: A prospective controlled study. BMC Urol. 2020, 20, 10. [Google Scholar] [CrossRef] [PubMed]
- Holm, A.N.; de la Mora Levy, J.G.; Gostout, C.J.; Topazian, M.D.; Baron, T.H. Self-Expanding Plastic Stents in Treatment of Benign Esophageal Conditions. Gastrointest. Endosc. 2008, 67, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Papachristou, I.G.; Baron, T.H. Use of stents in benign and malignant esophageal disease. Rev. Gastroenterol. Disord. 2007, 7, 74–88. [Google Scholar] [PubMed]
- Barthel, J.S.; Kelley, S.T.; Klapman, J.B. Management of Persistent Gastroesophageal Anastomotic Strictures with Removable Self-Expandable Polyester Silicon-Covered (Polyflex) Stents: An Alternative to Serial Dilation. Gastrointest. Endosc. 2008, 67, 546–552. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Hsu, Y.-I.; Uyama, H. Design of novel poly(L-lactide)-based shape memory multiblock copolymers for bio-degradable esophageal stent application. Appl. Mater. Today 2024, 36, 102057. [Google Scholar] [CrossRef]
- Morante-Valverde, R.; Usategui, A.; López-Díaz, M.; Grau, M.; Luna-Paredes, M.; de Atauri, Á.G.-D.; Pablos, J.L.; Antón-Pacheco, J.L. Biodegradable polydioxanone stents: Histologic and structural effects in an experimental model of tracheal stenosis. Eur. J. Cardio-Thorac. Surg. 2024, 65, ezae095. [Google Scholar] [CrossRef]
- Saito, Y. Usefulness of Biodegradable Stents Constructed of Poly-l-Lactic Acid Monofilaments in Patients with Benign Esophageal Stenosis. WJG 2007, 13, 3977. [Google Scholar] [CrossRef]
- Mochizuki, Y.; Saito, Y.; Tanaka, T.; Nitta, N.; Yamada, H.; Tsujikawa, T.; Murata, K.; Fujiyama, Y.; Andoh, A. Endoscopic Submucosal Dissection Combined with the Placement of Biodegradable Stents for Recurrent Esophageal Cancer After Chemoradiotherapy. J. Gastrointest. Cancer 2011, 43, 324–328. [Google Scholar] [CrossRef]
- Tanaka, T.; Takahashi, M.; Nitta, N.; Furukawa, A.; Andoh, A.; Saito, Y.; Fujiyama, Y.; Murata, K. Newly Developed Biodegradable Stents for Benign Gastrointestinal Tract Stenoses: A Preliminary Clinical Trial. Digestion 2006, 74, 199–205. [Google Scholar] [CrossRef]
- Stivaros, S.M.; Williams, L.R.; Senger, C.; Wilbraham, L.; Laasch, H.-U. Woven Polydioxanone Biodegradable Stents: A New Treatment Option for Benign and Malignant Oesophageal Strictures. Eur. Radiol. 2009, 20, 1069–1072. [Google Scholar] [CrossRef] [PubMed]
- Ham, Y.H.; Kim, G.H. Plastic and Biodegradable Stents for Complex and Refractory Benign Esophageal Strictures. Clin. Endosc. 2014, 47, 295. [Google Scholar] [CrossRef] [PubMed]
- Enayati, M.; Eilenberg, M.; Grasl, C.; Riedl, P.; Kaun, C.; Messner, B.; Walter, I.; Liska, R.; Schima, H.; Wojta, J.; et al. Biocompatibility Assessment of a New Biodegradable Vascular Graft via In Vitro Co-culture Approaches and In Vivo Model. Ann. Biomed. Eng. 2016, 44, 3319–3334. [Google Scholar] [CrossRef] [PubMed]
- Cregut, M.; Bedas, M.; Durand, M.-J.; Thouand, G. New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process. Biotechnol. Adv. 2013, 31, 1634–1647. [Google Scholar] [CrossRef] [PubMed]
- Guerra, A.J.; Farjas, J.; Ciurana, J. Fibre Laser Cutting of Polycaprolactone Sheet for Stents Manufacturing: A Feasibility Study. Opt. Laser Technol. 2017, 95, 113–123. [Google Scholar] [CrossRef]
- Tavares, C.A.; Mariot, P.; Costa, L.L.; Schaeffer, L. Metal Injection Molding for Production of Biodegradable Implants: An Analysis of the Potential of Pure Iron for Application in Stents. Am. J. Mater. Sci. 2019, 9, 36–43. [Google Scholar] [CrossRef]
- Meszlenyi, G.; Nagy, P.; Bella, S.; Dobranszky, J. Laser Beam Cutting and Welding of Coronary Stents. In Proceedings of the International Conference Innovative Technologies for Joining Advanced Materials, Timişoara, Romania, 12–13 June 2008. [Google Scholar]
- Yang, L.; Chen, X.; Zhang, L.; Li, L.; Kang, S.; Wang, C.; Sun, W. Additive Manufacturing in Vascular Stent Fabrication. MATEC Web Conf. 2019, 253, 03003. [Google Scholar] [CrossRef]
- Gildea, T.R.; Young, B.P.; Machuzak, M.S. Application of 3D Printing for Patient-Specific Silicone Stents: 1-Year Follow-Up on 2 Patients. Respiration 2018, 96, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, B. Biomimetics: Lessons from Nature—An Overview. Philos. Trans. R. Soc. A 2009, 367, 1445–1486. [Google Scholar] [CrossRef]
- Fish, F.E. Biomimetics: Determining Engineering Opportunities from Nature. Biomim. Bioinspir. 2009, 7401, 97–107. [Google Scholar] [CrossRef]
- Pawlyn, M. Biomimicry in Architecture, 2nd ed.; RIBA Publishing: London, UK, 2019. [Google Scholar] [CrossRef]
- Zhang, G. Biomimicry in Biomedical Research. Organogenesis 2012, 8, 101–102. [Google Scholar] [CrossRef] [PubMed]
- Volstad, N.L.; Boks, C. On the Use of Biomimicry as a Useful Tool for the Industrial Designer. Sustain. Dev. 2012, 20, 189–199. [Google Scholar] [CrossRef]
- Scholz, T.; Kuchta, R.; Brabec, J. Broad Tapeworms (Diphyllobothriidae), Parasites of Wildlife and Humans: Recent Progress and Future Challenges. Int. J. Parasitol. Parasites Wildl. 2019, 9, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Rabiela, M.T.; Rivas, A.; Flisser, A. Morphological Types of Taenia Solium Cysticerci. Parasitol. Today 1989, 5, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Li, S.; Zhang, F.; Wang, S. Understanding Surface Adhesion in Nature: A Peeling Model. Adv. Sci. 2016, 3, 1500327. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Shen, W.; Lin, X.; Xie, Y.M. Mechanical Properties of Additively Manufactured Thermoplastic Polyurethane (TPU) Material Affected by Various Processing Parameters. Polymers 2020, 12, 3010. [Google Scholar] [CrossRef] [PubMed]
- Al Nakib, R.; Toncheva, A.; Fontaine, V.; Vanheuverzwijn, J.; Raquez, J.; Meyer, F. Thermoplastic Polyurethanes for Biomedical Application: A Synthetic, Mechanical, Antibacterial, and Cytotoxic Study. J. Appl. Polym. Sci. 2021, 139, 51666. [Google Scholar] [CrossRef]
- Ivorra, J.; Quiles, L.; Compañy, L.; Perez, N.J.; Boronat, T. First Approach for the Optimization and Fabrication of a Customizable Esophageal Stent Prototype by 3D Printing Technologies. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1193, 012120. [Google Scholar] [CrossRef]
- Xu, J.; Yan, R.; Wang, H.; Du, Z.; Gu, J.; Cheng, X.; Xiong, J. A novel biocompatible zwitterionic polyurethane with AIE effect for cell imaging in living cells. RSC Adv. 2018, 8, 6798–6804. [Google Scholar] [CrossRef]
- Mi, H.-Y.; Jing, X.; Napiwocki, B.N.; Hagerty, B.S.; Chen, G.; Turng, L.-S. Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering. J. Mater. Chem. B 2017, 5, 4137–4151. [Google Scholar] [CrossRef]
- ISO 527-1:2019; Plastics—Determination of Tensile Properties—Part 1: General Principles. International Organization for Standardization: Geneva, Switzerland, 2019.
- Lin, M.; Firoozi, N.; Tsai, C.-T.; Wallace, M.B.; Kang, Y. 3D-printed flexible polymer stents for potential applications in inoperable esophageal malignancies. Acta Biomater. 2019, 83, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.; Tsongas, K.; Tzetzis, D.; Antoniadis, A. Mechanical and dynamic behavior of fused filament fabrication 3D printed polyethylene terephthalate glycol reinforced with carbon fiber. Polym. Plast. Technol. Eng. 2018, 57, 1715–1725. [Google Scholar] [CrossRef]
- Tzetzis, D.; Tsongas, K.; Mansour, G. Determination of the mechanical properties of epoxy silica nanocomposites through FEA-supported evaluation of ball indentation test results. Mater. Res. 2017, 20, 1571–1578. [Google Scholar] [CrossRef]
- Mansour, M.; Tsongas, K.; Tzetzis, D. Measurement of the mechanical and dynamic properties of 3D printed polylactic acid reinforced with graphene. Polym. Technol. Mater. 2019, 58, 1234–1244. [Google Scholar] [CrossRef]
Name | Variable | Value (mm) |
---|---|---|
Shaft’s diameter | D1 | 10 |
Flare’s diameter | D2 | 16 |
Shaft’s length | L1 | 25 |
Total length | L2 | 31 |
Fillet radius | R2 | 8 |
Thickness | T | 0.4 |
Name | Variable | Value (mm) |
---|---|---|
Top diameter | D3 | 0.6 |
Base diameter | D4 | 0.3 |
Suction cup’s length | L3 | 0.8 |
Cavity’s radius | R2 | 0.45 |
Name | Variable | Value |
---|---|---|
Number of rows | N | 4 |
Center distance | H1 | 3 (mm) |
Center angle | θ | 36 (°) |
Parameter | Value |
---|---|
Nozzle | 0.2 mm |
Layer height | 0.1 mm |
Infill density | 100% |
Infill pattern | Concentric |
Printing temperature | 190 °C |
Build plate temperature | 50 °C |
Flow | 100% |
Print speed | 50 mm/s |
Fan speed | 100% |
Support placement | Everywhere |
Support Z distance | 0.1 mm |
(MPa) | (MPa) | (MPa) | (MPa) | (MPa) | |
---|---|---|---|---|---|
Muscle | 0.0174 | −0.01874 | 0.00129 | 0.01101 | −0.01323 |
Mucosa–submucosa | −0.07542 | 0.08198 | 0.11805 | −0.30022 | 0.24042 |
TPU | −0.122 | 0.035 | 1.79 | −0.112 | −0.0538 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Profitiliotis, T.; Koltsakidis, S.; Tsongas, K.; Tzetzis, D. Innovative Design of a 3D Printed Esophageal Stent Inspired by Nature: Mitigating Migration Challenges in Palliative Esophageal Cancer Therapy. Biomimetics 2024, 9, 359. https://doi.org/10.3390/biomimetics9060359
Profitiliotis T, Koltsakidis S, Tsongas K, Tzetzis D. Innovative Design of a 3D Printed Esophageal Stent Inspired by Nature: Mitigating Migration Challenges in Palliative Esophageal Cancer Therapy. Biomimetics. 2024; 9(6):359. https://doi.org/10.3390/biomimetics9060359
Chicago/Turabian StyleProfitiliotis, Thomas, Savvas Koltsakidis, Konstantinos Tsongas, and Dimitrios Tzetzis. 2024. "Innovative Design of a 3D Printed Esophageal Stent Inspired by Nature: Mitigating Migration Challenges in Palliative Esophageal Cancer Therapy" Biomimetics 9, no. 6: 359. https://doi.org/10.3390/biomimetics9060359
APA StyleProfitiliotis, T., Koltsakidis, S., Tsongas, K., & Tzetzis, D. (2024). Innovative Design of a 3D Printed Esophageal Stent Inspired by Nature: Mitigating Migration Challenges in Palliative Esophageal Cancer Therapy. Biomimetics, 9(6), 359. https://doi.org/10.3390/biomimetics9060359