A Decomposition-Based Multi-Objective Flying Foxes Optimization Algorithm and Its Applications
Abstract
:1. Introduction
- (1)
- A new, efficient algorithm is provided for solving MOPs. By introducing the flying foxes’ survival strategy with a penalty mechanism into MOEA/D, the FFO algorithm is employed for the inaugural time in addressing multi-objective optimization challenges, and MOEA/D-FFO is proposed. We also further explore the performance of MOEA/D-FFO in solving MOPs.
- (2)
- In order to make the survival strategy of the FFO algorithm more suitable for solving MOPs, three improvements are made in conjunction with the original flying foxes’ survival strategy. Firstly, the position calculation strategy of the flying fox individual is designed and implemented, where the value derived from each single objective function generated after the decomposition of the multi-objective problem is multiplied and summed with the corresponding weight vector of the flying fox individual. Second, in terms of the iterative approach, a new offspring generation mechanism is introduced. By adjusting the over-distance death mechanism in the flying foxes’ survival strategy, individuals that are too far away from the optimal solution in the population can explore other possible solutions to the MOPs, which helps to preserve the variety within the population. Thirdly, in terms of population delineation, a new population renewal mechanism is proposed. Instead of iterating all flying foxes as a whole, individual flying foxes and their corresponding neighbors are treated as a small population, thus generating multiple flying fox populations for iteration. This improvement speeds up the convergence of populations.
- (3)
- Compared to the cutting-edge multi-objective evolutionary algorithms (MOEAs), the algorithm proposed in this paper is subjected to a series of experiments on two multi-objective test suites and three real-world applications, and the experimental data illustrate its effectiveness in solving MOPs.
2. Related Work
2.1. Multi-Objective Evolutionary Algorithms
2.2. FFO Algorithm
- (1)
- Movement of Flying Foxes
- (2)
- Death and Replacement of Flying Foxes
3. The Framework of MOEA/D-FFO
3.1. Overview
3.2. Key Components of MOEA/D-FFO
- (1)
- Distance Calculation Method
- (2)
- Iteration Method
3.3. Description and Analysis of MOEA/D-FFO
Algorithm 1. MOEA/D-FFO Algorithm. |
Input population size, dimension, weight vectors, the number of the weight vectors in the neighborhood of each weight vector Output final population Begin
|
4. Simulation Experiments and Analysis of Results
4.1. Experimental Setup
4.2. Performance Metrics
4.3. Experimental Results and Analysis
- (1)
- (2)
- (3)
4.4. Real-World Applications
5. Conclusion and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Pei, Y.; Li, J. A Survey on Search Strategy of Evolutionary Multi-Objective Optimization Algorithms. Appl. Sci. 2023, 13, 4643. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, V. A Comprehensive Review on Multi-objective Optimization Techniques: Past, Present and Future. Arch. Comput. Methods Eng. 2022, 29, 5605–5633. [Google Scholar] [CrossRef]
- Makhadmeh, S.N.; Alomari, O.A.; Mirjalili, S.; Al-Betar, M.A.; Elnagar, A. Recent advances in multi-objective grey wolf optimizer, its versions and applications. Neural Comput. Appl. 2022, 34, 19723–19749. [Google Scholar] [CrossRef]
- Chang, C.C.W.; Ding, T.J.; Ee, C.C.W.; Han, W.; Paw, J.K.S.; Salam, I.; Bhuiyan, M.A.S.; Kuan, G.S. Nature-Inspired Heuristic Frameworks Trends in Solving Multi-objective Engineering Optimization Problems. Arch. Comput. Methods Eng. 2024, 1–34. [Google Scholar] [CrossRef]
- Dong, J.-S.; Pan, Q.-K.; Miao, Z.-H.; Sang, H.-Y.; Gao, L. An effective multi-objective evolutionary algorithm for multiple spraying robots task assignment problem. Swarm Evol. Comput. 2024, 87, 101558. [Google Scholar] [CrossRef]
- Cheng, L.; Tang, Q.; Zhang, L. Mathematical model and adaptive multi-objective evolutionary algorithm for cellular manufacturing with mixed production mode. Swarm Evol. Comput. 2024, 86, 101545. [Google Scholar] [CrossRef]
- Pătrăușanu, A.; Florea, A.; Neghină, M.; Dicoiu, A.; Chiș, R. A Systematic Review of Multi-Objective Evolutionary Algorithms Optimization Frameworks. Processes 2024, 12, 869. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Liang, J.; Qiao, K.; Yu, K.; Qu, B.; Yue, C.; Guo, W.; Wang, L. Utilizing the Relationship Between Unconstrained and Constrained Pareto Fronts for Constrained Multiobjective Optimization. IEEE Trans. Cybern. 2023, 53, 3873–3886. [Google Scholar] [CrossRef]
- Ishibuchi, H.; Setoguchi, Y.; Masuda, H.; Nojima, Y. Performance of Decomposition-Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes. IEEE Trans. Evol. Comput. 2017, 21, 169–190. [Google Scholar] [CrossRef]
- Hua, Y.; Liu, Q.; Hao, K.; Jin, Y. A Survey of Evolutionary Algorithms for Multi-Objective Optimization Problems With Irregular Pareto Fronts. IEEE/CAA J. Autom. Sin. 2021, 8, 303–318. [Google Scholar] [CrossRef]
- Ho, Y.; Pepyne, D. Simple Explanation of the No-Free-Lunch Theorem and Its Implications. J. Optim. Theory Appl. 2002, 115, 549–570. [Google Scholar] [CrossRef]
- Zheng, J.; Ning, J.; Ma, H.; Liu, Z. A Dynamic Parameter Tuning Strategy for Decomposition-Based Multi-Objective Evolutionary Algorithms. Appl. Sci. 2024, 14, 3481. [Google Scholar] [CrossRef]
- Li, H.; Li, G.; Jiang, Q.; Wang, J.; Wang, Z. MOEA/D with customized replacement neighborhood and dynamic resource allocation for solving 3L-SDHVRP. Swarm Evol. Comput. 2024, 85, 101463. [Google Scholar] [CrossRef]
- Gu, Q.; Li, K.; Wang, D.; Liu, D. A MOEA/D with adaptive weight subspace for regular and irregular multi-objective optimization problems. Inf. Sci. 2024, 661, 120143. [Google Scholar] [CrossRef]
- Wang, Z.; He, M.; Wu, J.; Chen, H.; Cao, Y. An improved MOEA/D for low-carbon many-objective flexible job shop scheduling problem. Comput. Ind. Eng. 2024, 188, 109926. [Google Scholar] [CrossRef]
- Zervoudakis, K.; Tsafarakis, S. A global optimizer inspired from the survival strategies of flying foxes. Eng. Comput. 2023, 39, 1583–1616. [Google Scholar] [CrossRef]
- Johnson, S.M. Optimal two- and three-stage production schedules with setup times included. Nav. Res. Logist. Q. 1954, 1, 61–68. [Google Scholar] [CrossRef]
- Bard, J.F. Heuristic Scheduling Systems with Applicatians to Production Systems and Project Management [Book Review]. IEEE Trans. Eng. Manag. 1995, 42, 422. [Google Scholar] [CrossRef]
- da Silva, T.G.; Queiroga, E.; Ochi, L.S.; Cabral, L.d.A.F.; Gueye, S.; Michelon, P. A hybrid metaheuristic for the minimum labeling spanning tree problem. Eur. J. Oper. Res. 2019, 274, 22–34. [Google Scholar] [CrossRef]
- Ghodratnama, A.; Tavakkoli-Moghaddam, R.; Baboli, A. Comparing three proposed meta-heuristics to solve a new p-hub location-allocation problem. Int. J. Eng.-Trans. C Asp. 2013, 26, 1043–1058. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Zitzler, E.; Künzli, S. Indicator-Based Selection in Multiobjective Search. In Proceedings of the 8th International Conference on Parallel Problem Solving from Nature (PPSN VIII), Birmingham, UK, 18–22 September 2004; Volume 3242, pp. 832–842. [Google Scholar]
- Kim, M.; Hiroyasu, T.; Miki, M.; Watanabe, S. SPEA2+: Improving the performance of the strength Pareto evolutionary algorithm 2. In Proceedings of the 8th International Conference on Parallel Problem Solving from Nature (PPSN VIII), Birmingham, UK, 18–22 September 2004; Volume 3242, pp. 742–751. [Google Scholar]
- Ke, L.; Zhang, Q.; Battiti, R. MOEA/D-ACO: A Multiobjective Evolutionary Algorithm Using Decomposition and Ant Colony. IEEE Trans. Cybern. 2013, 43, 1845–1859. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Ma, X.; Liu, F.; Jiao, L.; Sun, J.; Wu, J. MOEA/D with Adaptive Weight Adjustment. Evol. Comput. 2014, 22, 231–264. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, W.; Tsang, E.; Virginas, B. Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model. IEEE Trans. Evol. Comput. 2010, 14, 456–474. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, L.; Yang, S.; Luo, X.; He, D.; Chan, S. Multi-strategy enhanced grey wolf algorithm for obstacle-aware WSNs coverage optimization. Ad Hoc Netw. 2024, 152, 103308. [Google Scholar] [CrossRef]
- Wang, Z.; Shao, L.; Yang, S.; Wang, J.; Li, D. CRLM: A cooperative model based on reinforcement learning and metaheuristic algorithms of routing protocols in wireless sensor networks. Comput. Netw. 2023, 236, 110019. [Google Scholar] [CrossRef]
- Rahimi, I.; Gandomi, A.H.; Chen, F.; Mezura-Montes, E. A Review on Constraint Handling Techniques for Population-based Algorithms: From single-objective to multi-objective optimization. Arch. Comput. Methods Eng. 2023, 30, 2181–2209. [Google Scholar] [CrossRef]
- Cai, T.; Wang, H. A general convergence analysis method for evolutionary multi-objective optimization algorithm. Inf. Sci. 2024, 663, 120267. [Google Scholar] [CrossRef]
- Zhang, H.; Yue, D.; Dou, C.; Hancke, G.P. PBI Based Multi-Objective Optimization via Deep Reinforcement Elite Learning Strategy for Micro-Grid Dispatch with Frequency Dynamics. IEEE Trans. Power Syst. 2023, 38, 488–498. [Google Scholar] [CrossRef]
- Jameel, M.; Abouhawwash, M. A new proximity metric based on optimality conditions for single and multi-objective optimization: Method and validation. Expert. Syst. Appl. 2024, 241, 122677. [Google Scholar] [CrossRef]
- Gore, R.; Reynolds, P.F., Jr. An exploration-based taxonomy for emergent behavior analysis in simulations. In Proceedings of the 2007 Winter Simulation Conference (WSC), Washington, DC, USA, 9–12 December 2007; pp. 1232–1240. [Google Scholar] [CrossRef]
- Sun, L.; Li, K. Adaptive Operator Selection Based on Dynamic Thompson Sampling for MOEA/D. In Proceedings of the 16th International Conference on Parallel Problem Solving from Nature (PPSN XVI), Leiden, The Netherlands, 5–9 September 2020; pp. 271–284. [Google Scholar] [CrossRef]
- de Farias, L.R.C.; Araújo, A.F.R. A decomposition-based many-objective evolutionary algorithm updating weights when required. Swarm Evol. Comput. 2022, 68, 100980. [Google Scholar] [CrossRef]
- Tian, Y.; Cheng, R.; Zhang, X.; Jin, Y. PlatEMO: A MATLAB Platform for Evolutionary Multi-Objective Optimization [Educational Forum]. IEEE Comput. Intell. Mag. 2017, 12, 73–87. [Google Scholar] [CrossRef]
- Zhu, J.H.; Wang, J.S.; Zhang, X.Y.; Wang, Y.-C.; Song, H.-M.; Zheng, Y.; Liu, X. Multi-objective coyote optimization algorithm based on hybrid elite framework and Meta-Lamarckian learning strategy for optimal power flow problem. Artif. Intell. Rev. 2024, 57, 117. [Google Scholar] [CrossRef]
- Huang, Y.; Sheng, B.; Fu, G.; Luo, R.; Lu, Y. Multi-objective simulated annealing algorithm for robotic mixed-model two-sided assembly line balancing with setup times and multiple constraints. Appl. Soft Comput. 2024, 156, 111507. [Google Scholar] [CrossRef]
- Hussien, R.M.; Abohany, A.A.; El-Mageed, A.A.A.; Hosny, K.M. Improved Binary Meerkat Optimization Algorithm for efficient feature selection of supervised learning classification. Knowl.-Based Syst. 2024, 292, 111616. [Google Scholar] [CrossRef]
- Zhou, S.; Dai, Y.; Chen, Z. Dominance relation selection and angle-based distribution evaluation for many-objective evolutionary algorithm. Swarm Evol. Comput. 2024, 86, 101515. [Google Scholar] [CrossRef]
- Jameel, M.; Abouhawwash, M. Multi-objective Mantis Search Algorithm (MOMSA): A novel approach for engineering design problems and validation. Comput. Methods Appl. Mech. Eng. 2024, 422, 116840. [Google Scholar] [CrossRef]
- Li, M.; Grosan, C.; Yang, S.; Liu, X.; Yao, X. Multiline Distance Minimization: A Visualized Many-Objective Test Problem Suite. IEEE Trans. Evol. Comput. 2018, 22, 61–78. [Google Scholar] [CrossRef]
- Deng, W.; Cai, X.; Wu, D.; Song, Y.; Chen, H.; Ran, X.; Zhou, X.; Zhao, H. MOQEA/D: Multi-Objective QEA With Decomposition Mechanism and Excellent Global Search and Its Application. IEEE Trans. Intell. Transp. Syst. 2024, 1–11. [Google Scholar] [CrossRef]
- Rahimi, I.; Gandomi, A.H.; Nikoo, M.R.; Chen, F. A comparative study on evolutionary multi-objective algorithms for next release problem. Appl. Soft Comput. 2023, 144, 110472. [Google Scholar] [CrossRef]
Algorithm | Parameter Settings |
---|---|
NSGA-II | M: 2, D: 30 |
IBEA | M: 2, D: 30, kappa: 0.05 |
MOEA/D | M: 2, D: 30, T: N/10 |
MOEA/D-DYTS | M: 2, D: 30, T: 20, δ: 0.8, C: 100 |
MOEA/D-UR | M: 2, D: 30, T: N/10, δ: 0.9, nr: 2, k: 10 |
MOEA/D-FFO | M: 2, D: 30, T: N/10, pa: 0.5, a: 0.14, b: 0.15, : 0.5 |
Problem | NSGA-II | IBEA | MOEA/D | MOEA/D-DYTS | MOEA/D-UR | MOEA/D-FFO |
---|---|---|---|---|---|---|
DTLZ1 | 4.3949 × 10−3 (1.64 × 10−3) − | 4.4554 × 10−2 (5.75 × 10−3) − | 6.3607 × 10−3 (2.24 × 10−3) − | 3.3548 × 10+0 (5.63 × 10+0) − | 3.2315 × 10−3 (9.71 × 10−4) − | 1.1545 × 10−3 (6.62 × 10−4) |
DTLZ2 | 1.9805 × 10−3 (3.24 × 10−5) − | 9.3430 × 10−3 (1.03 × 10−3) − | 1.5778 × 10−3 (2.57 × 10−6) = | 1.6134 × 10−3 (1.64 × 10−5) − | 1.6343 × 10−3 (1.93 × 10−5) − | 1.5769 × 10−3 (5.11 × 10−9) |
DTLZ3 | 1.1258 × 10−2 (4.25 × 10−3) − | 3.4497 × 10−1 (1.47 × 10−3) − | 1.5842 × 10−2 (4.87 × 10−3) − | 1.1390 × 10+1 (2.30 × 10+1) − | 8.1295 × 10−3 (5.51 × 10−3) − | 4.0807 × 10−3 (3.19 × 10−3) |
DTLZ4 | 2.2979 × 10−3 (9.19 × 10−4) + | 1.5680 × 10−1 (3.08 × 10−1) − | 7.5877 × 10−2 (2.34 × 10−1) = | 1.6824 × 10−3 (5.19 × 10−5) + | 1.6966 × 10−3 (5.20 × 10−5) + | 1.4968 × 10−1 (3.12 × 10−1) |
DTLZ5 | 1.9932 × 10−3 (3.99 × 10−5) − | 9.5602 × 10−3 (6.90 × 10−4) − | 1.5769 × 10−3 (4.66 × 10−9) − | 1.6139 × 10−3 (1.63 × 10−5) − | 1.6233 × 10−3 (1.12 × 10−5) − | 1.5769 × 10−3 (2.58 × 10−9) |
DTLZ6 | 2.2329 × 10−3 (7.85 × 10−5) − | 2.5237 × 10−2 (3.55 × 10−3) − | 1.5769 × 10−3 (1.52 × 10−9) = | 1.5773 × 10−3 (2.20 × 10−7) − | 1.6384 × 10−3 (3.94 × 10−5) − | 1.5769 × 10−3 (2.65 × 10−9) |
DTLZ7 | 3.7365 × 10−3 (1.77 × 10−3) + | 4.3078 × 10−3 (1.85 × 10−3) + | 2.6950 × 10−1 (2.27 × 10−1) = | 1.3454 × 10−1 (2.12 × 10−1) + | 2.4144 × 10−3 (2.75 × 10−5) + | 2.6784 × 10−1 (2.28 × 10−1) |
ZDT1 | 1.8257 × 10−3 (2.33 × 10−5) − | 1.6717 × 10−3 (2.00 × 10−5) − | 1.7671 × 10−3 (1.32 × 10−5) − | 1.5691 × 10−3 (1.80 × 10−5) = | 1.6279 × 10−3 (8.40 × 10−5) − | 1.5616 × 10−3 (6.15 × 10−6) |
ZDT2 | 1.8909 × 10−3 (3.13 × 10−5) − | 4.7491 × 10−3 (3.56 × 10−4) − | 1.5210 × 10−3 (3.00 × 10−6) = | 1.5213 × 10−3 (6.06 × 10−6) = | 1.5307 × 10−3 (8.79 × 10−6) − | 1.5198 × 10−3 (4.95 × 10−6) |
ZDT3 | 3.8152 × 10−3 (1.74 × 10−3) − | 1.3896 × 10−2 (2.44 × 10−3) − | 1.6583 × 10−1 (5.59 × 10−2) − | 4.1696 × 10−3 (6.17 × 10−6) − | 3.0425 × 10−3 (3.22 × 10−5) + | 3.6849 × 10−3 (5.24 × 10−5) |
ZDT4 | 6.0091 × 10−3 (3.92 × 10−3) = | 1.3898 × 10−1 (1.95 × 10−1) − | 2.4720 × 10−2 (2.60 × 10−2) − | 1.5404 × 10+0 (9.64 × 10−1) − | 2.8860 × 10−3 (6.29 × 10−4) = | 2.8176 × 10−3 (6.07 × 10−4) |
ZDT6 | 1.5022 × 10−3 (2.81 × 10−5) − | 1.7212 × 10−3 (2.27 × 10−5) − | 3.3377 × 10−3 (4.36 × 10−4) − | 1.2345 × 10−3 (1.44 × 10−6) − | 1.4563 × 10−3 (2.44 × 10−5) − | 1.1209 × 10−3 (3.17 × 10−4) |
+/−/= | 2/9/1 | 1/11/0 | 0/7/5 | 2/8/2 | 3/8/1 | — |
Problem | NSGA-II | IBEA | MOEA/D | MOEA/D-DYTS | MOEA/D-UR | MOEA/D-FFO |
---|---|---|---|---|---|---|
DTLZ1 | 5.7470 × 10−1 (4.05 × 10−3) − | 4.7704 × 10−1 (1.27 × 10−2) − | 5.6995 × 10−1 (5.47 × 10−3) − | 3.4149 × 10−1 (2.58 × 10−1) − | 5.7735 × 10−1 (2.62 × 10−3) − | 5.8336 × 10−1 (1.86 × 10−3) |
DTLZ2 | 3.4923 × 10−1 (3.53 × 10−5) − | 3.4883 × 10−1 (1.27 × 10−4) − | 3.4943 × 10−1 (3.65 × 10−7) − | 3.4926 × 10−1 (2.83 × 10−5) − | 3.4920 × 10−1 (4.25 × 10−4) − | 3.4943 × 10−1 (1.69 × 10−7) |
DTLZ3 | 3.3522 × 10−1 (5.81 × 10−3) − | 1.5494 × 10−1 (8.94 × 10−3) − | 3.2893 × 10−1 (6.70 × 10−3) − | 1.2442 × 10−1 (1.62 × 10−1) − | 3.3913 × 10−1 (7.67 × 10−3) − | 3.4539 × 10−1 (4.82 × 10−3) |
DTLZ4 | 3.4897 × 10−1 (7.59e × 10−4) + | 2.9695 × 10−1 (1.09 × 10−1) − | 3.2334 × 10−1 (8.17 × 10−2) + | 3.4917 × 10−1 (4.59 × 10−5) + | 3.4931 × 10−1 (2.44 × 10−4) + | 2.9773 × 10−1 (1.09 × 10−1) |
DTLZ5 | 3.4924 × 10−1 (3.33 × 10−5) − | 3.4881 × 10−1 (9.17 × 10−5) − | 3.4943 × 10−1 (2.51 × 10−7) = | 3.4924 × 10−1 (2.64 × 10−5) − | 3.4926 × 10−1 (2.25 × 10−4) = | 3.4943 × 10−1 (8.56 × 10−8) |
DTLZ6 | 3.4914 × 10−1 (5.32 × 10−5) − | 3.4513 × 10−1 (6.94 × 10−4) − | 3.4943 × 10−1 (2.59 × 10−8) = | 3.4943 × 10−1 (1.41 × 10−7) − | 3.4948 × 10−1 (1.77 × 10−5) + | 3.4943 × 10−1 (8.60 × 10−8) |
DTLZ7 | 2.4306 × 10−1 (4.01 × 10−4) + | 2.4299 × 10−1 (3.97 × 10−4) + | 2.0225 × 10−1 (3.40 × 10−2) = | 2.2316 × 10−1 (3.25 × 10−2) + | 2.4339 × 10−1 (6.18 × 10−6) + | 2.0289 × 10−1 (3.47 × 10−2) |
ZDT1 | 7.2258 × 10−1 (3.15 × 10−5) − | 7.2277 × 10−1 (1.52 × 10−5) − | 7.2172 × 10−1 (4.82 × 10−5) − | 7.2268 × 10−1 (8.62 × 10−5) − | 7.2284 × 10−1 (7.03 × 10−5) − | 7.2373 × 10−1 (2.83 × 10−5) |
ZDT2 | 4.4714 × 10−1 (3.83 × 10−5) − | 4.4685 × 10−1 (5.88 × 10−5) − | 4.4738 × 10−1 (2.82 × 10−5) = | 4.4735 × 10−1 (2.00 × 10−5) = | 4.4739 × 10−1 (1.35 × 10−4) = | 4.4739 × 10−1 (3.71 × 10−5) |
ZDT3 | 5.9994 × 10−1 (6.17 × 10−4) − | 5.9868 × 10−1 (5.71 × 10−4) − | 6.2788 × 10−1 (5.21 × 10−2) − | 5.9990 × 10−1 (2.42 × 10−5) − | 6.0031 × 10−1 (8.10 × 10−6) − | 6.9820 × 10−1 (6.90 × 10−5) |
ZDT4 | 7.1559 × 10−1 (5.78 × 10−3) = | 6.3134 × 10−1 (1.24 × 10−1) − | 6.8898 × 10−1 (3.76 × 10−2) − | 2.5191 × 10−2 (7.23 × 10−2) − | 7.2022 × 10−1 (9.19 × 10−4) + | 7.1905 × 10−1 (1.04 × 10−3) |
ZDT6 | 3.9012 × 10−1 (6.24 × 10−5) − | 3.9014 × 10−1 (5.87 × 10−5) − | 3.8656 × 10−1 (7.03 × 10−4) − | 3.9071 × 10−1 (1.31 × 10−5) − | 3.9008 × 10−1 (1.48 × 10−4) − | 3.9689 × 10−1 (4.95 × 10−4) |
+/−/= | 2/9/1 | 1/11/0 | 1/7/4 | 2/9/1 | 4/6/2 | — |
Problem | NSGA-II | IBEA | MOEA/D | MOEA/D-DYTS | MOEA/D-UR | MOEA/D-FFO |
---|---|---|---|---|---|---|
DTLZ1 | 4.5115 × 10−2 (1.11 × 10−1) − | 7.2762 × 10−2 (2.85 × 10−2) − | 7.6007 × 10−3 (1.99 × 10−3) − | 7.9618 × 10+0 (1.07 × 10+1) − | 4.4420 × 10−2 (1.15 × 10−1) − | 1.6661 × 10−3 (8.26 × 10−4) |
DTLZ2 | 1.0037 × 10−3 (1.01 × 10−5) − | 6.7262 × 10−3 (4.91 × 10−4) − | 7.9902 × 10−4 (4.59 × 10−6) = | 8.4767 × 10−4 (1.60 × 10−5) − | 8.8908 × 10−4 (1.39 × 10−5) − | 8.0176 × 10−4 (4.67 × 10−6) |
DTLZ3 | 2.9141 × 10−2 (2.19 × 10−2) − | 3.5452 × 10−1 (8.07 × 10−3) − | 1.8411 × 10−2 (5.03 × 10−3) − | 1.2269 × 10+0 (1.97 × 10+0) − | 2.1115 × 10−2 (4.68 × 10−3) − | 4.9953 × 10−3 (1.83 × 10−3) |
DTLZ4 | 9.8777 × 10−4 (1.35 × 10−5) − | 6.4972 × 10−3 (4.55 × 10−4) − | 1.4906 × 10−1 (3.13 × 10−1) − | 8.7837 × 10−4 (2.40 × 10−5) − | 8.9820 × 10−4 (2.42 × 10−5) − | 7.9647 × 10−4 (7.56 × 10−6) |
DTLZ5 | 9.8587 × 10−4 (1.84 × 10−5) − | 6.7747 × 10−3 (2.42 × 10−4) − | 8.0211 × 10−4 (6.35 × 10−6) = | 8.4117 × 10−4 (1.30 × 10−5) − | 8.9832 × 10−4 (2.16 × 10−5) − | 8.0023 × 10−4 (6.51 × 10−6) |
DTLZ6 | 1.1063 × 10−3 (1.95 × 10−5) − | 2.8097 × 10−2 (2.50 × 10−3) − | 1.0593 × 10−3 (8.61 × 10−4) − | 7.8772 × 10−4 (6.71 × 10−7) − | 8.8588 × 10−4 (1.20 × 10−5) − | 7.8691 × 10−4 (6.22 × 10−9) |
DTLZ7 | 1.0273 × 10−3 (1.52 × 10−5) + | 1.3327 × 10−3 (7.51 × 10−5) + | 3.9994 × 10−1 (1.40 × 10−1) = | 8.9503 × 10−2 (1.86 × 10−1) + | 1.3202 × 10−3 (2.89 × 10−5) + | 4.0011 × 10−1 (1.40 × 10−1) |
ZDT1 | 9.0726 × 10−4 (1.84 × 10−5) − | 8.4264 × 10−4 (6.71 × 10−6) − | 1.0668 × 10−3 (2.03 × 10−5) − | 8.7852 × 10−4 (7.05 × 10−5) − | 9.0406 × 10−4 (2.16 × 10−5) − | 8.0667 × 10−4 (1.38 × 10−5) |
ZDT2 | 9.4069 × 10−4 (1.19 × 10−5) − | 3.1937 × 10−3 (1.53 × 10−4) − | 7.6499 × 10−4 (3.99 × 10−6) = | 8.2350 × 10−4 (1.04 × 10−4) − | 8.1171 × 10−4 (7.94 × 10−6) − | 7.6954 × 10−4 (1.13 × 10−5) |
ZDT3 | 1.0430 × 10−3 (1.22 × 10−5) = | 9.8817 × 10−3 (3.53 × 10−4) − | 4.0094 × 10−3 (2.87 × 10−4) − | 2.1133 × 10−3 (1.86 × 10−5) − | 1.7249 × 10−3 (4.94 × 10−5) − | 1.0392 × 10−3 (2.01 × 10−5) |
ZDT4 | 2.7576 × 10−3 (8.55 × 10−4) − | 4.3180 × 10−3 (3.79 × 10−4) − | 8.8488 × 10−3 (1.96 × 10−3) − | 9.5438 × 10+0 (4.54 × 10+0) − | 1.9384 × 10−3 (3.34 × 10−4) = | 1.8994 × 10−3 (1.00 × 10−3) |
ZDT6 | 1.7023 × 10−3 (1.66 × 10−4) + | 9.3604 × 10−4 (2.29 × 10−5) + | 4.1974 × 10−3 (7.46 × 10−4) = | 6.5427 × 10−4 (1.18 × 10−4) + | 1.5122 × 10−3 (1.09 × 10−4) + | 3.6210 × 10−3 (6.27 × 10−4) |
+/−/= | 2/9/1 | 2/10/0 | 0/7/5 | 2/10/0 | 2/9/1 | — |
Problem | NSGA-II | IBEA | MOEA/D | MOEA/D-DYTS | MOEA/D-UR | MOEA/D-FFO |
---|---|---|---|---|---|---|
DTLZ1 | 5.0578 × 10−1 (1.73 × 10−1) − | 3.9785 × 10−1 (7.25 × 10−2) − | 5.6706 × 10−1 (5.14 × 10−3) − | 1.0151 × 10−1 (2.16 × 10−1) − | 5.0838 × 10−1 (1.79 × 10−1) − | 5.8209 × 10−1 (2.17 × 10−3) |
DTLZ2 | 3.5007 × 10−1 (1.59 × 10−5) − | 3.4973 × 10−1 (4.72 × 10−5) − | 3.5014 × 10−1 (4.24 × 10−6) − | 3.5002 × 10−1 (1.86 × 10−5) − | 3.4995 × 10−1 (2.32 × 10−4) = | 3.5015 × 10−1 (1.34 × 10−6) |
DTLZ3 | 3.1096 × 10−1 (3.12 × 10−2) − | 1.0883 × 10−1 (3.62 × 10−2) − | 3.2533 × 10−1 (7.40 × 10−3) − | 1.9758 × 10−1 (1.54 × 10−1) − | 3.2164 × 10−1 (6.42 × 10−3) − | 3.4438 × 10−1 (2.60 × 10−3) |
DTLZ4 | 3.5007 × 10−1 (1.01 × 10−5) − | 3.4976 × 10−1 (4.60 × 10−5) − | 2.9830 × 10−1 (1.09 × 10−1) − | 3.4997 × 10−1 (2.17 × 10−5) − | 3.5003 × 10−1 (2.25 × 10−4) = | 3.5016 × 10−1 (9.08 × 10−6) |
DTLZ5 | 3.5006 × 10−1 (2.23 × 10−5) − | 3.4973 × 10−1 (2.50 × 10−5) − | 3.5014 × 10−1 (5.81 × 10−6) − | 3.5003 × 10−1 (1.89 × 10−5) − | 3.5000 × 10−1 (2.65 × 10−4) = | 3.5015 × 10−1 (2.79 × 10−6) |
DTLZ6 | 3.5002 × 10−1 (1.99 × 10−5) − | 3.4512 × 10−1 (6.94 × 10−4) − | 3.4973 × 10−1 (1.39 × 10−3) = | 3.5017 × 10−1 (1.21 × 10−7) − | 3.5001 × 10−1 (7.50 × 10−5) − | 3.5017 × 10−1 (7.87 × 10−8) |
DTLZ7 | 2.4367 × 10−1 (3.14 × 10−6) + | 2.4362 × 10−1 (9.38 × 10−6) + | 1.8280 × 10−1 (2.13 × 10−2) = | 2.3007 × 10−1 (2.84 × 10−2) + | 2.4359 × 10−1 (9.91 × 10−5) + | 1.8279 × 10−1 (2.13 × 10−2) |
ZDT1 | 7.2357 × 10−1 (1.67 × 10−5) − | 7.2365 × 10−1 (5.76 × 10−6) − | 7.2241 × 10−1 (4.63 × 10−5) − | 7.2335 × 10−1 (1.5 × 10−4) − | 7.2357 × 10−1 (5.82 × 10−5) − | 7.2440 × 10−1 (3.17 × 10−5) |
ZDT2 | 4.4809 × 10−1 (1.12 × 10−5) − | 4.4786 × 10−1 (2.29 × 10−5) − | 4.4815 × 10−1 (3.07 × 10−5) = | 4.4797 × 10−1 (2.86 × 10−4) − | 4.4811 × 10−1 (1.09 × 10−4) = | 4.4813 × 10−1 (5.63 × 10−5) |
ZDT3 | 6.0087 × 10−1 (3.52 × 10−6) = | 5.9960 × 10−1 (4.40 × 10−5) − | 5.9903 × 10−1 (1.12 × 10−4) − | 6.0052 × 10−1 (4.47 × 10−5) − | 6.0070 × 10−1 (1.76 × 10−4) − | 6.0089 × 10−1 (9.01 × 10−5) |
ZDT4 | 7.2056 × 10−1 (1.12 × 10−3) + | 7.1926 × 10−1 (7.94 × 10−4) = | 7.1172 × 10−1 (2.47 × 10−3) − | 0.0000 × 10+0 (0.00 × 10+0) − | 7.2165 × 10−1 (4.60 × 10−4) + | 7.1947 × 10−1 (1.51 × 10−3) |
ZDT6 | 3.8940 × 10−1 (2.24 × 10−4) − | 3.9090 × 10−1 (4.19 × 10−5) − | 3.8578 × 10−1 (8.95 × 10−4) − | 3.9125 × 10−1 (1.82 × 10−4) − | 3.8960 × 10−1 (1.69 × 10−4) − | 3.9657 × 10−1 (8.34 × 10−4) |
+/−/= | 2/9/1 | 1/10/1 | 0/9/3 | 1/11/0 | 2/6/4 | — |
Problem | NSGA-II | IBEA | MOEA/D | MOEA/D-DYTS | MOEA/D-UR | MOEA/D-FFO |
---|---|---|---|---|---|---|
DTLZ1 | 5.2250 × 10−1 (3.08 × 10−1) − | 7.3502 × 10−1 (3.24 × 10−1) − | 7.8214 × 10−3 (9.78 × 10−4) − | 8.0414 × 10+0 (1.32 × 10+1) − | 3.6377 × 10−1 (3.19 × 10−1) − | 2.1424 × 10−3 (1.49 × 10−3) |
DTLZ2 | 6.6256 × 10−4 (6.57 × 10−6) − | 5.6815 × 10−3 (3.14 × 10−4) − | 5.7002 × 10−4 (1.31 × 10−5) = | 6.0817 × 10−4 (2.25 × 10−5) − | 6.1478 × 10−4 (4.26 × 10−6) − | 5.6842 × 10−4 (1.10 × 10−5) |
DTLZ3 | 1.0471 × 10+0 (1.01 × 10+0) − | 1.9615 × 10+0 (1.47 × 10+0) − | 1.9432 × 10−2 (3.87 × 10−3) − | 2.0449 × 10+0 (4.44 × 10+0) − | 1.0836 × 10+0 (8.94 × 10−1) − | 6.3471 × 10−3 (2.19 × 10−3) |
DTLZ4 | 6.6057 × 10−4 (1.06 × 10−5) − | 5.7920 × 10−3 (3.06 × 10−4) − | 7.4713 × 10−2 (2.34 × 10−1) − | 6.6802 × 10−4 (4.73 × 10−5) − | 6.2551 × 10−4 (5.13 × 10−6) − | 5.4813 × 10−4 (2.47 × 10−5) |
DTLZ5 | 6.6127 × 10−4 (1.37 × 10−5) − | 5.7915 × 10−3 (2.92 × 10−4) − | 9.4264 × 10−4 (1.18 × 10−3) − | 6.1172 × 10−4 (2.32 × 10−5) − | 6.1588 × 10−4 (4.16 × 10−6) − | 5.7505 × 10−4 (1.28 × 10−5) |
DTLZ6 | 7.3660 × 10−4 (1.10 × 10−5) − | 2.8897 × 10−2 (2.86 × 10−3) − | 6.3783 × 10−4 (3.59 × 10−4) − | 5.2518 × 10−4 (5.73 × 10−7) − | 6.9883 × 10−4 (1.05 × 10−4) − | 5.2429 × 10−4 (2.35 × 10−8) |
DTLZ7 | 6.8034 × 10−4 (9.33 × 10−6) + | 9.2440 × 10−4 (5.78 × 10−5) + | 4.4447 × 10−1 (1.20 × 10−4) − | 1.3332 × 10−1 (2.13 × 10−1) + | 1.0113 × 10−3 (3.03 × 10−5) + | 3.5654 × 10−1 (1.85 × 10−1) |
ZDT1 | 6.0056 × 10−4 (8.90 × 10−6) − | 5.6553 × 10−4 (5.43 × 10−6) = | 8.2819 × 10−4 (2.33 × 10−5) − | 1.0014 × 10−3 (4.20 × 10−4) − | 6.7923 × 10−4 (2.61 × 10−5) − | 5.3627 × 10−4 (2.66 × 10−5) |
ZDT2 | 6.1802 × 10−4 (9.29 × 10−6) − | 2.4874 × 10−3 (1.06 × 10−4) − | 5.3325 × 10−4 (2.06 × 10−5) = | 7.1403 × 10−4 (2.70 × 10−4) − | 6.0349 × 10−4 (1.29 × 10−5) − | 5.2885 × 10−4 (8.10 × 10−6) |
ZDT3 | 6.9056 × 10−4 (5.67 × 10−6) − | 9.6070 × 10−3 (2.47 × 10−4) − | 3.2855 × 10−3 (3.61 × 10−5) − | 1.4292 × 10−3 (1.73 × 10−5) − | 1.4051 × 10−3 (4.23 × 10−5) − | 3.3399 × 10−4 (1.83 × 10−4) |
ZDT4 | 3.2406 × 10−3 (9.94 × 10−4) = | 1.6212 × 10−2 (1.86 × 10−2) − | 7.5500 × 10−3 (1.67 × 10−3) − | 1.6528 × 10+1 (4.19e × 10+0) − | 2.9070 × 10−3 (8.27 × 10−4) = | 3.0880 × 10−3 (1.14 × 10−3) |
ZDT6 | 3.7112 × 10−3 (4.23 × 10−4) − | 1.9096 × 10−3 (3.09 × 10−4) − | 4.6904 × 10−3 (3.75 × 10−4) − | 1.2997 × 10−3 (1.54 × 10−3) = | 2.8214 × 10−3 (2.70 × 10−4) − | 1.2882 × 10−3 (4.54 × 10−4) |
+/−/= | 1/10/1 | 1/10/1 | 0/10/2 | 1/10/1 | 1/10/1 | — |
Problem | NSGA-II | IBEA | MOEA/D | MOEA/D-DYTS | MOEA/D-UR | MOEA/D-FFO |
---|---|---|---|---|---|---|
DTLZ1 | 6.4075 × 10−2 (1.39 × 10−1) − | 0.0000 × 10+0 (0.00 × 10+0) − | 5.6662 × 10−1 (2.42 × 10−3) − | 1.4324 × 10−1 (1.83 × 10−1) − | 1.6636 × 10−1 (2.14 × 10−1) − | 5.8095 × 10−1 (3.91 × 10−3) |
DTLZ2 | 3.5033 × 10−1 (1.29 × 10−5) − | 3.5005 × 10−1 (2.97 × 10−5) − | 3.5032 × 10−1 (1.41 × 10−5) − | 3.5027 × 10−1 (1.84 × 10−5) − | 3.5037 × 10−1 (2.90 × 10−5) = | 3.5035 × 10−1 (9.30 × 10−6) |
DTLZ3 | 3.8404 × 10−2 (6.11 × 10−2) − | 3.7559 × 10−3 (1.19 × 10−2) − | 3.2418 × 10−1 (5.30 × 10−3) − | 2.1673 × 10−1 (1.52 × 10−1) − | 6.9319 × 10−2 (1.08 × 10−1) − | 3.4263 × 10−1 (2.76 × 10−3) |
DTLZ4 | 3.5033 × 10−1 (1.28 × 10−5) − | 3.5005 × 10−1 (2.66 × 10−5) − | 3.2439 × 10−1 (8.20 × 10−2) − | 3.5022 × 10−1 (2.15 × 10−5) − | 3.5036 × 10−1 (3.31 × 10−5) = | 3.5038 × 10−1 (3.22 × 10−5) |
DTLZ5 | 3.5033 × 10−1 (9.90 × 10−6) = | 3.5004 × 10−1 (2.36 × 10−5) − | 3.4977 × 10−1 (1.71 × 10−3) − | 3.5026 × 10−1 (2.36 × 10−5) − | 3.5037 × 10−1 (2.88 × 10−5) + | 3.5034 × 10−1 (6.69 × 10−6) |
DTLZ6 | 3.5032 × 10−1 (9.21 × 10−6) − | 3.4512 × 10−1 (7.11 × 10−4) − | 3.5022 × 10−1 (6.34 × 10−4) − | 3.5042 × 10−1 (1.72 × 10−7) − | 3.5027 × 10−1 (1.09 × 10−4) − | 3.5042 × 10−1 (3.37 × 10−8) |
DTLZ7 | 2.4374 × 10−1 (2.14 × 10−6) + | 2.4370 × 10−1 (5.65 × 10−6) + | 1.7604 × 10−1 (1.16 × 10−5) = | 2.2337 × 10−1 (3.26 × 10−2) + | 2.4356 × 10−1 (1.20 × 10−4) + | 1.8918 × 10−1 (2.77 × 10−2) |
ZDT1 | 7.2388 × 10−1 (9.13 × 10−6) − | 7.2394 × 10−1 (4.76 × 10−6) − | 7.2267 × 10−1 (5.10 × 10−5) − | 7.2308 × 10−1 (6.10 × 10−4) − | 7.2380 × 10−1 (4.15 × 10−5) − | 7.2465 × 10−1 (4.64 × 10−5) |
ZDT2 | 4.4841 × 10−1 (7.52 × 10−6) = | 4.4823 × 10−1 (1.29 × 10−5) − | 4.4835 × 10−1 (7.29 × 10−5) − | 4.4800 × 10−1 (5.92 × 10−4) − | 4.4832 × 10−1 (7.59 × 10−5) − | 4.4846 × 10−1 (3.42 × 10−5) |
ZDT3 | 6.0097 × 10−1 (1.49 × 10−6) = | 5.9968 × 10−1 (3.81 × 10−5) − | 5.9923 × 10−1 (1.28 × 10−4) − | 6.0020 × 10−1 (6.66 × 10−5) − | 6.0087 × 10−1 (1.50 × 10−4) = | 6.0097 × 10−1 (1.58 × 10−3) |
ZDT4 | 7.2004 × 10−1 (1.29 × 10−3) = | 7.0952 × 10−1 (1.23 × 10−2) − | 7.1315 × 10−1 (2.42 × 10−3) − | 0.0000 × 10+0 (0.00 × 10+0) − | 7.2030 × 10−1 (1.15 × 10−3) = | 7.2035 × 10−1 (1.54 × 10−3) |
ZDT6 | 3.8684 × 10−1 (5.53 × 10−4) − | 3.8910 × 10−1 (4.47 × 10−4) − | 3.8540 × 10−1 (5.29 × 10−4) − | 3.9041 × 10−1 (1.88 × 10−3) − | 3.8786 × 10−1 (3.83 × 10−4) − | 3.9627 × 10−1 (5.81 × 10−4) |
+/−/= | 1/7/4 | 1/11/0 | 0/11/1 | 1/11/0 | 2/6/4 | — |
Problem | NSGA-II | IBEA | MOEA/D | MOEA/D-DYTS | MOEA/D-UR | MOEA/D-FFO |
---|---|---|---|---|---|---|
ML-DMP | 0.0000 × 10+0 (0.00 × 10+0) − | 1.5584 × 10−3 (2.20 × 10−4) − | 5.4466 × 10−3 (9.48 × 10−4) − | 2.7837 × 10−3 (4.08 × 10−4) − | 2.7366 × 10−5 (5.77 × 10−5) − | 6.3532 × 10−3 (1.92 × 10−4) |
MOKP | 5.3348 × 10−1 (3.08 × 10−3) − | 5.3271 × 10−1 (1.91 × 10−3) − | 5.1329 × 10−1 (2.59 × 10−3) − | 5.3072 × 10−1 (1.11 × 10−3) − | 5.2305 × 10−1 (2.38 × 10−3) − | 5.4076 × 10−1 (2.68 × 10−3) |
MONRP | 6.5120 × 10−1 (9.65 × 10−3) − | 6.5919 × 10−1 (8.08 × 10−3) − | 1.8750 × 10−1 (3.91 × 10−3) − | 6.2678 × 10−1 (6.50 × 10−3) − | 6.1283 × 10−1 (5.51 × 10−3) − | 6.8428 × 10−1 (1.01 × 10−2) |
+/−/= | 0/3/0 | 0/3/0 | 0/3/0 | 0/3/0 | 0/3/0 | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Song, Z.; Yang, Y.; Zhang, C.; Guo, Y. A Decomposition-Based Multi-Objective Flying Foxes Optimization Algorithm and Its Applications. Biomimetics 2024, 9, 417. https://doi.org/10.3390/biomimetics9070417
Zhang C, Song Z, Yang Y, Zhang C, Guo Y. A Decomposition-Based Multi-Objective Flying Foxes Optimization Algorithm and Its Applications. Biomimetics. 2024; 9(7):417. https://doi.org/10.3390/biomimetics9070417
Chicago/Turabian StyleZhang, Chen, Ziyun Song, Yufei Yang, Changsheng Zhang, and Ying Guo. 2024. "A Decomposition-Based Multi-Objective Flying Foxes Optimization Algorithm and Its Applications" Biomimetics 9, no. 7: 417. https://doi.org/10.3390/biomimetics9070417
APA StyleZhang, C., Song, Z., Yang, Y., Zhang, C., & Guo, Y. (2024). A Decomposition-Based Multi-Objective Flying Foxes Optimization Algorithm and Its Applications. Biomimetics, 9(7), 417. https://doi.org/10.3390/biomimetics9070417