Efficient Mako Shark-Inspired Aerodynamic Design for Concept Car Bodies in Underground Road Tunnel Conditions
Abstract
:1. Introduction
2. Adaptive Bioinspired Applications in Automotive Technology
3. Bioinspired Design Process
3.1. Shark Body Profiling in a Restricted Vehicle Design Space
3.2. Shape Design Convergence of First Prototype
3.3. Numerical Simulations of Air Flow Dynamics
3.3.1. Model Configuration
3.3.2. Boundary Conditions
3.3.3. Drag and Aerodynamic Efficiency Control
4. Results
4.1. Analysis of Convergence and Reliability of Numerical Results
4.2. Optimizing the Aerodynamic Performance of the Mako Shark-Inspired Concept Car
4.3. Diffusers for Improving Aerodynamic Efficiency
5. Discussion and Benchmarking of Numerical Results
6. Conclusions
- The biomimetics-based vehicle design inspired by the mako shark achieved a drag coefficient (Cd) of 0.28.
- For the lift coefficient (Cl), the optimal design initially yielded a value of 0.055. Subsequent design enhancement using aerodynamic diffusers showed a pressure drop in the rear zone, increasing the downforce via a 58% reduction in the Cl. The resulting Cl value was 0.02.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wijegunawardana, I.D.; de Mel, W.R. Biomimetic Designs for Automobile Engineering: A Review. Int. J. Automot. Mech. Eng. 2021, 18, 9029–9041. [Google Scholar] [CrossRef]
- Raja, V.; Solaiappan, S.K.; Kumar, L.; Marimuthu, A.; Gnanasekaran, R.K.; Choi, Y. Design and Computational Analyses of Nature Inspired Unmanned Amphibious Vehicle for Deep Sea Mining. Minerals 2022, 12, 342. [Google Scholar] [CrossRef]
- Van Wassenbergh, S.; Van Manen, K.; Marcroft, T.A.; Alfaro, M.E.; Stamhuis, E.J. Boxfish swimming paradox resolved: Forces by the flow of water around the body promote manoeuvrability. J. R. Soc. Interface 2015, 12, 20141146. [Google Scholar] [CrossRef]
- Airbus Biomimicry: Imitating Nature’s Best-Kept Secrets. Available online: https://www.airbus.com/en/innovation/disruptive-concepts/biomimicry (accessed on 8 February 2024).
- Muthuramalingam, M.; Puckert, D.K.; Rist, U.; Bruecker, C. Transition delay using biomimetic fish scale arrays. Sci. Rep. 2020, 10, 14534. [Google Scholar] [CrossRef]
- Muthuramalingam, M.; Villemin, L.S.; Bruecker, C. Streak formation in flow over biomimetic fish scale arrays. J. Exp. Biol. 2019, 222, jeb205963. [Google Scholar] [CrossRef]
- Earthsky. A Kingfisher Inspired a Bullet Train. Available online: https://earthsky.org/earth/sunni-robertson-on-how-a-kingfisher-inspired-a-bullet-train/ (accessed on 8 February 2024).
- Turner, J.S.; Soar, R.C. Beyond biomimicry: What termites can tell us about realizing the living building. In Proceedings of the First International Conference on Industrialized, Intelligent Construction (I3CON), Loughborough University, Loughborough, UK, 14–16 May 2008; pp. 14–16. [Google Scholar]
- Swim-Swam SSPC: Why Is the Speedo Fastskin Based on Shark Skin? Available online: https://swimswam.com/sspc-why-is-the-speedo-fastskin-based-on-shark-skin/ (accessed on 8 February 2024).
- Morales, A.T.; Tamayo Fajardo, J.A.; González-García, H. High-Speed Swimsuits and Their Historical Development in Competitive Swimming. Front. Psychol. 2019, 10, 2639. [Google Scholar] [CrossRef]
- S, G.N.; J, B.R.R. Performance enhancement of futuristic airplanes by nature inspired biomimetic fish scale arrays—A design approach. Biomim. Intell. Robot. 2022, 2, 100045. [Google Scholar] [CrossRef]
- Chowdhury, H.; Islam, R.; Hussein, M.; Zaid, M.; Loganathan, B.; Alam, F. Design of an energy efficient car by biomimicry of a boxfish. Energy Procedia 2019, 160, 40–44. [Google Scholar] [CrossRef]
- Peng, S.; Liu, X.; Li, Z.; Jiang, F. Application of Bionics of Tiger Beetle to Aerodynamic Optimization of MIRA Fastback Model. DEStech Trans. Comput. Sci. Eng. 2018. [Google Scholar] [CrossRef]
- Kim, J.J.; Hong, J.; Lee, S.J. Bio-inspired cab-roof fairing of heavy vehicles for enhancing drag reduction and driving stability. Int. J. Mech. Sci. 2017, 131–132, 868–879. [Google Scholar] [CrossRef]
- Arabaci, S.K.; Pakdemirli, M. Aerodynamic Improvements of Buses Inspired by Beluga Whales. J. Appl. Fluid Mech. 2023, 16, 2569–2580. [Google Scholar]
- Ghaffar, H.; Yusoff, H.; Ibrahim, D.; Budin, S.; Razak, M.R.A. A Simulation Study of Tubercles Effect of Aerodynamics Performance on Car Rear Spoiler. J. Phys. Conf. Ser. 2019, 1349, 3–9. [Google Scholar] [CrossRef]
- Fish, F.E. Biomimetics: Determining engineering opportunities from nature. In Proceedings of the SPIE NanoScience + Engineering 2009, San Diego, CA, USA, 2–6 August 2009; Volume 7401, p. 740109. [Google Scholar]
- Chowdhury, H.; Loganathan, B.; Ahmed, T.; Mustary, I.; Sonyy, S.M.; Alam, F. Aerodynamic Design of An Energy-Efficient Light Truck by Biomimicry. AIP Conf. Proc. 2022, 2681, 020101. [Google Scholar]
- Wang, Y.; Liu, Y.; Zheng, S. How are vehicles running in underground expressways? WIT Trans. Built Environ. 2014, 138, 467–478. [Google Scholar]
- Makarov, V.V. Island Megalopolises: Tunnel Systems as a Critical Alternative in Solving Transport Problems. Engineering 2018, 4, 138–142. [Google Scholar] [CrossRef]
- Wan, H.; Du, Z.; Ran, B.; Wang, M. Speed Control Method for Highway Tunnel Safety Based on Visual Illusion. Transp. Res. Rec. 2015, 2485, 1–7. [Google Scholar] [CrossRef]
- Shang, T.; Lu, J.; Luo, Y.; Wang, S.; He, Z.; Wang, A. Understanding the traffic flow in different types of freeway tunnels based on car-following behaviors analysis. Tunn. Undergr. Space Technol. 2024, 143, 105494. [Google Scholar] [CrossRef]
- Yang, L.; Wang, C.; Li, Z. Tunnel Traffic Evolution during Capacity Drop Based on High-Resolution Vehicle Trajectory Data. Algorithms 2022, 15, 240. [Google Scholar] [CrossRef]
- Xing, J.; Muramatsu, E.; Harayama, T. Balance Lane Use with VMS to Mitigate Motorway Traffic Congestion. Int. J. Intell. Transp. Syst. Res. 2014, 12, 26–35. [Google Scholar] [CrossRef]
- Fang, J.; Wang, S.-J.; Zhu, Z.-D.; Zhou, R.-G. Operating speed models for trucks at expressway tunnel sections. J. Traffic Transp. Eng. 2010, 10, 90–94. [Google Scholar]
- Yeung, J.S.; Wong, Y.D. Road traffic accidents in Singapore expressway tunnels. Tunn. Undergr. Space Technol. 2013, 38, 534–541. [Google Scholar] [CrossRef]
- Du Clos, K.T.; Lang, A.; Devey, S.; Motta, P.J.; Habegger, M.L.; Gemmell, B.J. Passive bristling of mako shark scales in reversing flows. J. R. Soc. Interface 2018, 15, 14–18. [Google Scholar] [CrossRef]
- Domel, A.G.; Saadat, M.; Weaver, J.C.; Haj-Hariri, H.; Bertoldi, K.; Lauder, G.V. Shark skin-inspired designs that improve aerodynamic performance. J. R. Soc. Interface 2018, 15, 20170828. [Google Scholar] [CrossRef]
- Singh, G.; Ramakrishnan, K. Aesthetical Design of a Bio-Inspired Futuristic Vehicle for Smart Transportation BT—Applications of Computational Methods in Manufacturing and Product Design; Deepak, B.B.V.L., Parhi, D.R.K., Biswal, B.B., Jena, P.C., Eds.; Springer Nature: Singapore, 2022; pp. 1–12. [Google Scholar]
- Nissan. How to Clean Car Seats and Interior: Car Cleaning Tips to Reduce the Risk of Coronavirus in Your Car. Available online: https://www.nissanusa.com/experience-nissan/news-and-events/tips-for-how-to-clean-car-seats-and-interior.html (accessed on 8 February 2024).
- Hoffmann, K.G.; Haag, K.; Müssig, J. Biomimetic approaches towards lightweight composite structures for car interior parts. Mater. Des. 2021, 212, 110281. [Google Scholar] [CrossRef]
- Wu, T.; Li, M.; Zhu, X.; Lu, X. Research on non-pneumatic tire with gradient anti-tetrachiral structures. Mech. Adv. Mater. Struct. 2021, 28, 2351–2359. [Google Scholar] [CrossRef]
- Barillari, F.; Chini, F. Biopolymers—Sustainability for the Automotive Value-added Chain. ATZ Worldw. 2020, 122, 36–39. [Google Scholar] [CrossRef]
- Ganilova, O.A.; Low, J.J. Application of smart honeycomb structures for automotive passive safety. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2018, 232, 797–811. [Google Scholar] [CrossRef]
- Ivanović, L.; Vencl, A.; Stojanović, B.; Marković, B. Biomimetics design for tribological applications. Tribol. Ind. 2018, 40, 448–456. [Google Scholar] [CrossRef]
- Chen, L.; Fan, D.; Dou, H.; Liu, X.; Chen, B. Bionic innovation design of disc brake. Int. J. Interact. Des. Manuf. 2020, 14, 309–322. [Google Scholar] [CrossRef]
- Kashyap, V.; Arora, B.B.; Bhattacharjee, S.; Mittal, P. Aerodynamic Effect of Aspect Ratio of Spherical Depressions on the Bonnet of Hatchback Cars. In Automotive Technical Papers; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Kim, D.; Lee, H.; Yi, W.; Choi, H. A bio-inspired device for drag reduction on a three-dimensional model vehicle. Bioinspir. Biomim. 2016, 11, 26004. [Google Scholar] [CrossRef]
- Valenzuela, M.; Ciudad, G.; Cárdenas, J.P.; Medina, C.; Salas, A.; Oñate, A.; Pincheira, G.; Attia, S.; Tuninetti, V. Towards the development of performance-efficient compressed earth blocks from industrial and agro-industrial by-products. Renew. Sustain. Energy Rev. 2024, 194, 114323. [Google Scholar] [CrossRef]
- Buscariolo, F.F.; Assi, G.R.S.; Sherwin, S.J. Computational study on an Ahmed Body equipped with simplified underbody diffuser. J. Wind Eng. Ind. Aerodyn. 2021, 209, 104411. [Google Scholar] [CrossRef]
- Igali, D.; Mukhmetov, O.; Zhao, Y.; Fok, S.C.; Teh, S.L. Comparative Analysis of Turbulence Models for Automotive Aerodynamic Simulation and Design. Int. J. Automot. Technol. 2019, 20, 1145–1152. [Google Scholar] [CrossRef]
- Padagannavar, P.; Bheemanna, M. Automotive computational fluid dynamics simulation of a car using ansys. Int. J. Mech. Eng. Technol. 2016, 7, 101–114. [Google Scholar]
- Chowdhury, H.; Alam, F.; Khan, I.; Djamovski, V.; Watkins, S. Impact of vehicle add-ons on energy consumption and greenhouse gas emissions. Procedia Eng. 2012, 49, 294–302. [Google Scholar] [CrossRef]
- Li, Q.; Dai, W.; Yang, Z.; Jia, Q. Investigation on aerodynamic characteristics of tailing vehicle hood in a two-vehicle platoon. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2020, 234, 283–299. [Google Scholar] [CrossRef]
- Katz, J. Automotive Aerodynamics; John Wiley & Sons: Nashville, TN, USA, 2016. [Google Scholar]
- Zhang, Q.; Su, C.; Wang, Y. Numerical investigation on aerodynamic performance and stability of a sedan under wind–bridge–tunnel road condition. Alex. Eng. J. 2020, 59, 3963–3980. [Google Scholar] [CrossRef]
- Szudarek, M.; Kamieniecki, K.; Tudruj, S.; Piechna, J. Towards Balanced Aerodynamic Axle Loading of a Car with Covered Wheels—Inflatable Splitter. Energies 2022, 15, 5543. [Google Scholar] [CrossRef]
- Williams, J. Aerodynamic Drag of Engine-Cooling Airflow with External Interference. SAE Trans. 2003, 112, 1092–1102. [Google Scholar]
- Jama, H.; Watkins, S.; Dixon, C. Reduced Drag and Adequate Cooling for Passenger Vehicles Using Variable Area Front Air Intakes. In Proceedings of the SAE 2006 World Congress & Exhibition, Detroit, MI, USA, 3–6 April 2006; SAE International: Warrendale, PA, USA, 2006. [Google Scholar]
- Zaareer, M.; Mourad, A.H. Effect of Vehicle Side Mirror Base Position on Aerodynamic Forces and Acoustics. Alex. Eng. J. 2022, 61, 1437–1448. [Google Scholar] [CrossRef]
- Rojas-Ulloa, C.; Tuninetti, V.; Sepúlveda, H.; Betaieb, E.; Pincheira, G.; Gilles, G.; Duchêne, L.; Habraken, A.M. Accurate numerical prediction of ductile fracture and micromechanical damage evolution for Ti6Al4V alloy. Comput. Mech. 2023, 73, 177–198. [Google Scholar] [CrossRef]
- Tuninetti, V.; Yuan, S.; Gilles, G.; Guzmán, C.F.; Habraken, A.M.; Duchêne, L. Modeling the ductile fracture and the plastic anisotropy of DC01 steel at room temperature and low strain rates. J. Phys. Conf. Ser. 2016, 734, 032075. [Google Scholar] [CrossRef]
- Czerwinski, F. Current trends in automotive lightweighting strategies and materials. Materials 2021, 14, 6631. [Google Scholar] [CrossRef] [PubMed]
- Valle, R.; Pincheira, G.; Tuninetti, V.; Fernandez, E.; Uribe-Lam, E. Design and Characterization of Asymmetric Cell Structure of Auxetic Material for Predictable Directional Mechanical Response. Materials 2022, 15, 1841. [Google Scholar] [CrossRef]
Cd | Cl | |
---|---|---|
Design 4 | 0.280 | 0.055 |
Design 4 with diffuser | 0.286 | 0.023 |
Design 1 | Design 2 | Design 3 | Design 4 | Design 4 with Diffuser | |
---|---|---|---|---|---|
Cd | 0.443 | 0.392 | 0.341 | 0.280 | 0.286 |
Cl | 0.156 | 0.088 | 0.032 | 0.055 | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venegas, I.; Oñate, A.; Pierart, F.G.; Valenzuela, M.; Narayan, S.; Tuninetti, V. Efficient Mako Shark-Inspired Aerodynamic Design for Concept Car Bodies in Underground Road Tunnel Conditions. Biomimetics 2024, 9, 448. https://doi.org/10.3390/biomimetics9080448
Venegas I, Oñate A, Pierart FG, Valenzuela M, Narayan S, Tuninetti V. Efficient Mako Shark-Inspired Aerodynamic Design for Concept Car Bodies in Underground Road Tunnel Conditions. Biomimetics. 2024; 9(8):448. https://doi.org/10.3390/biomimetics9080448
Chicago/Turabian StyleVenegas, Ignacio, Angelo Oñate, Fabián G. Pierart, Marian Valenzuela, Sunny Narayan, and Víctor Tuninetti. 2024. "Efficient Mako Shark-Inspired Aerodynamic Design for Concept Car Bodies in Underground Road Tunnel Conditions" Biomimetics 9, no. 8: 448. https://doi.org/10.3390/biomimetics9080448
APA StyleVenegas, I., Oñate, A., Pierart, F. G., Valenzuela, M., Narayan, S., & Tuninetti, V. (2024). Efficient Mako Shark-Inspired Aerodynamic Design for Concept Car Bodies in Underground Road Tunnel Conditions. Biomimetics, 9(8), 448. https://doi.org/10.3390/biomimetics9080448