Optimising Bioprinting Nozzles through Computational Modelling and Design of Experiments
Abstract
:1. Introduction
- The printability of bioink has been studied in different bioprinting methods—extrusion, droplet, and laser. In extrusion printing, the ability of the bioink to extrude, and maintain its shape and accuracy is evaluated [8]. For droplet-based printing, the accuracy of the generated droplets is considered [9], and in laser printing, the uniformity and accuracy of the jet [10]. CFD can improve printability by analysing factors such as print speed, nozzle geometry, dispensing pressure and rheological characteristics of the bioink.
- Simulation of artificial vessels: Before bioprinting blood vessels, CFD allows the shear stress produced in the walls to be analysed and factors such as vessel diameter, wall thickness, pressure, flow velocity, and viscosity to be predicted and optimised, facilitating the manufacture of functional blood vessels with suitable mechanical and perfusion properties [32].
- Microfluidic chips: Microfluidic devices, including organs-on-chips, use bioengineering technologies to replicate tissue and organ functions [33]. CFD helps improve precision in micrometre-scale bioprinting by controlling extremely small volumes of fluid [34]. This enables the creation of functional materials and print heads based on microfluidics, allowing for improved precision and geometric control in bioprinting.
- Vascularisation of tissue fabrication: Vascularisation is crucial in tissue bioprinting to ensure cell survival through adequate perfusion of nutrients and oxygen. CFD plays a key role in analysing flow characteristics such as net force, pressure distribution, shear stress, and oxygen distribution in bioprinted vascular structures [35,36]. This allows for the optimisation of tissue design with perfusable channels prior to bioprinting.
- ➢
- The development of more sophisticated CFD models that take into account the biological effects of cells.
- ➢
- The validation of CFD models through experimental testing.
2. Methods
2.1. Proposal for a Factorial, Central, Composite, Orthogonal, and Rotational Design of Experiments (FCCOR DoE)
2.2. Determination of the Total Number of Experimental Runs
2.3. Axial Distance Definition and Coded Values of Operational Variables
2.4. Statistical and Numerical Analysis of Experimental Results
2.5. Graphical Analysis of Experimental Results
- Pareto charts: To identify the most significant effects [48].
- Main Effect Plots: To show the effect of each variable separately [49].
- Interaction Graphs: To visualise the interactions between variables [50].
- Response Surface (RS) plots: To show how the response varies as a function of two or more operational variables [51].
3. Discussion
3.1. Systematic Review Analysis
- “bioprinting AND extrusion AND nozzle”.
- “bioprinting AND nozzle AND computational”.
- “bioprinting AND nozzle AND fluid”.
- “bioprinting AND nozzle AND printhead”.
3.2. Optimisation of Bioprinting Parameters Using Taguchi Experimental Design
- Temperature (T): 37, 30, 27, 23, 20 °C.
- Volumetric flow rate (V): 266, 200, 133, 67, 0.1 µL/s.
- Pressure (P): 40, 33, 27, 20, 14 kPa.
- Viscosity (v): 30–105, 30–106, 30–107, 30–108, 30–109 mPa·s.
- Level −2: minimum value of the range
- Level −1: low intermediate value
- Level 0: middle value
- Level +1: intermediate high value
- Level +2: maximum value of the range
4. New Methodologies Applied to Nozzle Design for Different Materials
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reina-Romo, E.; Mandal, S.; Amorim, P.; Bloemen, V.; Ferraris, E.; Geris, L. Towards the Experimentally-Informed In Silico Nozzle Design Optimization for Extrusion-Based Bioprinting of Shear-Thinning Hydrogels. Front. Bioeng. Biotechnol. 2021, 9, 701778. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, I.P.; de Oliveira, P.M.; Dernowsek, J.; Casas, E.B.L.; Casas, M.S.L. Investigation of the effect of nozzle design on rheological bioprinting properties using computational fluid dynamics. Matér. Rio Jan. 2019, 24, e12401. [Google Scholar] [CrossRef]
- Emmermacher, J.; Spura, D.; Cziommer, J.; Kilian, D.; Wollborn, T.; Fritsching, U.; Steingroewer, J.; Walther, T.; Gelinsky, M.; Lode, A. Engineering considerations on extrusion-based bioprinting: Interactions of material behavior, mechanical forces and cells in the printing needle. Biofabrication 2020, 12, 025022. [Google Scholar] [CrossRef] [PubMed]
- Göhl, J.; Markstedt, K.; Mark, A.; Håkansson, K.; Gatenholm, P.; Edelvik, F. Simulations of 3D bioprinting: Predicting bioprintability of nanofibrillar inks. Biofabrication 2018, 10, 034105. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Blanco, J.C.; Mancha-Sánchez, E.; Ortega-Morán, J.F.; Díaz-Parralejo, A.; Sánchez-Margallo, F.M.; Pagador-Carrasco, J.B. Computational Fluid Dynamics Study of Inlet Velocity on Extrusion-Based Bioprinting. In Proceedings of the XV Mediterranean Conference on Medical and Biological Engineering and Computing—MEDICON 2019, Coimbra, Portugal, 26–28 September 2019; Henriques, J., Neves, N., de Carvalho, P., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 531–540. [Google Scholar] [CrossRef]
- Kawaguti, M. Numerical Solution of the Navier-Stokes Equations for the Flow around a Circular Cylinder at Reynolds Number 40. J. Phys. Soc. Jpn. 1953, 8, 747–757. [Google Scholar] [CrossRef]
- Fareez, U.N.M.; Naqvi, S.A.A.; Mahmud, M.; Temirel, M. Computational Fluid Dynamics (CFD) Analysis of Bioprinting. Adv. Healthc. Mater. 2024, 2400643. [Google Scholar] [CrossRef]
- Gillispie, G.; Prim, P.; Copus, J.; Fisher, J.; Mikos, A.G.; Yoo, J.J.; Atala, A.; Lee, S.J. Assessment methodologies for extrusion-based bioink printability. Biofabrication 2020, 12, 022003. [Google Scholar] [CrossRef]
- Inkjet Printing of Mammalian Cells—Theory and Applications—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S2405886621000300?via%3Dihub (accessed on 28 June 2024).
- Zhang, Z.; Jin, Y.; Yin, J.; Xu, C.; Xiong, R.; Christensen, K.; Ringeisen, B.R.; Chrisey, D.B.; Huang, Y. Evaluation of bioink printability for bioprinting applications. Appl. Phys. Rev. 2018, 5, 041304. [Google Scholar] [CrossRef]
- Sun, M.; Chi, G.; Li, P.; Lv, S.; Xu, J.; Xu, Z.; Xia, Y.; Tan, Y.; Xu, J.; Li, L.; et al. Effects of Matrix Stiffness on the Morphology, Adhesion, Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells. Int. J. Med. Sci. 2018, 15, 257–268. [Google Scholar] [CrossRef]
- Veraitch, F.S.; Scott, R.; Wong, J.-W.; Lye, G.J.; Mason, C. The impact of manual processing on the expansion and directed differentiation of embryonic stem cells. Biotechnol. Bioeng. 2008, 99, 1216–1229. [Google Scholar] [CrossRef]
- Paluch, E.K.; Nelson, C.M.; Biais, N.; Fabry, B.; Moeller, J.; Pruitt, B.L.; Wollnik, C.; Kudryasheva, G.; Rehfeldt, F.; Federle, W. Mechanotransduction: Use the force(s). BMC Biol. 2015, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Wang, N. Review of Cellular Mechanotransduction. J. Phys. Appl. Phys. 2017, 50, 233002. [Google Scholar] [CrossRef]
- Rajgor, D.; Shanahan, C.M. Nesprins: From the nuclear envelope and beyond. Expert Rev. Mol. Med. 2013, 15, e5. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.H.K.; Chan, J.M.; Kamm, R.D.; Tien, J. Microfluidic Models of Vascular Functions. Annu. Rev. Biomed. Eng. 2012, 14, 205–230. [Google Scholar] [CrossRef] [PubMed]
- Cidonio, G.; Glinka, M.; Dawson, J.I.; Oreffo, R.O.C. The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine. Biomaterials 2019, 209, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Kim, C.M.; Jin, S.; Kim, T.Y. Study of the process-induced cell damage in forced extrusion bioprinting. Biofabrication 2021, 13, 035048. [Google Scholar] [CrossRef]
- Rheology, Simulation and Data Analysis toward Bioprinting Cell Viability Awareness—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S2405886620300464 (accessed on 28 June 2024).
- Ertl, P.; Sticker, D.; Charwat, V.; Kasper, C.; Lepperdinger, G. Lab-on-a-chip technologies for stem cell analysis. Trends Biotechnol. 2014, 32, 245–253. [Google Scholar] [CrossRef]
- Shi, J.; Wu, B.; Li, S.; Song, J.; Song, B.; Lu, W.F. Shear stress analysis and its effects on cell viability and cell proliferation in drop-on-demand bioprinting. Biomed. Phys. Eng. Express 2018, 4, 045028. [Google Scholar] [CrossRef]
- Boularaoui, S.; Al Hussein, G.; Khan, K.A.; Christoforou, N.; Stefanini, C. An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting 2020, 20, e00093. [Google Scholar] [CrossRef]
- Zhao, F.; Chella, R.; Ma, T. Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: Experiments and hydrodynamic modeling. Biotechnol. Bioeng. 2007, 96, 584–595. [Google Scholar] [CrossRef]
- Dong, J.; Gu, Y.; Li, C.; Wang, C.; Feng, Z.; Qiu, R.; Chen, B.; Li, J.; Zhang, S.; Wang, Z.; et al. Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts. Acta Pharmacol. Sin. 2009, 30, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Moehlenbrock, M.J.; Price, A.K.; Scott Martin, R. Use of microchip-based hydrodynamic focusing to measure the deformation-induced release of ATP from erythrocytes. Analyst 2006, 131, 930–937. [Google Scholar] [CrossRef] [PubMed]
- White, C.R.; Frangos, J.A. The shear stress of it all: The cell membrane and mechanochemical transduction. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 1459–1467. [Google Scholar] [CrossRef] [PubMed]
- Bahrd, A. Computational Fluid Dynamics and Quantitative Cell Viability Measurements in Dispensing-Based Biofabrication. 2017. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-138951 (accessed on 28 June 2024).
- Chand, R.; Muhire, B.S.; Vijayavenkataraman, S. Computational Fluid Dynamics Assessment of the Effect of Bioprinting Parameters in Extrusion Bioprinting. Int. J. Bioprint. 2022, 8, 545. [Google Scholar] [CrossRef]
- Li, M.; Tian, X.; Schreyer, D.J.; Chen, X. Effect of needle geometry on flow rate and cell damage in the dispensing-based biofabrication process. Biotechnol. Prog. 2011, 27, 1777–1784. [Google Scholar] [CrossRef] [PubMed]
- Nair, K.; Gandhi, M.; Khalil, S.; Yan, K.C.; Marcolongo, M.; Barbee, K.; Sun, W. Characterization of cell viability during bioprinting processes. Biotechnol. J. 2009, 4, 1168–1177. [Google Scholar] [CrossRef] [PubMed]
- Billiet, T.; Gevaert, E.; De Schryver, T.; Cornelissen, M.; Dubruel, P. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 2014, 35, 49–62. [Google Scholar] [CrossRef]
- Park, W.; Lee, J.-S.; Gao, G.; Kim, B.S.; Cho, D.-W. 3D bioprinted multilayered cerebrovascular conduits to study cancer extravasation mechanism related with vascular geometry. Nat. Commun. 2023, 14, 7696. [Google Scholar] [CrossRef]
- Chliara, M.A.; Elezoglou, S.; Zergioti, I. Bioprinting on Organ-on-Chip: Development and Applications. Biosensors 2022, 12, 1135. [Google Scholar] [CrossRef]
- Davoodi, E.; Sarikhani, E.; Montazerian, H.; Ahadian, S.; Costantini, M.; Swieszkowski, W.; Willerth, S.M.; Walus, K.; Mofidfar, M.; Toyserkani, E.; et al. Extrusion and Microfluidic-Based Bioprinting to Fabricate Biomimetic Tissues and Organs. Adv. Mater. Technol. 2020, 5, 1901044. [Google Scholar] [CrossRef]
- Pourchet, L.; Petiot, E.; Loubière, C.; Olmos, E.; Dos Santos, M.; Thépot, A.; Loïc, B.J.; Marquette, C.A. Large 3D bioprinted tissue: Heterogeneous perfusion and vascularization. Bioprinting 2019, 13, e00039. [Google Scholar] [CrossRef]
- Tomov, M.L.; Perez, L.; Ning, L.; Chen, H.; Jing, B.; Mingee, A.; Ibrahim, S.; Theus, A.S.; Kabboul, G.; Do, K.; et al. A 3D Bioprinted In Vitro Model of Pulmonary Artery Atresia to Evaluate Endothelial Cell Response to Microenvironment. Adv. Healthc. Mater. 2021, 10, 2100968. [Google Scholar] [CrossRef] [PubMed]
- Sodupe Ortega, E.; Sanz-Garcia, A.; Pernia-Espinoza, A.; Escobedo-Lucea, C. Efficient Fabrication of Polycaprolactone Scaffolds for Printing Hybrid Tissue-Engineered Constructs. Materials 2019, 12, 613. [Google Scholar] [CrossRef] [PubMed]
- Malekpour, A.; Chen, X. Printability and Cell Viability in Extrusion-Based Bioprinting from Experimental, Computational, and Machine Learning Views. J. Funct. Biomater. 2022, 13, 40. [Google Scholar] [CrossRef] [PubMed]
- Pössl, A.; Hartzke, D.; Schmidts, T.M.; Runkel, F.E.; Schlupp, P. A targeted rheological bioink development guideline and its systematic correlation with printing behavior. Biofabrication 2021, 13, 035021. [Google Scholar] [CrossRef] [PubMed]
- Collins, L.M.; Dziak, J.J.; Li, R. Design of experiments with multiple independent variables: A resource management perspective on complete and reduced factorial designs. Psychol. Methods 2009, 14, 202–224. [Google Scholar] [CrossRef] [PubMed]
- Simulation Designs for Quadratic Response Surface Models in the Presence of Model Misspecification|Management Science. Available online: https://pubsonline.informs.org/doi/10.1287/mnsc.38.12.1765 (accessed on 28 June 2024).
- Quenouille, M.H. The Analysis of Covariance and Non-Orthogonal Comparisons. Biometrics 1948, 4, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, W.L.; Cirillo, M.Â. Simulation studies for design selection in a simplex space with edge effects on some mixture components. Acta Sci. Technol. 2019, 41, e34995. [Google Scholar] [CrossRef]
- Kukharev, O.N.; Syomov, I.N.; Kondratieva, K.S.; Yashin, A.V. Experimental studies of a seed disinfection device. IOP Conf. Ser. Earth Environ. Sci. 2022, 953, 012031. [Google Scholar] [CrossRef]
- Chigbu, P.E.; Ukaegbu, E.C. Recent Developments on Partial Replications of Response Surface Central Composite Designs: A Review. J. Stat. Appl. Probab. 2017, 6, 91–104. [Google Scholar] [CrossRef]
- Two-Way ANOVA: Inferences about Interactions Based on Robust Measures of Effect Size-Wilcox-2022-British Journal of Mathematical and Statistical Psychology-Wiley Online Library. Available online: https://bpspsychub.onlinelibrary.wiley.com/doi/10.1111/bmsp.12244 (accessed on 28 June 2024).
- Ferrari, F.; Dunson, D.B. Bayesian Factor Analysis for Inference on Interactions. J. Am. Stat. Assoc. 2021, 116, 1521–1532. [Google Scholar] [CrossRef] [PubMed]
- Kenett, R.S. Two Methods for Comparing Pareto Charts. J. Qual. Technol. 1991, 23, 27–31. [Google Scholar] [CrossRef]
- Barton, R.R. Pre-Experiment Planning for Designed Experiments: Graphical Methods. J. Qual. Technol. 1997, 29, 307–316. [Google Scholar] [CrossRef]
- Feiler, S.; Müller, K.G.; Müller, A.; Dahlhaus, R.; Eich, W. Using Interaction Graphs for Analysing the Therapy Process. Psychother. Psychosom. 2005, 74, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Acherjee, B.; Misra, D.; Bose, D.; Venkadeshwaran, K. Prediction of weld strength and seam width for laser transmission welding of thermoplastic using response surface methodology. Opt. Laser Technol. 2009, 41, 956–967. [Google Scholar] [CrossRef]
- Derakhshanfar, S.; Mbeleck, R.; Xu, K.; Zhang, X.; Zhong, W.; Xing, M. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact. Mater. 2018, 3, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Kyle, S.; Jessop, Z.M.; Al-Sabah, A.; Whitaker, I.S. “Printability” of Candidate Biomaterials for Extrusion Based 3D Printing: State-of-the-Art. Adv. Healthc. Mater. 2017, 6, 1700264. [Google Scholar] [CrossRef] [PubMed]
- Panwar, A.; Tan, L.P. Current Status of Bioinks for Micro-Extrusion-Based 3D Bioprinting. Molecules 2016, 21, 685. [Google Scholar] [CrossRef]
- Ozbolat, I.T.; Hospodiuk, M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 2016, 76, 321–343. [Google Scholar] [CrossRef] [PubMed]
- De Maria, C.; Ferrari, L.; Montemurro, F.; Vozzi, F.; Guerrazzi, I.; Boland, T.; Vozzi, G. Design and Validation of an Open-Hardware Print-Head for Bioprinting Application. Procedia Eng. 2015, 110, 98–105. [Google Scholar] [CrossRef]
- Ponce-Torres, A.; Ortega, E.; Rubio, M.; Rubio, A.; Vega, E.J.; Montanero, J.M. Gaseous flow focusing for spinning micro and nanofibers. Polymer 2019, 178, 121623. [Google Scholar] [CrossRef]
- Coaxial Nozzle-Assisted 3D Bioprinting with Built-in Microchannels for Nutrients Delivery—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0142961215004810 (accessed on 28 June 2024).
- Fluid Dynamics in Conically Tapered Microneedles-Martanto-2005-AIChE Journal-Wiley Online Library. Available online: https://aiche.onlinelibrary.wiley.com/doi/full/10.1002/aic.10424 (accessed on 28 June 2024).
- Kang, D.; Ahn, G.; Kim, D.; Kang, H.-W.; Yun, S.; Yun, W.-S.; Shim, J.-H.; Jin, S. Pre-set extrusion bioprinting for multiscale heterogeneous tissue structure fabrication. Biofabrication 2018, 10, 035008. [Google Scholar] [CrossRef] [PubMed]
- Attalla, R.; Puersten, E.; Jain, N.; Selvaganapathy, P.R. 3D bioprinting of heterogeneous bi- and tri-layered hollow channels within gel scaffolds using scalable multi-axial microfluidic extrusion nozzle. Biofabrication 2018, 11, 015012. [Google Scholar] [CrossRef]
- Kang, K.H.; Hockaday, L.A.; Butcher, J.T. Quantitative optimization of solid freeform deposition of aqueous hydrogels. Biofabrication 2013, 5, 035001. [Google Scholar] [CrossRef] [PubMed]
- Parzel, C.A.; Pepper, M.E.; Burg, T.; Groff, R.E.; Burg, K.J.L. EDTA enhances high-throughput two-dimensional bioprinting by inhibiting salt scaling and cell aggregation at the nozzle surface. J. Tissue Eng. Regen. Med. 2009, 3, 260–268. [Google Scholar] [CrossRef]
- Pusch, K.; Hinton, T.J.; Feinberg, A.W. Large volume syringe pump extruder for desktop 3D printers. HardwareX 2018, 3, 49–61. [Google Scholar] [CrossRef]
- Suntornnond, R.; Tan, E.Y.S.; An, J.; Chua, C.K. A Mathematical Model on the Resolution of Extrusion Bioprinting for the Development of New Bioinks. Materials 2016, 9, 756. [Google Scholar] [CrossRef]
- Ponce-Torres, A.; Vega, E.J.; Castrejón-Pita, A.A.; Montanero, J.M. Smooth printing of viscoelastic microfilms with a flow focusing ejector. J. Non-Newton. Fluid Mech. 2017, 249, 1–7. [Google Scholar] [CrossRef]
- Accessible Bioprinting: Adaptation of a Low-Cost 3D-Printer for Precise Cell Placement and Stem Cell Differentiation—IOPScience. Available online: https://iopscience.iop.org/article/10.1088/1758-5090/8/2/025017 (accessed on 28 June 2024).
- Mendoza-Cerezo, L.; Rodríguez-Rego, J.M.; Macías-García, A.; Callejas-Marín, A.; Sánchez-Guardado, L.; Marcos-Romero, A.C. Three-Dimensional Bioprinting of GelMA Hydrogels with Culture Medium: Balancing Printability, Rheology and Cell Viability for Tissue Regeneration. Polymers 2024, 16, 1437. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Mao, S.; Sun, W.; Yao, R. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication 2015, 7, 045002. [Google Scholar] [CrossRef]
- Aljohani, W.; Ullah, M.W.; Zhang, X.; Yang, G. Bioprinting and its applications in tissue engineering and regenerative medicine. Int. J. Biol. Macromol. 2018, 107, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; St, C. Design of Experiments Using the Taguchi Approach 16 Steps to Product and Process Improvement; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Claes, E.; Heck, T.; Sonnaert, M.; Donvil, F.; Schaschkow, A.; Desmet, T.; Schrooten, J. Product and process design: Scalable and sustainable tissue-engineered product manufacturing. In Tissue Engineering, 3rd ed.; De Boer, J., Blitterswijk, C.A.V., Uquillas, J.A., Malik, N., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 689–716. [Google Scholar] [CrossRef]
- Montgomery, D.; St, C. Design and Analysis of Experiments, 9th ed.; Springer: New York, NY, USA, 2022. [Google Scholar]
- Hamzaçebi, C. Taguchi Method as a Robust Design Tool. In Quality Control—Intelligent Manufacturing, Robust Design and Charts; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Kamoun, T.; Meslameni, W. Identification of the effects and interactions of factors on the EDM process in order to model it using Taguchi method. Int. J. Eng. Innov. Res. 2022, 4, 76–103. [Google Scholar] [CrossRef]
- Wu, J.; Wu, C.; Zou, S.; Li, X.; Ho, B.; Sun, R.; Liu, C.; Chen, M. Investigation of Biomaterial Ink Viscosity Properties and Optimization of the Printing Process Based on Pattern Path Planning. Bioengineering 2023, 10, 1358. [Google Scholar] [CrossRef]
- Ortega-Gutiérrez, A.; Escobar-Flores, J.E.; Grave-Capistrán, M.A.; López-Perrusquia, N.; Doñu-Ruiz, M.A.; Oropeza-Osornio, A.; Torres-SanMiguel, C.R. Conceptual Design and Numerical Validation of a Carbon-Based Ink Injector. Materials 2023, 16, 6545. [Google Scholar] [CrossRef] [PubMed]
- Luis, E.; Pan, H.M.; Sing, S.L.; Bajpai, R.; Song, J.; Yeong, W.Y. 3D Direct Printing of Silicone Meniscus Implant Using a Novel Heat-Cured Extrusion-Based Printer. Polymers 2020, 12, 1031. [Google Scholar] [CrossRef] [PubMed]
Variables | Central | Step | Maximum | Minimum |
---|---|---|---|---|
Temperature (°C) | 28.50 | 4.25 | 37 | 20 |
Volumetric flow (μL/s) | 133.050 | 66.475 | 266 | 0.1 |
Pressure (kPa) | 27 | 6.5 | 40 | 14 |
Viscosity (mPa·s) | 1.515·108 | 0.7425·108 | 30·108 | 30·105 |
Characteristics | Types of bioprinting | Extrusion |
Inkjet | ||
Gas flow | ||
Nozzle geometry | Nozzle types | Coaxial |
Conical | ||
Microfluidic | ||
Others | ||
Nozzle dimensions | Diameter (0.2 mm to 1 mm) | |
Length (8.9 mm to 10 mm) | ||
Nozzle geometry | Internal angle (20° to 30°) | |
Computational simulations |
Physical parameters of bioprinting | Temperature | 20 °C to 37 °C |
Volumetric flows | 0.1 μL/s to 266 μL/s | |
Masic flows | 90 mg/min to 100 mg/min | |
Pressure | 14 kPa to 40 kPa | |
Hydrogel viscosity | 1 mPa·s to 9.8 mPa·s | |
Viscosity | 30·105 mPa·s to 30·108 mPa·s |
CFD Simulation | Velocity | 1.6 mm/s to 226.6 mm/s |
Pressure | 1 kPa to 300 kPa | |
Shear stress | <10 kPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco, J.C.G.; Macías-García, A.; Rodríguez-Rego, J.M.; Mendoza-Cerezo, L.; Sánchez-Margallo, F.M.; Marcos-Romero, A.C.; Pagador-Carrasco, J.B. Optimising Bioprinting Nozzles through Computational Modelling and Design of Experiments. Biomimetics 2024, 9, 460. https://doi.org/10.3390/biomimetics9080460
Blanco JCG, Macías-García A, Rodríguez-Rego JM, Mendoza-Cerezo L, Sánchez-Margallo FM, Marcos-Romero AC, Pagador-Carrasco JB. Optimising Bioprinting Nozzles through Computational Modelling and Design of Experiments. Biomimetics. 2024; 9(8):460. https://doi.org/10.3390/biomimetics9080460
Chicago/Turabian StyleBlanco, Juan C. Gómez, Antonio Macías-García, Jesús M. Rodríguez-Rego, Laura Mendoza-Cerezo, Francisco M. Sánchez-Margallo, Alfonso C. Marcos-Romero, and José B. Pagador-Carrasco. 2024. "Optimising Bioprinting Nozzles through Computational Modelling and Design of Experiments" Biomimetics 9, no. 8: 460. https://doi.org/10.3390/biomimetics9080460
APA StyleBlanco, J. C. G., Macías-García, A., Rodríguez-Rego, J. M., Mendoza-Cerezo, L., Sánchez-Margallo, F. M., Marcos-Romero, A. C., & Pagador-Carrasco, J. B. (2024). Optimising Bioprinting Nozzles through Computational Modelling and Design of Experiments. Biomimetics, 9(8), 460. https://doi.org/10.3390/biomimetics9080460