Multimodal Resonances of a Rectangular Planar Dielectric Elastomer Actuator and Its Application in a Robot with Soft Bristles
Abstract
:1. Introduction
2. The Structure, FEM, and Test of the RPDEA
2.1. The Structure and Fabrication
2.2. The Process of FEM
2.3. The Test Method
3. Results
3.1. Identification of the Multimodal Resonance
3.2. Effects of the Parameters
3.2.1. The Prestretch Ratio λ2
3.2.2. The Excited Signal
3.3. The Robot Driven by Multimodal Resonance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- El-Atab, N.; Mishra, R.B.; Al-Modaf, F.; Joharji, L.; Alsharif, A.A.; Alamoudi, H.; Diaz, M.; Qaiser, N.; Hussain, M.M. Soft Actuators for Soft Robotic Applications: A Review. Adv. Intell. Syst. 2020, 2, 2000128. [Google Scholar] [CrossRef]
- Kim, M.S.; Heo, J.K.; Rodrigue, H.; Lee, H.T.; Pane, S.; Han, M.W.; Ahn, S.H. Shape Memory Alloy (SMA) Actuators: The Role of Material, Form, and Scaling Effects. Adv. Mater. 2023, 35, 2208517. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; He, Y.; Zhang, F.; Liu, Y.; Leng, J. A review of shape memory polymers and composites: Mechanisms, materials, and applications. Adv. Mater. 2021, 33, 2000713. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, L.; Liu, Y.; Leng, J. Review of dielectric elastomer actuators and their applications in soft robots. Adv. Intell. Syst. 2021, 3, 2000282. [Google Scholar] [CrossRef]
- Gu, G.Y.; Zhu, J.; Zhu, L.M.; Zhu, X. A survey on dielectric elastomer actuators for soft robots. Bioinspir. Biomim. 2017, 12, 011003. [Google Scholar] [CrossRef]
- Wang, N.; Cui, C.; Guo, H.; Chen, B.; Zhang, X. Advances in dielectric elastomer actuation technology. Sci. China Technol. Sci. 2017, 61, 1512–1527. [Google Scholar] [CrossRef]
- Duduta, M.; Berlinger, F.; Nagpal, R.; Clarke, D.R.; Wood, R.J.; Temel, F.Z. Tunable multi-modal locomotion in soft dielectric elastomer robots. IEEE Robot. Autom. Lett. 2020, 5, 3868–3875. [Google Scholar] [CrossRef]
- Li, T.; Zou, Z.; Mao, G.; Yang, X.; Liang, Y.; Li, C.; Qu, S.; Suo, Z.; Yang, W. Agile and resilient insect-scale robot. Soft Robot. 2019, 6, 133–141. [Google Scholar] [CrossRef]
- Du, Y.; Wu, X.; Xue, J.; Chen, X.; Cao, C.; Gao, X. A Soft Robot Driven by a Spring-Rolling Dielectric Elastomer Actuator with Two Bristles. Micromachines 2023, 14, 618. [Google Scholar] [CrossRef]
- Ji, X.; Liu, X.; Cacucciolo, V.; Imboden, M.; Civet, Y.; El Haitami, A.; Cantin, S.; Perriard, Y.; Shea, H. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 2019, 4, eaaz6451. [Google Scholar] [CrossRef]
- Gu, G.; Zou, J.; Zhao, R.; Zhao, X.; Zhu, X. Soft wall-climbing robots. Sci. Robot. 2018, 3, eaat2874. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Du, B.; Jiang, S.; Shao, Q.; Dong, X.; Liu, X.-J.; Zhao, H. A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale. Sci. Robot. 2022, 7, eabm8597. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, H.; Mao, J.; Chirarattananon, P.; Helbling, E.F.; Hyun, N.-S.P.; Clarke, D.R.; Wood, R.J. Controlled flight of a microrobot powered by soft artificial muscles. Nature 2019, 575, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-B.; Zhang, W.-M.; Zou, H.-X.; Peng, Z.-K.; Meng, G. A fast rolling soft robot driven by dielectric elastomer. IEEE/ASME Trans. Mechatron. 2018, 23, 1630–1640. [Google Scholar] [CrossRef]
- Cao, C.; Gao, X.; Conn, A.T. A magnetically coupled dielectric elastomer pump for soft robotics. Adv. Mater. Technol. 2019, 4, 1900128. [Google Scholar] [CrossRef]
- Mao, G.; Wu, L.; Fu, Y.; Chen, Z.; Natani, S.; Gou, Z.; Ruan, X.; Qu, S. Design and Characterization of a Soft Dielectric Elastomer Peristaltic Pump Driven by Electromechanical Load. IEEE/ASME Trans. Mechatron. 2018, 23, 2132–2143. [Google Scholar] [CrossRef]
- Mao, G.; Huang, X.; Liu, J.; Li, T.; Qu, S.; Yang, W. Dielectric elastomer peristaltic pump module with finite deformation. Smart Mater. Struct. 2015, 24, 075026. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, C.; Tan, W.; Yang, J.; Lin, D.; Liu, L. Electroactive Polymer-Based Soft Actuator with Integrated Functions of Multi-Degree-of-Freedom Motion and Perception. Soft Robot. 2022, 10, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, S.; Ren, Z.; Chirarattananon, P. Collision resilient insect-scale soft-actuated aerial robots with high agility. IEEE Trans. Robot. 2021, 37, 1752–1764. [Google Scholar] [CrossRef]
- Tang, C.; Li, B.; Sun, W.; Li, Z.; Chen, H. Identification and characterization of the out-of-plane resonance in a dielectric elastomer to drive an agile robotic cube. J. Appl. Phys. 2017, 122, 165104. [Google Scholar] [CrossRef]
- Linnebach, P.; Rizzello, G.; Seelecke, S. Design and validation of a dielectric elastomer membrane actuator driven pneumatic pump. Smart Mater. Struct. 2020, 29, 075021. [Google Scholar] [CrossRef]
- Zhu, J.; Cai, S.; Suo, Z. Resonant behavior of a membrane of a dielectric elastomer. Int. J. Solids Struct. 2010, 47, 3254–3262. [Google Scholar] [CrossRef]
- Tang, C.; Li, B.; Fang, H.; Li, Z.; Chen, H. A speedy, amphibian, robotic cube: Resonance actuation by a dielectric elastomer. Sens. Actuators A Phys. 2018, 270, 1–7. [Google Scholar] [CrossRef]
- Cao, C.; Hill, T.L.; Conn, A.T. On the nonlinear dynamics of a circular dielectric elastomer oscillator. Smart Mater. Struct. 2019, 28, 075020. [Google Scholar] [CrossRef]
- Gratz-Kelly, S.; Rizzello, G.; Fontana, M.; Seelecke, S.; Moretti, G. A Multi-Mode, Multi-Frequency Dielectric Elastomer Actuator. Adv. Funct. Mater. 2022, 32, 2201889. [Google Scholar] [CrossRef]
- Liu, L.; Chen, H.; Sheng, J.; Zhang, J.; Wang, Y.; Jia, S. Experimental study on the dynamic response of in-plane deformation of dielectric elastomer under alternating electric load. Smart Mater. Struct. 2014, 23, 025037. [Google Scholar] [CrossRef]
- Cao, C.; Hill, T.L.; Li, B.; Chen, G.; Wang, L.; Gao, X. Uncovering isolated resonant responses in antagonistic pure-shear dielectric elastomer actuators. Soft Sci. 2021, 1, 1–19. [Google Scholar] [CrossRef]
- Li, T.; Qu, S.; Yang, W. Electromechanical and dynamic analyses of tunable dielectric elastomer resonator. Int. J. Solids Struct. 2012, 49, 3754–3761. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Li, D. Pinnacle elimination and stability analyses in nonlinear oscillation of soft dielectric elastomer slide actuators. Nonlinear Dyn. 2018, 94, 1907–1920. [Google Scholar] [CrossRef]
- Sheng, J.; Chen, H.; Li, B.; Wang, Y. Nonlinear dynamic characteristics of a dielectric elastomer membrane undergoing in-plane deformation. Smart Mater. Struct. 2014, 23, 045010. [Google Scholar] [CrossRef]
- Liu, C.-J.; Zheng, Z.-L.; Jun, L.; Guo, J.-J.; Wu, K. Dynamic analysis for nonlinear vibration of prestressed orthotropic membranes with viscous damping. Int. J. Struct. Stab. Dyn. 2013, 13, 1350018. [Google Scholar] [CrossRef]
- Song, W.; Du, L.; Zhang, Y.; Yin, H.; Liu, C. Strongly Nonlinear Damped Vibration of Orthotropic Membrane under Initial Displacement: Theory and Experiment. J. Vib. Eng. Technol. 2021, 9, 1359–1372. [Google Scholar] [CrossRef]
- Förster-Zügel, F.; Solano-Arana, S.; Klug, F.; Schlaak, H.F. Dielectric breakdown strength measurements with silicone-based single-layer dielectric elastomer transducers. Smart Mater. Struct. 2019, 28, 075042. [Google Scholar] [CrossRef]
- Moretti, G.; Rizzello, G.; Fontana, M.; Seelecke, S.; Madden, J.D.; Anderson, I.A.; Shea, H.R. A multi-domain dynamical model for cone-shaped dielectric elastomer loudspeakers. In Proceedings of the Electroactive Polymer Actuators and Devices (EAPAD) XXIII, Online, 22–26 March 2021. [Google Scholar]
- Cao, C.; Chen, L.; Li, B.; Chen, G.; Nie, Z.; Wang, L.; Gao, X. Toward broad optimal output bandwidth dielectric elastomer actuators. Sci. China Technol. Sci. 2022, 65, 1137–1148. [Google Scholar] [CrossRef]
- Cao, C.; Chen, L.; Hill, T.L.; Wang, L.; Gao, X. Exploiting bistability for high-performance dielectric elastomer resonators. IEEE/ASME Trans. Mechatron. 2022, 27, 5994–6005. [Google Scholar] [CrossRef]
- Xue, J.; Du, Y.; Zhao, W.; Gao, X. A Modular Crawling Robot Driven by A Single-layer Conical Dielectric Elastomer. In Proceedings of the 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO), Jinghong, China, 5–9 December 2022; pp. 783–788. [Google Scholar]
- Lu, Q.; Feng, Y.; Song, K.-Y.; Zhang, W.-J. 3D Printable Micro/Macro Dual Driving Multipede Millirobot and Its Characterization for Multi-Locomotory Modes. IEEE/ASME Trans. Mechatron. 2023, 28, 3492–3501. [Google Scholar] [CrossRef]
- Becker, F.; Boerner, S.; Lysenko, V.; Zeidis, I.; Zimmermann, K. On the mechanics of bristle-bots-modeling, simulation and experiments. In Proceedings of the ISR/Robotik 2014; 41st International Symposium on Robotics, Munich, Germany, 2–3 June 2014; pp. 1–6. [Google Scholar]
Parameter | C1 | C2 | C3 | D1 | D2 | D3 |
---|---|---|---|---|---|---|
Value | 0.22 | −0.08/−0.09 | 0.05 | 0.2 | 0 | 0 |
Frequency (Hz) | 1.0 × 1.1 | 1.0 × 1.2 | 1.0 × 1.3 | |||
---|---|---|---|---|---|---|
Simulation | Experiment | Simulation | Experiment | Simulation | Experiment | |
Modal 1 | 48.3 | 47.7 | 63.1 | 63.0 | 70.1 | 73.2 |
Modal 2 | 77.1 | 79.0 | 95.0 | 96.3 | 101.6 | 100.6 |
Modal 3 | 85.6 | 87.5 | 98.0 | 102.5 | 98.3 | / |
Prestretch | 1.0 × 1.1 | 1.0 × 1.2 | 1.0 × 1.3 |
---|---|---|---|
Mises Stress (MPa) | 0.14 | 0.26 | 0.36 |
E (MV/m) | 20 | 25 | 30 | 35 | 40 | 45 | 50 | |
---|---|---|---|---|---|---|---|---|
Modal 1 | Maxwell stress (10−2 Mpa) | 0.71 | 1.11 | 1.59 | 2.17 | 2.83 | 3.58 | 4.43 |
Damping (10−2 N·s/mm) | 0.24 | 0.30 | 0.36 | 0.40 | 0.44 | 0.47 | 0.49 | |
Modal 2 | Moment (10−3 N·mm) | 0.17 | 0.27 | 0.38 | 0.52 | 0.68 | 0.86 | 1.04 |
Damping (10−2 N·s/mm) | 0.24 | 0.3 | 0.33 | 0.37 | 0.41 | 0.45 | 0.49 | |
Modal 3 | Moment (10−3 N·mm) | 0.58 | 0.90 | 1.30 | 1.76 | 2.30 | 2.92 | 3.6 |
Damping (N·s/mm) | 0.27 | 0.3 | 0.33 | 0.38 | 0.42 | 0.47 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Wu, X.; Wang, D.; Zhao, F.; Hu, H. Multimodal Resonances of a Rectangular Planar Dielectric Elastomer Actuator and Its Application in a Robot with Soft Bristles. Biomimetics 2024, 9, 488. https://doi.org/10.3390/biomimetics9080488
Du Y, Wu X, Wang D, Zhao F, Hu H. Multimodal Resonances of a Rectangular Planar Dielectric Elastomer Actuator and Its Application in a Robot with Soft Bristles. Biomimetics. 2024; 9(8):488. https://doi.org/10.3390/biomimetics9080488
Chicago/Turabian StyleDu, Yangyang, Xiaojun Wu, Dan Wang, Futeng Zhao, and Hua Hu. 2024. "Multimodal Resonances of a Rectangular Planar Dielectric Elastomer Actuator and Its Application in a Robot with Soft Bristles" Biomimetics 9, no. 8: 488. https://doi.org/10.3390/biomimetics9080488
APA StyleDu, Y., Wu, X., Wang, D., Zhao, F., & Hu, H. (2024). Multimodal Resonances of a Rectangular Planar Dielectric Elastomer Actuator and Its Application in a Robot with Soft Bristles. Biomimetics, 9(8), 488. https://doi.org/10.3390/biomimetics9080488