Micro-CT Microcalcification Analysis: A Scoping Review of Current Applications and Future Potential in Breast Cancer Research
Abstract
:1. Introduction
2. Methodology
2.1. Search Strategy
2.2. Eligibility Criteria and Study Selection
2.3. Data Tabulation and Quality Assessment
3. Results
4. Discussion
4.1. Micro-CT Analysis of Breast MCs in Human Specimens
4.2. Micro-CT Analysis of MCs in Animal Models
4.3. Micro-CT Analysis of Synthesized Calcium Grains in Phantoms
4.4. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Micro-CT | Micro-computed Tomography |
MCs | Microcalcifications |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
ROI | Region of Interest |
EBCCD | Electron Bombarded Charged Coupled Device |
CAD | Computer-Aided Diagnosis |
DCIS | Ductal Carcinoma In Situ |
IDC | Invasive Ductal Carcinoma |
BMP-2 | Humoral Bone Morphogenetic Protein 2 |
DBT | Digital Breast Tomosynthesis |
SCM | Shaved Cavity Margins |
BP-Au NPs | Bisphosphonate functionalized Gold Nanoparticles |
HA | Hydroxyapatite |
Appendix A. Search Queries Used in the Review
- Scopus: TITLE-ABS (“micro-CT” OR “micro-ct” OR “X-ray microtomography” OR “microCT” OR “micro-computed tomography” OR “micro computed tomography”) AND TITLE-ABS (“microcalcifications” OR “micro-calcifications” OR “microcalcification” OR “micro-calcification” OR “calcifications” OR “calcification” OR “MCs” OR “MC”) AND TITLE-ABS (breast) AND (DOCTYPE (ar))
- Web of Science: (TI=(“micro-CT” OR “micro-ct” OR “X-ray microtomography” OR “microCT” OR “micro-computed tomography” OR “micro computed tomography”) OR AB=(“micro-CT” OR “micro-ct” OR “X-ray microtomography” OR “microCT” OR “micro-computed tomography” OR “micro computed tomography”))AND (TI=(“microcalcifications” OR “micro-calcifications” OR “microcalcification” OR “micro-calcification” OR “calcifications” OR “calcification” OR “MCs” OR “MC”) OR AB=(“microcalcifications” OR “micro-calcifications” OR “microcalcification” OR “micro-calcification” OR “calcifications” OR “calcification” OR “MCs” OR “MC”)) AND (TI=(breast) OR AB=(breast))
- PubMed:(“micro-CT”[Title/Abstract] OR “micro-ct”[Title/Abstract] OR “X-ray microtomography”[Title/Abstract] OR “microCT”[Title/Abstract] OR “micro-computed tomography”[Title/Abstract] OR “micro computed tomography”[Title/Abstract]) AND (“microcalcifications”[Title/Abstract] OR “micro-calcifications”[Title/Abstract] OR “microcalcification”[Title/Abstract] OR “micro-calcification”[Title/Abstract] OR “calcifications”[Title/Abstract] OR “calcification”[Title/Abstract] OR “MCs”[Title/Abstract] OR “MC”[Title/Abstract]) AND (breast[Title/Abstract])
References
- Hutchinson, J.C.; Shelmerdine, S.C.; Simcock, I.C.; Sebire, N.J.; Arthurs, O.J. Early clinical applications for imaging at microscopic detail: Microfocus computed tomography (micro-CT). Br. J. Radiol. 2017, 90, 20170113. [Google Scholar] [CrossRef]
- Du Plessis, A.; Broeckhoven, C.; Guelpa, A.; Le Roux, S.G. Laboratory x-ray micro-computed tomography: A user guideline for biological samples. Gigascience 2017, 6, gix027. [Google Scholar] [CrossRef] [PubMed]
- Keklikoglou, K.; Arvanitidis, C.; Chatzigeorgiou, G.; Chatzinikolaou, E.; Karagiannidis, E.; Koletsa, T.; Magoulas, A.; Makris, K.; Mavrothalassitis, G.; Papanagnou, E.D.; et al. Micro-CT for biological and biomedical studies: A comparison of imaging techniques. J. Imaging 2021, 7, 172. [Google Scholar] [CrossRef] [PubMed]
- Logullo, A.F.; Prigenzi, K.C.; Nimir, C.C.; Franco, A.F.; Campos, M.S. Breast microcalcifications: Past, present and future. Mol. Clin. Oncol. 2022, 16, 81. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Wells, G.; Shea, B.; O’Connell, D.; Robertson, J.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. 2000. Available online: https://www3.med.unipmn.it/dispense_ebm/2009-2010/Corso%20Perfezionamento%20EBM_Faggiano/NOS_oxford.pdf (accessed on 20 October 2024).
- Chueh, H.S.; Chen, J.C.; Hsiao, T.; Shieh, Y.R. Three dimensional cone-beam reconstruction of micro computed tomography in the breast specimen. J. Med Biol. Eng. 2004, 24, 115–120. [Google Scholar]
- Gufler, H.; Franke, F.E.; Wagner, S.; Rau, W.S. Fine structure of breast tissue on micro computed tomography: A feasibility study. Acad. Radiol. 2011, 18, 230–234. [Google Scholar] [CrossRef]
- Gufler, H.; Wagner, S.; Franke, F.E. The interior structure of breast microcalcifications assessed with micro computed tomography. Acta Radiol. 2011, 52, 592–596. [Google Scholar] [CrossRef]
- Shaheen, E.; Van Ongeval, C.; Zanca, F.; Cockmartin, L.; Marshall, N.; Jacobs, J.; Young, K.C.; Dance, D.R.; Bosmans, H. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis. Med Phys. 2011, 38, 6659–6671. [Google Scholar] [CrossRef]
- Tang, R.; Buckley, J.M.; Fernandez, L.; Coopey, S.; Aftreth, O.; Michaelson, J.; Saksena, M.; Lei, L.; Specht, M.; Gadd, M.; et al. Micro-computed tomography (Micro-CT): A novel approach for intraoperative breast cancer specimen imaging. Breast Cancer Res. Treat. 2013, 139, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Coopey, S.B.; Buckley, J.M.; Aftreth, O.P.; Fernandez, L.J.; Brachtel, E.F.; Michaelson, J.S.; Gadd, M.A.; Specht, M.C.; Koerner, F.C.; et al. A Pilot Study Evaluating Shaved Cavity Margins with Micro-Computed Tomography: A Novel Method for Predicting Lumpectomy Margin Status Intraoperatively. Breast J. 2013, 19, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Willekens, I.; Van de Casteele, E.; Buls, N.; Temmermans, F.; Jansen, B.; Deklerck, R.; De Mey, J. High-resolution 3D micro-CT imaging of breast microcalcifications: A preliminary analysis. BMC Cancer 2014, 14, 9. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.; Kendall, C.; Stone, N.; Rogers, K. Locating microcalcifications in breast histopathology sections using micro CT and XRF mapping. Anal. Methods 2014, 6, 3962–3966. [Google Scholar] [CrossRef]
- Scherer, K.; Braig, E.; Ehn, S.; Schock, J.; Wolf, J.; Birnbacher, L.; Chabior, M.; Herzen, J.; Mayr, D.; Grandl, S.; et al. Improved diagnostics by assessing the micromorphology of breast calcifications via x-ray dark-field radiography. Sci. Rep. 2016, 6, 36991. [Google Scholar] [CrossRef]
- Kenkel, D.; Varga, Z.; Heuer, H.; Dedes, K.J.; Berger, N.; Filli, L.; Boss, A. A micro ct study in patients with breast microcalcifications using a mathematical algorithm to assess 3d structure. PLoS ONE 2017, 12, e0169349. [Google Scholar] [CrossRef]
- Brahimetaj, R.; Willekens, I.; Massart, A.; Forsyth, R.; Cornelis, J.; Mey, J.D.; Jansen, B. Improved automated early detection of breast cancer based on high resolution 3D micro-CT microcalcification images. BMC Cancer 2022, 22, 162. [Google Scholar] [CrossRef]
- Peña, L.A.; Donato, S.; Bonazza, D.; Brombal, L.; Martellani, F.; Arfelli, F.; Tromba, G.; Longo, R. Multiscale X-ray phase-contrast tomography: From breast CT to micro-CT for virtual histology. Phys. Medica 2023, 112, 102640. [Google Scholar] [CrossRef]
- Brahimetaj, R.; Cornelis, J.; Van Ongeval, C.; De Mey, J.; Jansen, B. The impact of (simulated) resolution on breast cancer diagnosis based on high-resolution 3D micro-CT microcalcification images. Med Phys. 2024, 51, 1754–1762. [Google Scholar] [CrossRef]
- Sarno, A.; Mettivier, G.; Di Lillo, F.; Cesarelli, M.; Bifulco, P.; Russo, P. Cone-beam micro computed tomography dedicated to the breast. Med Eng. Phys. 2016, 38, 1449–1457. [Google Scholar] [CrossRef]
- Sarno, A.; Mettivier, G.; Di Lillo, F.; Cesarelli, M.; Bifulco, P.; Russo, P. High resolution microcalcification signal profiles for dedicated breast CT. In Proceedings of the Medical Imaging 2020: Physics of Medical Imaging. SPIE 2020, 11312, 146–151. [Google Scholar]
- Hernandez, A.M.; Becker, A.E.; Hyun Lyu, S.; Abbey, C.K.; Boone, J.M. High-resolution μ CT imaging for characterizing microcalcification detection performance in breast CT. J. Med Imaging 2021, 8, 052107. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Bloch, N.; Bhushan, K.R.; De Gr, A.M.; Tanaka, E.; Solazzo, S.; Mertyna, P.M.; Goldberg, N.; Frangioni, J.V.; Lenkinski, R.E. Humoral bone morphogenetic protein 2 is sufficient for inducing breast cancer microcalcification. Mol. Imaging 2008, 7, 7290-2008. [Google Scholar] [CrossRef]
- Cole, L.E.; Vargo-Gogola, T.; Roeder, R.K. Bisphosphonate-functionalized gold nanoparticles for contrast-enhanced X-ray detection of breast microcalcifications. Biomaterials 2014, 35, 2312–2321. [Google Scholar] [CrossRef]
- Papazoglou, A.S.; Karagiannidis, E.; Moysidis, D.V.; Sofidis, G.; Bompoti, A.; Stalikas, N.; Panteris, E.; Arvanitidis, C.; Herrmann, M.D.; Michaelson, J.S.; et al. Current clinical applications and potential perspective of micro-computed tomography in cardiovascular imaging: A systematic scoping review. Hell. J. Cardiol. 2021, 62, 399–407. [Google Scholar] [CrossRef]
- Dizbay Sak, S.; Sevim, S.; Buyuksungur, A.; Kayı Cangır, A.; Orhan, K. The value of micro-CT in the diagnosis of lung carcinoma: A radio-histopathological perspective. Diagnostics 2023, 13, 3262. [Google Scholar] [CrossRef]
- Grimm, L.J.; Miller, M.M.; Thomas, S.M.; Liu, Y.; Lo, J.Y.; Hwang, E.S.; Hyslop, T.; Ryser, M.D. Growth dynamics of mammographic calcifications: Differentiating ductal carcinoma in situ from benign breast disease. Radiology 2019, 292, 77–83. [Google Scholar] [CrossRef]
- Vasigh, M.; Meshkati Yazd, S.M.; Papazoglou, A.S.; Liatsos, A.; Ranjbar, K.; Bleicher, R.J.; Williams, A.D.; Cruz Pico, C.X.; Pierotti, M.L.; Michaelson, J. The role of micro-CT for intraoperative margin assessment of breast cancer. J. Clin. Oncol. 2023, 41, 16. [Google Scholar] [CrossRef]
- Zhu, Y.; O’Connell, A.M.; Ma, Y.; Liu, A.; Li, H.; Zhang, Y.; Zhang, X.; Ye, Z. Dedicated breast CT: State of the art—Part I. Historical evolution and technical aspects. Eur. Radiol. 2022, 32, 1579–1589. [Google Scholar] [CrossRef]
- Cozzi, A.; Magni, V.; Zanardo, M.; Schiaffino, S.; Sardanelli, F. Contrast-enhanced mammography: A systematic review and meta-analysis of diagnostic performance. Radiology 2022, 302, 568–581. [Google Scholar] [CrossRef]
Ref. | Selection (4 *) | Comparability (2 *) | Exposure (3 *) | Total (9 *) | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
2004, [8] | * | * | ** | * | * | 6 | |||
2008, [24] | * | * | * | ** | * | * | 7 | ||
2011, [9] | * | * | * | * | ** | * | * | * | 9 |
2011, [10] | * | * | * | * | ** | * | * | * | 9 |
2011, [11] | * | * | * | * | ** | * | * | 8 | |
2013, [12] | * | * | * | * | ** | * | * | * | 9 |
2013, [13] | * | * | * | ** | * | * | 7 | ||
2013, [25] | * | * | ** | * | * | 6 | |||
2014, [14] | * | * | * | * | ** | * | * | * | 9 |
2014, [15] | * | * | * | ** | * | * | 7 | ||
2016, [21] | * | * | ** | * | * | 6 | |||
2016, [16] | * | * | * | * | ** | * | * | * | 9 |
2017, [17] | * | * | * | * | ** | * | * | * | 9 |
2020, [22] | * | * | * | ** | * | * | 7 | ||
2021, [23] | * | * | * | ** | * | * | 7 | ||
2022, [18] | * | * | * | * | ** | * | * | * | 9 |
2023, [19] | * | * | * | ** | * | * | 7 | ||
2023, [20] | * | * | * | * | ** | * | * | * | 9 |
Ref. | Scanner | Resolution | Samples | Purpose | Conclusions |
---|---|---|---|---|---|
2004, [8] | Customized (EBCCD) | N/A | 1 mastectomy specimen; MCs nr:N/A | (1) Evaluate micro-CT reconstruction algorithms (cone-, fan-, and parallel-beam) and evaluate them for MC detection. | (1) Cone-beam algorithm offers superior image quality and MC detection. (2) Micro-CT-scanned MCs can be detected by both visual inspection and using a CAD system. |
2008, [24] | eXplore Locus | 90 μm (whole animal); 45 μm (tumor ROI); | 8 female Fisher344 rat; MCs nr:N/A | (1) Assess BMP-2’s role in MC formation; (2) Determine whether it exerts its biological activity systemically or only locally; (3) Develop a robust animal model for the testing of new diagnostic agents for breast cancer. | (1) BMP-2 can act as a humoral factor to produce MCs in breast cancer; (2) It is unclear if BMP-2 mRNA affects MCs via cancer cells, tumor osteoblasts, or surrounding stroma. |
2011, [9] | SkyScan 1072 | 17 μm | 15 specimens (7 DCIS, 3 IDC, 5 benign); MCs nr:N/A | (1) Assess micro-CT feasibility for fine breast tissue structure; (2) Correlate with histology. | (1) Micro-CT effectively differentiates breast tissue components (parenchyma, adipose, tumor, MCs) at a micro-structural level, comparable to histology. (2) Significant differences exist between all tissue pairs except fibrous tissue vs. fibroglandular parenchyma. |
2011, [10] | SkyScan 1072 | 17 μm | 16 specimens: 11 malignant, 5 benign; MCs nr:N/A | (1) Analyze MC interior structure with micro-CT. | (1)Benign and malignant MCs differ internally: benign MCs are trabecular; malignant MCs are granular/amorphous. (2) Micro-CT detects more MCs than X-ray projection imaging. (3) Benign MCs are larger (0.1–2.7 mm) than malignant MCs (0.05–0.5 mm). |
2011, [11] | SkyScan 1172 | 17–30 μm | 23 biopsy specimens: 13 malignant, 10 benign; 54 MCs clusters. | (1) Develop 3D models of various MC cluster types; (2) Validate model realism in patient images using 2D mammography and digital breast tomosynthesis. | (1) Micro-CT creates realistic 3D models of MC clusters. (2) These 3D models can be used to simulate accurate MC clusters in 2D mammography and 3D tomosynthesis. |
2013, [12] | SkyScan 1173 | N/A | 103 breast cancer specimens; MCs nr:N/A | (1) Explore micro-CT usage (in real time) for assessing mass and MC spatial orientation relative to tumor margins in lumpectomy specimens. | Micro-CT accurately visualizes tumor masses/MCs within specimens and relative to tumor margins. |
2013, [13] | SkyScan 1173 | N/A | 25 SCM specimens with lumpectomy; MCs nr:N/A | (1) Determine if micro-CT can accurately identify tumors in lumpectomy SCM. | (1) Micro-CT findings match pathology 92% of the time. (2) Unlike specimen radiography, micro-CT accurately assesses MC distance to the tumor margin. |
2013, [25] | Scanco Medical AG, micro-CT80 | 10 μm; 100 μm | 1 in vitro phantom, 1 ex vivo female rat; MCs nr:N/A | (1) Investigate BP-Au NPs for contrast-enhanced radiographic detection of breast MCs. | (1) BP-Au NPs contrast agent provides high contrast for detecting MCs in both in vitro phantom and ex vivo rat model. (2) X-ray attenuation increases linearly with HA calcium concentration. |
2014, [14] | Skyscan 1076 | 35 μm | 11 biopsy specimens, MCs nr:597 | (1) Evaluate the 3D shape of individual breast MCs using high-resolution micro-CT and compare findings with pathological analysis. | (1) Micro-CT enhances the understanding of malignant and benign MC morphology. (2) Many small MCs may indicate malignancy. (3) Malignant MCs are more irregular in shape than benign ones. |
2014, [15] | Nikon XT H225 | 33 μm | 12 biopsy specimens; 31 MCs | (1) Demonstrate/design methods on how to locate MCs within tissue specimen. | (1) Both micro-CT and X-ray fluorescence effectively locate MCs on the surface of paraffin-embedded tissue blocks; (2) Micro-CT offers optimal tissue and marker visibility, depth selectivity, spatial resolution, and scan time. |
2016, [21] | Customized | 50 μm, 100 μm, 200 μm | 1 phantom; MCs nr:N/A | (1) Develop a micro-CT scanner dedicated to the breast. | (1) The developed breast-dedicated micro-CT scanner produced high-resolution images, comparable to existing breast-CT scanners. (2) It detected MCs and soft lesions at a low radiation dose (similar to mammography). |
2016, [16] | Phoenix X-ray vtomex | 6 μm | 31 biopsy specimens (11 DCIS, 20 benign); MCs nr:N/A | (1) Explore the sensitivity of X-ray dark-field contrast for clinical MC assessment. | (1) Dark-field mammography may allow in situ assessment of MC clusters in native (within the body) breast tissue, focusing on morphology rather than chemical composition for absorption and scattering. (2) Microtexture analysis of MCs could refine subjective BIRADS classification, improving cancer risk stratification and reducing unnecessary biopsies. |
2017, [17] | SkyScan 1176 | 9 μm | 29 biopsy specimens; MCs no:829 | (1) Evaluate if 3D mathematical modeling of MC structure can predict malignancy. | (1) The 3D shape of MCs does not distinguish benign lesions from those with unknown malignant potential or breast cancer. (2) No morphological parameters or MC types showed statistical correlation with B-classification of lesions. |
2020, [22] | MicroXCT-200 | 34 m | MCs no: 35 MCs (synthetically generated from calcium carbonate grains) | (1) Quantitatively compare signal profiles of MCs acquired using a breast-CT against a micro-CT scanner. | (1) Signal profiles from low-noise breast-CT images are comparable to micro-CT after spatial resolution correction. (2) MC detectability shows high correlation between both micro-CT and breast-CT. |
2021, [23] | MicroXCT-200 | 34 μm | 3 phantoms with MCs clusters; MCs no: 58 MCs grains in total (synthetically generated) | (1) Demonstrate micro-CT’s utility for determining MC size/shape to evaluate detection performance in breast-CT. | (1) Signal profiles from low-noise breast-CT images are comparable to those from micro-CT after adjusting for spatial resolution. (2) MC detectability demonstrates a high correlation between micro-CT and breast CT. |
2022, [18] | Skyscan 1076 | 9 μm | 94 biopsy specimens; MCs no: 3504; | (1) Analyze the association of individual breast MC shape and texture with malignancy. (2) Evaluate MCs’ potential to diagnose benign/malignant patients. | (1) High-resolution micro-CT analysis reveals a strong link between breast malignancies and individual MCs. (2) MC texture features in transform domains more effectively classify benign/malignant MCs than shape features. |
2023, [19] | Propagation-based phase contrast | 4 μm | 2 entire breast mastectomy specimens (DCIS). MCs no: N/A | (1) Optimize propagation-based phase-contrast CT for multiscale X-ray imaging of the breast. | (1) MCs are clearly visible in propagation-based phase-contrast micro-CT scans. (2) 3D inspection of entire paraffin-embedded blocks offers complementary help to pathologists, aiding in breast lesion diagnosis by overcoming challenges like MC dissolution or tissue damage during processing. |
2023, [20] | Skyscan 1076 | 8 μm | 86 biopsy specimens; MCs no: 707-3457 | (1) Explore the impact of image resolution (8-original, 16, 32, 64 simulated) on diagnosing breast cancer using radiomic features of individual MCs. | (1) The highest classification results are achieved when analyzing MC properties at the highest resolution (8 microns). (2) Analyzing MC properties at higher resolutions than those used in current digital mammograms could improve breast cancer diagnosis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brahimetaj, R.; Cornelis, J.; Jansen, B. Micro-CT Microcalcification Analysis: A Scoping Review of Current Applications and Future Potential in Breast Cancer Research. Tomography 2024, 10, 1716-1729. https://doi.org/10.3390/tomography10110126
Brahimetaj R, Cornelis J, Jansen B. Micro-CT Microcalcification Analysis: A Scoping Review of Current Applications and Future Potential in Breast Cancer Research. Tomography. 2024; 10(11):1716-1729. https://doi.org/10.3390/tomography10110126
Chicago/Turabian StyleBrahimetaj, Redona, Jan Cornelis, and Bart Jansen. 2024. "Micro-CT Microcalcification Analysis: A Scoping Review of Current Applications and Future Potential in Breast Cancer Research" Tomography 10, no. 11: 1716-1729. https://doi.org/10.3390/tomography10110126
APA StyleBrahimetaj, R., Cornelis, J., & Jansen, B. (2024). Micro-CT Microcalcification Analysis: A Scoping Review of Current Applications and Future Potential in Breast Cancer Research. Tomography, 10(11), 1716-1729. https://doi.org/10.3390/tomography10110126