Head and Neck Squamous Cell Carcinoma: Insights from Dual-Energy Computed Tomography (DECT)
Abstract
:1. Introduction
2. DECT in Cancers of the Nasopharynx
3. DECT in Cancers of the Oral Cavity
4. DECT in Oropharyngeal Cancer
5. DECT in Laryngeal Tumors
6. DECT in the Evaluation of Neck Lymph Nodes Metastasis
7. DECT in Head and Neck Squamous Cell Carcinoma: New Frontiers
8. Discussion
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Becker, M.; de Vito, C.; Dulguerov, N.; Zaidi, H. PET/MR Imaging in Head and Neck Cancer. Magn. Reson. Imaging Clin. N. Am. 2023, 31, 539–564. [Google Scholar] [CrossRef] [PubMed]
- Barsouk, A.; Aluru, J.S.; Rawla, P.; Saginala, K.; Barsouk, A. Epidemiology, Risk Factors, and Prevention of Head and Neck Squamous Cell Carcinoma. Med. Sci. 2023, 11, 42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parmar, K.; Mohamed, A.; Vaish, E.; Thawani, R.; Cetnar, J.; Thein, K.Z. Immunotherapy in head and neck squamous cell carcinoma: An updated review. Cancer Treat. Res. Commun. 2022, 33, 100649. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 2020, 6, 92. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gong, X.; Xiong, J.; Gong, Y.; Zhang, J.; Zhang, J.; Yang, G.; Chi, H.; Tian, G. Deciphering the role of HPV-mediated metabolic regulation in shaping the tumor microenvironment and its implications for immunotherapy in HNSCC. Front. Immunol. 2023, 14, 1275270. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, H.; Zou, Y.; Tian, F.; Li, W.; Ji, X.; Guo, Y.; Li, Q.; Sun, S.; Sun, F.; Shen, L.; et al. Dual-energy CT may predict post-operative recurrence in early-stage glottic laryngeal cancer: A novel nomogram and risk stratification system. Eur. Radiol. 2022, 32, 1921–1930. [Google Scholar] [CrossRef] [PubMed]
- Santos Armentia, E.; Martín Noguerol, T.; Silva Priegue, N.; Delgado Sánchez-Gracián, C.; Trinidad López, C.; Prada González, R. Strengths, weaknesses, opportunities, and threat analysis of dual-energy CT in head and neck imaging. Radiologia 2022, 64, 333–347. [Google Scholar] [CrossRef] [PubMed]
- Grosu, S.; Yeh, B.M. Hepatobiliary Dual-Energy Computed Tomography. Radiol. Clin. N. Am. 2022, 60, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Foti, G.; Lombardo, F.; Guerriero, M.; Rodella, T.; Cicciò, C.; Faccioli, N.; Serra, G.; Manenti, G. Management of vertebral compression fractures: The role of dual-energy CT in clinical practice. Radiol. Med. 2022, 127, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Odedra, D.; Narayanasamy, S.; Sabongui, S.; Priya, S.; Krishna, S.; Sheikh, A. Dual Energy CT Physics-A Primer for the Emergency Radiologist. Front. Radiol. 2022, 2, 820430. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dell’Aversana, S.; Ascione, R.; De Giorgi, M.; De Lucia, D.R.; Cuocolo, R.; Boccalatte, M.; Sibilio, G.; Napolitano, G.; Muscogiuri, G.; Sironi, S.; et al. Dual-Energy CT of the Heart: A Review. J. Imaging. 2022, 8, 236. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Siegel, M.J.; Bhalla, S.; Cullinane, M. Dual-Energy CT Material Decomposition in Pediatric Thoracic Oncology. Radiol. Imaging Cancer. 2021, 3, e200097. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arico’, F.M.; Trimarchi, R.; Portaluri, A.; Barilla’, C.; Migliaccio, N.; Bucolo, G.M.; Cicero, G.; Sofia, C.; Booz, C.; Vogl, T.J.; et al. Virtual monoenergetic dual-layer dual-energy CT images in colorectal cancer: CT diagnosis could be improved? Radiol. Med. 2023, 128, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Parakh, A.; Lennartz, S.; An, C.; Rajiah, P.; Yeh, B.M.; Simeone, F.J.; Sahani, D.V.; Kambadakone, A.R. Dual-Energy CT Images: Pearls and Pitfalls. Radiographics 2021, 41, 98–119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chung, R.; Dane, B.; Yeh, B.M.; Morgan, D.E.; Sahani, D.V.; Kambadakone, A. Dual-Energy Computed Tomography: Technological Considerations. Radiol. Clin. N. Am. 2023, 61, 945–961. [Google Scholar] [CrossRef] [PubMed]
- Ulas, S.T.; Ziegeler, K.; Richter, S.T.; Ohrndorf, S.; Proft, F.; Poddubnyy, D.; Diekhoff, T. Virtual Monochromatic Images from Dual-Energy Computed Tomography Do Not Improve the Detection of Synovitis in Hand Arthritis. Diagnostics 2022, 12, 1891. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tatsugami, F.; Higaki, T.; Nakamura, Y.; Honda, Y.; Awai, K. Dual-energy CT: Minimal essentials for radiologists. Jpn. J. Radiol. 2022, 40, 547–559. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chang, H.Y.; Liu, C.K.; Huang, H.M. Material decomposition using dual-energy CT with unsupervised learning. Phys. Eng. Sci. Med. 2023, 46, 1607–1617. [Google Scholar] [CrossRef] [PubMed]
- Sellerer, T.; Mechlem, K.; Tang, R.; Taphorn, K.A.; Pfeiffer, F.; Herzen, J. Dual-Energy X-Ray Dark-Field Material Decomposition. IEEE Trans. Med. Imaging. 2021, 40, 974–985. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Q.; Zhou, Y.; Su, G.Y.; Tao, X.W.; Ge, Y.Q.; Si, Y.; Shen, M.P.; Wu, F.Y. Iodine Maps from Dual-Energy CT to Predict Extrathyroidal Extension and Recurrence in Papillary Thyroid Cancer Based on a Radiomics Approach. AJNR Am. J. Neuroradiol. 2022, 43, 748–755. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vlahos, I.; Jacobsen, M.C.; Godoy, M.C.; Stefanidis, K.; Layman, R.R. Dual-energy CT in pulmonary vascular disease. Br. J. Radiol. 2022, 95, 20210699. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, L.; Sun, J.; Li, J.; Peng, Y. Dual-energy spectral CT imaging of pulmonary embolism with Mycoplasma pneumoniae pneumonia in children. Radiol. Med. 2022, 127, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Fulwadhva, U.P.; Wortman, J.R.; Sodickson, A.D. Use of Dual-Energy CT and Iodine Maps in Evaluation of Bowel Disease. Radiographics 2016, 36, 393–406. [Google Scholar] [CrossRef] [PubMed]
- Kikano, E.G.; Rajdev, M.; Salem, K.Z.; Laukamp, K.; Felice, C.D.; Gilkeson, R.C.; Gupta, A. Utility of Iodine Density Perfusion Maps From Dual-Energy Spectral Detector CT in Evaluating Cardiothoracic Conditions: A Primer for the Radiologist. AJR Am. J. Roentgenol. 2020, 214, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Bahig, H.; Lapointe, A.; Bedwani, S.; de Guise, J.; Lambert, L.; Filion, E.; Roberge, D.; Létourneau-Guillon, L.; Blais, D.; Ng, S.P.; et al. Dual-energy computed tomography for prediction of loco-regional recurrence after radiotherapy in larynx and hypopharynx squamous cell carcinoma. Eur. J. Radiol. 2019, 110, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Foust, A.M.; Ali, R.M.; Nguyen, X.V.; Agrawal, A.; Prevedello, L.M.; Bourekas, E.C.; Boulter, D.J. Dual-Energy CT-Derived Iodine Content and Spectral Attenuation Analysis of Metastatic Versus Nonmetastatic Lymph Nodes in Squamous Cell Carcinoma of the Oropharynx. Tomography 2018, 4, 66–71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhan, Y.; Wang, Y.; Wang, P.; Wang, Y.; Ni, X.; Wang, J.; Tang, Z. Pretreatment dual-energy CT for predicting early response to induction chemotherapy and survival in nasopharyngeal carcinoma. Eur. Radiol. 2023, 33, 9052–9062. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wei, Y.M.; Qi, Y.G.; Li, B.S. Early Changes in Apparent Diffusion Coefficient for Salivary Glands during Radiotherapy for Nasopharyngeal Carcinoma Associated with Xerostomia. Korean J. Radiol. 2018, 19, 328–333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shen, H.; Yuan, X.; Liu, D.; Huang, Y.; Wang, Y.; Jiang, S.; Zhang, J. Multiparametric dual-energy CT for distinguishing nasopharyngeal carcinoma from nasopharyngeal lymphoma. Eur. J. Radiol. 2021, 136, 109532. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Park, M.; Kwon, H.J.; Koh, Y.W.; Lee, S.K.; Kim, J. Human Papillomavirus and Epidermal Growth Factor Receptor in Oral Cavity and Oropharyngeal Squamous Cell Carcinoma: Correlation With Dynamic Contrast-Enhanced MRI Parameters. AJR Am. J. Roentgenol. 2016, 206, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Nooij, R.P.; Hof, J.J.; van Laar, P.J.; van der Hoorn, A. Functional MRI for Treatment Evaluation in Patients with Head and Neck Squamous Cell Carcinoma: A Review of the Literature from a Radiologist Perspective. Curr. Radiol. Rep. 2018, 6, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bicci, E.; Calamandrei, L.; Di Finizio, A.; Pietragalla, M.; Paolucci, S.; Busoni, S.; Mungai, F.; Nardi, C.; Bonasera, L.; Miele, V. Predicting Response to Exclusive Combined Radio-Chemotherapy in Naso-Oropharyngeal Cancer: The Role of Texture Analysis. Diagnostics 2024, 14, 1036. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Y.P.; Chan, A.T.C.; Le, Q.T.; Blanchard, P.; Sun, Y.; Ma, J. Nasopharyngeal carcinoma. Lancet 2019, 394, 64–80. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.J.; Teng, F.; Luo, Y.R.; Yu, W.; Zhang, Q.; Lu, Y.P.; Ma, L. Diffusion-weighted imaging as a follow-up modality for evaluation of major salivary gland function in nasopharyngeal carcinoma patients: A preliminary study. Strahlenther. Onkol. 2020, 196, 530–541. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, H.; Yao, Y.; Deng, X.; Huang, Z.; Chen, Y.; Wang, Z.; Hong, H.; Huang, H.; Lin, T. Immunotherapy for nasopharyngeal carcinoma: Current status and prospects (Review). Int. J. Oncol. 2023, 63, 97. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhan, Y.; Wang, P.; Wang, Y.; Wang, Y.; Tang, Z. Dual-energy CT for the detection of skull base invasion in nasopharyngeal carcinoma: Comparison of simulated single-energy CT and MRI. Insights Imaging. 2023, 14, 95. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, L.L.; Guo, R.; Zhang, N.; Deng, B.; Chen, L.; Cheng, Z.B.; Huang, J.; Hu, W.H.; Huang, S.H.; Luo, W.J.; et al. Effect of Radiotherapy Alone vs Radiotherapy With Concurrent Chemoradiotherapy on Survival Without Disease Relapse in Patients With Low-risk Nasopharyngeal Carcinoma: A Randomized Clinical Trial. JAMA 2022, 328, 728–736. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dionisi, F.; Di Rito, A.; Errico, A.; Iaccarino, G.; Farneti, A.; D’Urso, P.; Nardangeli, A.; Bambace, S.; D’Onofrio, I.; D’Angelo, E.; et al. Nasopharyngeal cancer: The impact of guidelines and teaching on radiation target volume delineation. Radiol. Med. 2023, 128, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Petit, C.; Lee, A.; Ma, J.; Lacas, B.; Ng, W.T.; Chan, A.T.C.; Hong, R.L.; Chen, M.Y.; Chen, L.; Li, W.F.; et al. Role of chemotherapy in patients with nasopharynx carcinoma treated with radiotherapy (MAC-NPC): An updated individual patient data network meta-analysis. Lancet Oncol. 2023, 24, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Rueda Domínguez, A.; Cirauqui, B.; García Castaño, A.; Alvarez Cabellos, R.; Carral Maseda, A.; Castelo Fernández, B.; Iglesias Rey, L.; Rubió-Casadevall, J.; Arrazubi, V.; Mesía, R. SEOM-TTCC clinical guideline in nasopharynx cancer (2021). Clin. Transl. Oncol. 2022, 24, 670–680. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, X.; Ren, H.; Li, Z.; Peng, X.; Fu, J. Combinations of radiotherapy with immunotherapy in nasopharyngeal carcinoma. Int. Immunopharmacol. 2023, 125 Pt A, 111094. [Google Scholar] [CrossRef] [PubMed]
- Alterio, D.; Zaffaroni, M.; Bossi, P.; Dionisi, F.; Elicin, O.; Falzone, A.; Ferrari, A.; Jereczek-Fossa, B.A.; Sanguineti, G.; Szturz, P.; et al. Reirradiation of head and neck squamous cell carcinomas: A pragmatic approach, part II: Radiation technique and fractionations. Radiol. Med. 2023, 128, 1007–1021. [Google Scholar] [CrossRef] [PubMed]
- Gorolay, V.V.; Niles, N.N.; Huo, Y.R.; Ahmadi, N.; Hanneman, K.; Thompson, E.; Chan, M.V. MRI detection of suspected nasopharyngeal carcinoma: A systematic review and meta-analysis. Neuroradiology 2022, 64, 1471–1481. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- King, A.D. MR Imaging of Nasopharyngeal Carcinoma. Magn. Reson. Imaging Clin. N. Am. 2022, 30, 19–33. [Google Scholar] [CrossRef] [PubMed]
- King, A.D.; Wong, L.Y.S.; Law, B.K.H.; Bhatia, K.S.; Woo, J.K.S.; Ai, Q.Y.; Tan, T.Y.; Goh, J.; Chuah, K.L.; Mo, F.K.F.; et al. MR Imaging Criteria for the Detection of Nasopharyngeal Carcinoma: Discrimination of Early-Stage Primary Tumors from Benign Hyperplasia. AJNR Am. J. Neuroradiol. 2018, 39, 515–523. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cantù, G. Nasopharyngeal carcinoma. A “different” head and neck tumour. Part A: From histology to staging. Acta Otorhinolaryngol. Ital. 2023, 43, 85–98. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bicci, E.; Nardi, C.; Calamandrei, L.; Barcali, E.; Pietragalla, M.; Calistri, L.; Desideri, I.; Mungai, F.; Bonasera, L.; Miele, V. Magnetic resonance imaging in naso-oropharyngeal carcinoma: Role of texture analysis in the assessment of response to radiochemotherapy, a preliminary study. Radiol. Med. 2023, 128, 839–852. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, P.; Xiao, Z.; Tang, Z.; Wang, J. Dual-energy CT in the differentiation of stage T1 nasopharyngeal carcinoma and lymphoid hyperplasia. Eur. J. Radiol. 2020, 124, 108824. [Google Scholar] [CrossRef] [PubMed]
- Frandjian, H.; van Maanen, A.; Mahy, P.; Guyot, L.; Graillon, N.; Magremanne, M. Level IIB dissection in early stages cT1-T2 oral squamous cell carcinomas: Pros and cons. J. Stomatol. Oral. Maxillofac. Surg. 2022, 123, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Chien, C.Y.; Wang, C.P.; Lee, L.Y.; Lee, S.R.; Ng, S.H.; Kang, C.J.; Lin, J.C.; Terng, S.D.; Hua, C.H.; Chen, T.M.; et al. Indications for elective neck dissection in cT1N0M0 oral cavity cancer according to the AJCC eight edition: A nationwide study. Oral. Oncol. 2023, 140, 106366. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.H.; Mei, X.L.; Liu, Q.R.; Jiang, B.; Zhang, S.; Zhang, K.; Wu, X.; Luo, Y.M.; Li, Y.J. Diagnosing cervical lymph node metastasis in oral squamous cell carcinoma based on third-generation dual-source, dual-energy computed tomography. Eur. Radiol. 2023, 33, 162–171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tran, Q.; Maddineni, S.; Arnaud, E.H.; Divi, V.; Megwalu, U.C.; Topf, M.C.; Sunwoo, J.B. Oral cavity cancer in young, non-smoking, and non-drinking patients: A contemporary review. Crit. Rev. Oncol. Hematol. 2023, 190, 104112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Struckmeier, A.K.; Eichhorn, P.; Agaimy, A.; Buchbender, M.; Moest, T.; Lutz, R.; Kesting, M. Comparison of the 7th and revised 8th UICC editions (2020) for oral squamous cell carcinoma: How does the reclassification impact staging and survival? Virchows Arch. 2024, 484, 901–913. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chamoli, A.; Gosavi, A.S.; Shirwadkar, U.P.; Wangdale, K.V.; Behera, S.K.; Kurrey, N.K.; Kalia, K.; Mandoli, A. Overview of oral cavity squamous cell carcinoma: Risk factors, mechanisms, and diagnostics. Oral. Oncol. 2021, 121, 105451. [Google Scholar] [CrossRef] [PubMed]
- Maraghelli, D.; Pietragalla, M.; Calistri, L.; Barbato, L.; Locatello, L.G.; Orlandi, M.; Landini, N.; Lo Casto, A.; Nardi, C. Techniques, Tricks, and Stratagems of Oral Cavity Computed Tomography and Magnetic Resonance Imaging. Appl. Sci. 2022, 12, 1473. [Google Scholar] [CrossRef]
- Howard, A.; Agrawal, N.; Gooi, Z. Lip and Oral Cavity Squamous Cell Carcinoma. Hematol. Oncol. Clin. N. Am. 2021, 35, 895–911. [Google Scholar] [CrossRef] [PubMed]
- Lo Casto, A.; Cannella, R.; Taravella, R.; Cordova, A.; Matta, D.; Campisi, G.; Attanasio, M.; Rinaldi, G.; Rodolico, V. Diagnostic and prognostic value of magnetic resonance imaging in the detection of tumor depth of invasion and bone invasion in patients with oral cavity cancer. Radiol. Med. 2022, 127, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Rahman, R.; Shaikh, M.H.; Gopinath, D.; Idris, A.; Johnson, N.W. Human papillomavirus and Epstein-Barr virus co-infection in oral and oropharyngeal squamous cell carcinomas: A systematic review and meta-analysis. Mol. Oral. Microbiol. 2023, 38, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Chin, S.Y.; Kadir, K.; Ibrahim, N.; Rahmat, K. Correlation and accuracy of contrast-enhanced computed tomography in assessing depth of invasion of oral tongue carcinoma. Int. J. Oral. Maxillofac. Surg. 2021, 50, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Waech, T.; Pazahr, S.; Guarda, V.; Rupp, N.J.; Broglie, M.A.; Morand, G.B. Measurement variations of MRI and CT in the assessment of tumor depth of invasion in oral cancer: A retrospective study. Eur. J. Radiol. 2021, 135, 109480. [Google Scholar] [CrossRef] [PubMed]
- Baba, A.; Hashimoto, K.; Kayama, R.; Yamauchi, H.; Ikeda, K.; Ojiri, H. Radiological approach for the newly incorporated T staging factor, depth of invasion (DOI), of the oral tongue cancer in the 8th edition of American Joint Committee on Cancer (AJCC) staging manual: Assessment of the necessity for elective neck dissection. Jpn. J. Radiol. 2020, 38, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, O.; Matsubara, M.; Ehara, Y.; Taniguchi, T.; Muramatsu, Y.; Hasegawa, Y.; Makita, C.; Matsuo, M.; Sumitomo, S. Usefulness of dual-energy computed tomography for oral cancer image. Oral. Radiol. 2021, 37, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Laukamp, K.R.; Zopfs, D.; Lennartz, S.; Pennig, L.; Maintz, D.; Borggrefe, J.; Große Hokamp, N. Metal artifacts in patients with large dental implants and bridges: Combination of metal artifact reduction algorithms and virtual monoenergetic images provides an approach to handle even strongest artifacts. Eur. Radiol. 2019, 29, 4228–4238. [Google Scholar] [CrossRef] [PubMed]
- Toepker, M.; Czerny, C.; Ringl, H.; Fruehwald-Pallamar, J.; Wolf, F.; Weber, M.; Ploder, O.; Klug, C. Can dual-energy CT improve the assessment of tumor margins in oral cancer? Oral. Oncol. 2014, 50, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Hu, H.; Zhang, F.; Li, D.; Yang, Z.; Shi, G.; Lu, G.; Jiang, Y.; Yang, L.; Wang, Y.; et al. Preoperative Prediction of the Aggressiveness of Oral Tongue Squamous Cell Carcinoma with Quantitative Parameters from Dual-Energy Computed Tomography. Front. Oncol. 2022, 12, 904471. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bicci, E.; Nardi, C.; Calamandrei, L.; Pietragalla, M.; Cavigli, E.; Mungai, F.; Bonasera, L.; Miele, V. Role of Texture Analysis in Oropharyngeal Carcinoma: A Systematic Review of the Literature. Cancers 2022, 14, 2445. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Touska, P.; Connor, S. Imaging of human papilloma virus associated oropharyngeal squamous cell carcinoma and its impact on diagnosis, prognostication, and response assessment. Br. J. Radiol. 2022, 95, 20220149. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saito, Y.; Homma, A.; Kiyota, N.; Tahara, M.; Hanai, N.; Asakage, T.; Matsuura, K.; Ota, I.; Yokota, T.; Sano, D.; et al. Human papillomavirus-related oropharyngeal carcinoma. Jpn. J. Clin. Oncol. 2022, 52, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Calamandrei, L.; Mariotti, L.; Bicci, E.; Calistri, L.; Barcali, E.; Orlandi, M.; Landini, N.; Mungai, F.; Bonasera, L.; Bonomo, P.; et al. Morphological, Functional and Texture Analysis Magnetic Resonance Imaging Features in the Assessment of Radiotherapy-Induced Xerostomia in Oropharyngeal Cancer. Appl. Sci. 2023, 13, 810. [Google Scholar] [CrossRef]
- Bicci, E.; Calamandrei, L.; Mungai, F.; Granata, V.; Fusco, R.; De Muzio, F.; Bonasera, L.; Miele, V. Imaging of human papilloma virus (HPV) related oropharynx tumour: What we know to date. Infect. Agent. Cancer. 2023, 18, 58. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mungai, F.; Verrone, G.B.; Pietragalla, M.; Berti, V.; Addeo, G.; Desideri, I.; Bonasera, L.; Miele, V. CT assessment of tumor heterogeneity and the potential for the prediction of human papillomavirus status in oropharyngeal squamous cell carcinoma. Radiol. Med. 2019, 124, 804–811. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Cancer Risk Factors Collaborators. The global burden of cancer attributable to risk factors, 2010–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 563–591. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Piludu, F.; Marzi, S.; Gangemi, E.; Farneti, A.; Marucci, L.; Venuti, A.; Benevolo, M.; Pichi, B.; Pellini, R.; Sperati, F.; et al. Multiparametric MRI Evaluation of Oropharyngeal Squamous Cell Carcinoma. A Mono-Institutional Study. J. Clin. Med. 2021, 10, 3865. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kato, M.G.; Baek, C.H.; Chaturvedi, P.; Gallagher, R.; Kowalski, L.P.; Leemans, C.R.; Warnakulasuriya, S.; Nguyen, S.A.; Day, T.A. Update on oral and oropharyngeal cancer staging—International perspectives. World J. Otorhinolaryngol. Head. Neck Surg. 2020, 6, 66–75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mes, S.W.; van Velden, F.H.P.; Peltenburg, B.; Peeters, C.F.W.; Te Beest, D.E.; van de Wiel, M.A.; Mekke, J.; Mulder, D.C.; Martens, R.M.; Castelijns, J.A.; et al. Outcome prediction of head and neck squamous cell carcinoma by MRI radiomic signatures. Eur. Radiol. 2020, 30, 6311–6321. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salzillo, T.C.; Taku, N.; Wahid, K.A.; McDonald, B.A.; Wang, J.; van Dijk, L.V.; Rigert, J.M.; Mohamed, A.S.R.; Wang, J.; Lai, S.Y.; et al. Advances in Imaging for HPV-Related Oropharyngeal Cancer: Applications to Radiation Oncology. Semin. Radiat. Oncol. 2021, 31, 371–388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parmar, A.; Macluskey, M.; Mc Goldrick, N.; Conway, D.I.; Glenny, A.M.; Clarkson, J.E.; Worthington, H.V.; Chan, K.K. Interventions for the treatment of oral cavity and oropharyngeal cancer: Chemotherapy. Cochrane Database Syst. Rev. 2021, 12, CD006386. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salvestrini, V.; Becherini, C.; Desideri, I.; Caprara, L.; Mariotti, M.; Banini, M.; Pierossi, N.; Scotti, V.; Livi, L.; Bonomo, P. The impact of patient preference in the treatment algorithm for recurrent/metastatic head and neck squamous cell carcinoma. Radiol. Med. 2022, 127, 866–871. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meccariello, G.; Catalano, A.; Cammaroto, G.; Iannella, G.; Vicini, C.; Hao, S.P.; De Vito, A. Treatment Options in Early Stage (Stage I and II) of Oropharyngeal Cancer: A Narrative Review. Medicina 2022, 58, 1050. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Windon, M.J.; D’Souza, G.; Fakhry, C. Treatment preferences in human papillomavirus-associated oropharyngeal cancer. Future Oncol. 2018, 14, 2521–2530. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morelli, I.; Desideri, I.; Romei, A.; Scoccimarro, E.; Caini, S.; Salvestrini, V.; Becherini, C.; Livi, L.; Bonomo, P. Impact of radiation dose on patient-reported acute taste alteration in a prospective observational study cohort in head and neck squamous cell cancer (HNSCC). Radiol. Med. 2023, 128, 1571–1579. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Consalvo, F.; De Simone, M.; Scarpa, A.; Acerra, A.; Salzano, F.A.; Fineschi, V.; Santurro, A. Challenges and Complications in the Management of Advanced Oropharyngeal Carcinoma: Role of Post-Mortem Diagnosis and Future Perspectives. J. Clin. Med. 2024, 13, 5198. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ye, L.; Xiao, J.; Lu, X.; Ye, Z. Dual-layer detector spectral CT for predicting p16 status in head and neck squamous cell carcinoma. Chinese J. Acad. Radiol. 2023, 6, 116–121. [Google Scholar] [CrossRef]
- Geng, D.; Chen, X.; Zhao, X.G.; Xu, X.Q.; Su, G.Y.; Zhou, Y.; Chen, H.B.; Wu, F.Y. Laryngeal and hypopharyngeal squamous cell carcinoma: Association between quantitative parameters derived from dual-energy CT and histopathological prognostic factors. Acta Radiol. 2023, 64, 2268–2276. [Google Scholar] [CrossRef] [PubMed]
- Wellenstein, D.J.; Woodburn, J.; Marres, H.A.M.; van den Broek, G.B. Detection of laryngeal carcinoma during endoscopy using artificial intelligence. Head. Neck. 2023, 45, 2217–2226. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, M.; Bisogno, A.; Scarpa, A.; D’Urso, A.; Marra, P.; Colacurcio, V.; De Luca, P.; Ralli, M.; Cassandro, E.; Cassandro, C. Biomarkers of laryngeal squamous cell carcinoma: A review. Ann. Diagn. Pathol. 2021, 54, 151787. [Google Scholar] [CrossRef] [PubMed]
- Smits, H.J.G.; Assili, S.; Kauw, F.; Philippens, M.E.P.; de Bree, R.; Dankbaar, J.W. Prognostic imaging variables for recurrent laryngeal and hypopharyngeal carcinoma treated with primary chemoradiotherapy: A systematic review and meta-analysis. Head Neck. 2021, 43, 2202–2215. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arens, C.; Schwemmle, C.; Voigt-Zimmermann, S. Chirurgische Rekonstruktionen beim Larynxkarzinom [Surgical reconstruction in laryngeal carcinoma]. HNO 2020, 68, 666–677. (In German) [Google Scholar] [CrossRef] [PubMed]
- Locatello, L.G.; Bruno, C.; Gallo, O. Early glottic cancer recurrence: A critical review on its current management. Crit. Rev. Oncol. Hematol. 2021, 160, 103298. [Google Scholar] [CrossRef] [PubMed]
- Pucėtaitė, M.; Farina, D.; Ryškienė, S.; Mitraitė, D.; Tarasevičius, R.; Lukoševičius, S.; Padervinskis, E.; Vaitkus, S. The Diagnostic Value of CEUS in Assessing Non-Ossified Thyroid Cartilage Invasion in Patients with Laryngeal Squamous Cell Carcinoma. J. Clin. Med. 2024, 13, 891. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, R.; Guo, J.; Zhang, L.; Qu, X.; Dai, S.; Peng, R.; Chong, V.F.H.; Xian, J. CT-based radiomics features in the prediction of thyroid cartilage invasion from laryngeal and hypopharyngeal squamous cell carcinoma. Cancer Imaging. 2020, 20, 81. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuno, H.; Sakamaki, K.; Fujii, S.; Sekiya, K.; Otani, K.; Hayashi, R.; Yamanaka, T.; Sakai, O.; Kusumoto, M. Comparison of MR Imaging and Dual-Energy CT for the Evaluation of Cartilage Invasion by Laryngeal and Hypopharyngeal Squamous Cell Carcinoma. AJNR Am. J. Neuroradiol. 2018, 39, 524–531. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, C.J.; Kim, J.H.; Ahn, S.S.; Lee, S.K.; Koh, Y.W.; Kim, J. Preoperative MRI Evaluation of Thyroid Cartilage Invasion in Patients with Laryngohypopharyngeal Cancer: Comparison of Contrast-Enhanced 2D Spin-Echo and 3D T1-Weighted Radial Gradient Recalled-Echo Techniques. AJNR Am. J. Neuroradiol. 2021, 42, 1690–1694. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cho, K.J.; Kim, M.S.; Cho, J.H.; Park, J.O.; Nam, I.C.; Kim, C.S.; Joo, Y.H. Oncological and functional outcomes of partial or total laryngopharyngectomy for hypopharyngeal cancer with thyroid or cricoid cartilage invasion. Acta Otolaryngol. 2023, 143, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Giannitto, C.; Esposito, A.A.; Spriano, G.; De Virgilio, A.; Avola, E.; Beltramini, G.; Carrafiello, G.; Casiraghi, E.; Coppola, A.; Cristofaro, V.; et al. An approach to evaluate the quality of radiological reports in Head and Neck cancer loco-regional staging: Experience of two Academic Hospitals. Radiol. Med. 2022, 127, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.J.; Lee, J.H.; Suh, C.H.; Kim, J.Y.; Kim, D.; Lee, J.B.; Lee, M.K.; Chung, S.R.; Choi, Y.J.; Baek, J.H. Comparison of diagnostic performance between CT and MRI for detection of cartilage invasion for primary tumor staging in patients with laryngo-hypopharyngeal cancer: A systematic review and meta-analysis. Eur Radiol. 2020, 30, 3803–3812. [Google Scholar] [CrossRef] [PubMed]
- Zanoni, D.K.; Patel, S.G.; Shah, J.P. Changes in the 8th Edition of the American Joint Committee on Cancer (AJCC) Staging of Head and Neck Cancer: Rationale and Implications. Curr. Oncol. Rep. 2019, 21, 52. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, T.; Xiao, Y.; Yang, F.; Dai, G.; Wang, F.; Chen, G. The value of dual-layer spectral detector CT in preoperative T staging of laryngeal and hypopharyngeal squamous cell carcinoma. Eur. J. Radiol. 2024, 171, 111287. [Google Scholar] [CrossRef] [PubMed]
- Zopfs, D.; Lennartz, S.; Große Hokamp, N.; Rau, K.; Zaeske, C.; Laukamp, K.R.; Houbois, C.; Luers, J.C.; Maintz, D.; Puesken, M. Head and neck squamous cell carcinoma: Evaluation of iodine overlay maps and low-energy virtual mono-energetic images acquired with spectral detector CT. Clin. Radiol. 2022, 77, e425–e433. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Liu, J.; Hu, S.; Qing, H.; Luo, H.; Chen, X.; Liu, Y.; Zhou, P. Improvement of image quality of laryngeal squamous cell carcinoma using noise-optimized virtual monoenergetic image and nonlinear blending image algorithms in dual-energy computed tomography. Head. Neck. 2021, 43, 3125–3131. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Tang, Z.; Xiao, Z.; Wu, L.; Hong, R.; Wang, J. Dual-energy CT for differentiating early glottic squamous cell carcinoma from chronic inflammation and leucoplakia of vocal cord: Comparison with simulated conventional 120 kVp CT. Clin. Radiol. 2021, 76, e17–e238. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Tang, Z.; Xiao, Z.; Wu, L.; Hong, R.; Duan, F.; Wang, Y.; Zhan, Y. Dual-energy CT in predicting Ki-67 expression in laryngeal squamous cell carcinoma. Eur. J. Radiol. 2021, 140, 109774. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Huang, Y.; Yuan, X.; Liu, D.; Tu, C.; Wang, Y.; Li, X.; Wang, X.; Chen, Q.; Zhang, J. Using quantitative parameters derived from pretreatment dual-energy computed tomography to predict histopathologic features in head and neck squamous cell carcinoma. Quant. Imaging Med. Surg. 2022, 12, 1243–1256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Silverman, D.A.; Puram, S.V.; Rocco, J.W.; Old, M.O.; Kang, S.Y. Salvage laryngectomy following organ-preservation therapy—An evidence-based review. Oral. Oncol. 2019, 88, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, E.; McKenzie, J.; Clarke, R.; Lou, S.; Singh, T. The Indications for Elective Neck Dissection in T1N0M0 Oral Cavity Squamous Cell Carcinoma. J. Oral. Maxillofac. Surg. 2021, 79, 1779–1793. [Google Scholar] [CrossRef] [PubMed]
- Gillot, L.; Baudin, L.; Rouaud, L.; Kridelka, F.; Noël, A. The pre-metastatic niche in lymph nodes: Formation and characteristics. Cell Mol. Life Sci. 2021, 78, 5987–6002. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horváth, A.; Prekopp, P.; Polony, G.; Székely, E.; Tamás, L.; Dános, K. Accuracy of the preoperative diagnostic workup in patients with head and neck cancers undergoing neck dissection in terms of nodal metastases. Eur. Arch. Otorhinolaryngol. 2021, 278, 2041–2046. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, Y.Y.; Wei, C.; Wang, C.B.; Li, N.Y.; Zhang, P.; Dong, J.N. Preoperative Prediction of Cervical Nodal Metastasis in Papillary Thyroid Carcinoma: Value of Quantitative Dual-Energy CT Parameters and Qualitative Morphologic Features. AJR Am. J. Roentgenol. 2021, 216, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, A.M.; Razek, A.A.; Kerl, J.M.; Nour-Eldin, N.E.; Bauer, R.; Vogl, T.J. Comparison of dual-energy CT-derived iodine content and iodine overlay of normal, inflammatory and metastatic squamous cell carcinoma cervical lymph nodes. Eur. Radiol. 2014, 24, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Laimer, J.; Lauinger, A.; Steinmassl, O.; Offermanns, V.; Grams, A.E.; Zelger, B.; Bruckmoser, E. Cervical Lymph Node Metastases in Oral Squamous Cell Carcinoma-How Much Imaging Do We Need? Diagnostics 2020, 10, 199. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chung, M.S.; Choi, Y.J.; Kim, S.O.; Lee, Y.S.; Hong, J.Y.; Lee, J.H.; Baek, J.H. A Scoring System for Prediction of Cervical Lymph Node Metastasis in Patients with Head and Neck Squamous Cell Carcinoma. AJNR Am. J. Neuroradiol. 2019, 40, 1049–1054. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, M.; Jiang, Y.; Zhou, X.; Wu, D.; Xie, Q. Dual-Energy Computed Tomography in Detecting and Predicting Lymph Node Metastasis in Malignant Tumor Patients: A Comprehensive Review. Diagnostics 2024, 14, 377. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferrari, R.; Trinci, M.; Casinelli, A.; Treballi, F.; Leone, E.; Caruso, D.; Polici, M.; Faggioni, L.; Neri, E.; Galluzzo, M. Radiomics in radiology: What the radiologist needs to know about technical aspects and clinical impact. Radiol. Med, 2024; ahead of print. [Google Scholar] [CrossRef]
- Sananmuang, T.; Agarwal, M.; Maleki, F.; Muthukrishnan, N.; Marquez, J.C.; Chankowsky, J.; Forghani, R. Dual Energy Computed Tomography in Head and Neck Imaging: Pushing the Envelope. Neuroimaging Clin. N. Am. 2020, 30, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Z.; Guo, Y.; Wang, S.; Qu, X.; Li, Y.; Pan, Y.; Zhang, L.; Su, D.; Yang, Q.; et al. Dual-energy CT-based radiomics nomogram in predicting histological differentiation of head and neck squamous carcinoma: A multicenter study. Neuroradiology 2022, 64, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Bernatz, S.; Böth, I.; Ackermann, J.; Burck, I.; Mahmoudi, S.; Lenga, L.; Martin, S.S.; Scholtz, J.-E.; Koch, V.; Grünewald, L.D.; et al. Does Dual-Energy Computed Tomography Material Decomposition Improve Radiomics Capability to Predict Survival in Head and Neck Squamous Cell Carcinoma Patients? A Preliminary Investigation. J. Comput. Assist. Tomogr. 2024, 48, 323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, J.; Jin, W.; Li, R.; Xie, X.; Zhao, W.; Xia, S.; Han, D. Radiomics from dual-energy CT-derived iodine maps predict lymph node metastasis in head and neck squamous cell carcinoma. Radiol. Med. 2024, 129, 252–267. [Google Scholar] [CrossRef]
- Maniaci, A.; Lavalle, S.; Gagliano, C.; Lentini, M.; Masiello, E.; Parisi, F.; Iannella, G.; Cilia, N.D.; Salerno, V.; Cusumano, G.; et al. The Integration of Radiomics and Artificial Intelligence in Modern Medicine. Life 2024, 14, 1248. [Google Scholar] [CrossRef]
- De Simone, M.; Iaconetta, G.; Palermo, G.; Fiorindi, A.; Schaller, K.; De Maria, L. Clustering Functional Magnetic Resonance Imaging Time Series in Glioblastoma Characterization: A Review of the Evolution, Applications, and Potentials. Brain Sci. 2024, 14, 296. [Google Scholar] [CrossRef]
- Chamroukhi, F.; Brivet, S.; Savadjiev, P.; Coates, M.; Forghani, R. DECT-CLUST: Dual-Energy CT Image Clustering and Application to Head and Neck Squamous Cell Carcinoma Segmentation. Diagnostics 2022, 12, 3072. [Google Scholar] [CrossRef]
Authors | Aim of the Study | DECT-Parameters | Findings |
---|---|---|---|
Shen et al. [29] | Use of DECT to differentiate NPC from NPL. | NIC λHU Zeff | Combined parameters can differentiate NPC from NPL. VMI+ at 40 KeV was optimal in detection of tumors. |
Wang et al. [48] | Role of DECT in differentiating stage T1 NPC from LH of the nasopharynx. | IC NIC Zeff λHU HU in VMI | All parameters had higher value in T1 NPC. Combining those parameters results in high diagnostic accuracy. |
Zhan et al. [36] | Role of DECT in defining neoplastic invasion of skull base bone tissues, comparing to simulated SECT and MRI. | NIC Zeff | DECT parameters have higher value in bone sclerosis and lower in lytic lesions. DECT is better than simulated SECT and MRI in detecting skull base invasion. |
Zhan et al. [27] | Role of DECT in predicting response to therapy and survival. | NIC Zeff | Parameters predict response to therapy and survival; high NIC value is an independent predictive factor of poor survival. |
Author | Aim | DECT-Parameters | Findings |
---|---|---|---|
Tanaka et al. [62] | Comparing DECT VMI, iodine density map, and MRI. | / | DECT imaging were better in estimating tumor volume than MRI. Iodine density image quality is superior to VMI. |
Laukamp et al. [63] | Comparing metal artifact reduction algorithms/reconstructions from spectral detector to conventional imaging. | / | Metal artifact reduction algorithms and reconstructions granted significant artifact reduction compared to conventional CT images. |
Toepker et al. [64] | Comparing DECT imaging to single-energy images at 80 kV and 140 kV in oral tumors. | / | DECT showed higher image quality and higher SNR compared to SECT imaging. |
Yang et al. [65] | Role of DECT as prognostic tool in patient with OTSCC. | NIC λHU nZeff nED | DECT-derived parameters calculated both AP and VP, and showed significant correlation with pathologic stages, histologic differentiation, lymph node status, and perineural invasion. |
Author | Aim | DECT-Parameters | Findings |
---|---|---|---|
Li et al. [83] | Evaluate differences in DECT between p16(+) and p16(−) HNSCC. | Zeff λHU NIC | All parameter values in p16(+) tumors were significantly lower than p16(−) ones. NIC alone were able to discriminate p16(−) from p16(+) HNSCC (AUC = 0.788) with a threshold value of 0.495. |
Author | Aim | DECT-Parameters | Findings |
---|---|---|---|
Zheng et al. [98] | Finding best VMI to detect LHSCC and assess diagnostic performance. | / | Image quality of VMIs 40–50 keV is higher than conventional CT imaging; VMI 40 keV has better diagnostic accuracy than conventional CT imaging. |
Zopfs et al. [99] | Evaluate diagnostic value of iodine overlay maps and VMI for initial assessment of HNSCC. | / | Iodine overlay maps and low-energy VMI improve initial assessment of tumor compared to conventional images. |
He at al. [100] | Assess image quality of laryngeal SCC using DECT reconstruction algorithms. | / | VMI+ 40 keV and NBI improve image quality of laryngeal SCC. |
Wang et al. [101] | Evaluate role of DECT in discriminating eGSCC from chronic inflammation and leucoplakia of the vocal cord; comparing diagnostic efficiency of DECT with simulated conventional CT. | IC NIC Zeff HU in VMIs 40–100 keV λHU | Parameters showed higher value in eGSCC. NIC and attenuation at 60 keV are more able to discriminate glottic lesion than simulated SECT. |
Kuno et al. [92] | Comparing diagnostic accuracy of MRI and DECT images in detecting cartilage invasion by laryngeal and hypopharyngeal squamous cell carcinomas. | / | DECT showed higher specificity than MRI for diagnosing cartilage invasion, and sensitivity does not differ significantly. |
Wang et al. [102] | Predicting Ki-67 expression by dual-energy CT in laryngeal squamous cell carcinoma. | IC NIC Zeff HU value in VMIs 40–80 keV λHU | Parameters positively correlated with Ki-67 expression; values were significantly higher in high Ki-67 tumors than in low Ki-67 ones. |
Geng et al. [84] | Correlation between DECT-parameters and tumor grading, and T and N stages. | IC NIC | Both parameters calculated in arterial phase were higher in poorly differentiated tumors, higher T stages, and N stages. |
Shen et al. [103] | Predicting histopathological features with DECT parameters. | NIC λHU nZeff A40 | Parameters showed higher value in high-grade tumors, and those with lymphovascular and perineural invasion |
Author | Aim | DECT-Parameters | Findings |
---|---|---|---|
Foust et al. [26] | Role of DECT parameters as predictors of nodal metastasis in OPSCC. | IC λHU | Both parameters were lower in metastatic lymph nodes. |
Tawfik et al. [109] | Evaluate difference in DECT parameters between normal, inflammatory, and metastatic squamous cell carcinoma cervical lymph nodes. | IC IO | DECT-derived IC and IO differ significantly among normal, inflammatory, and metastatic SCC cervical lymph nodes. |
Luo et al. [51] | Potential of DECT parameters in identifying metastatic cervical lymph nodes in oral squamous cell carcinoma. | ED IC NIC λHU DEI | All parameters showed significantly decreased values in metastatic nodes. |
Authors | Aim of the Study | Findings |
---|---|---|
Shen et al. [29] | Use of DECT to differentiate NPC from NPL. | Combined parameters can differentiate NPC from NPL. |
Wang et al. [48] | Role of DECT in differentiating stage T1 NPC from LH of the nasopharynx. | Combined parameters can differentiate T1 NPC from LH. |
Zhan et al. [36] | Role of DECT in defining bone invasion vs. SECT and MRI. | DECT parameters can differentiate lytic lesion from sclerosis and it is better than conventional imaging in detecting skull base invasion. |
Zhan et al. [27] | Role of DECT in predicting response to therapy and survival. | Parameters predict response to therapy and survival. |
Tanaka et al. [62] | Comparing DECT VMI, iodine density map and MRI. | DECT imaging were better in estimating tumor volume than MRI. |
Laukamp et al. [63] | Comparing MAR algorithms/reconstructions from spectral detector to conventional imaging. | MAR algorithms and reconstructions granted significant best artifact reduction. |
Toepker et al. [64] | Comparing DECT imaging to SECT images at 80 kV and 140 kV in oral tumors. | DECT showed higher image quality and higher SNR compared to SECT. |
Yang et al. [65] | Role of DECT as prognostic tool in patient with OTSCC. | DECT parameters showed correlation with pathologic stages, histology, N status, and PNI. |
Li et al. [83] | Evaluate differences in DECT between p16(+) and p16(−) HNSCC. | DECT parameter values in p16(+) tumors were significantly lower than p16(−) ones. |
Zheng et al. [98] | Finding best VMI to detect LHSCC and assess diagnostic performance | VMI 40 keV has better diagnostic accuracy than conventional CT imaging. |
Zopfs et al. [99] | Evaluate diagnostic value of iodine overlay maps and VMI for initial assessment of HNSCC. | Iodine overlay maps and low-energy VMI improve initial assessment of tumor. |
He at al. [100] | Assess image quality of laryngeal SCC using DECT reconstruction algorithms. | VMI+ 40 keV and NBI improve image quality of laryngeal SCC. |
Wang et al. [101] | Evaluate role of DECT to discriminate eGSCC from chronic inflammation and leucoplakia of the vocal cord. | DECT parameters showed higher value in eGSCC, discriminating glottic lesion, than simulated SECT. |
Kuno et al. [92] | Comparing MRI and DECT in detecting cartilage invasion by LHSCC. | DECT showed higher specificity than MRI for diagnosing cartilage invasion. |
Wang et al. [102] | Predicting Ki-67 expression by DECT in LSCC. | DECT parameters positively correlated with Ki-67 expression. |
Geng et al. [84] | Correlation between DECT-parameters and tumor grading, and T and N stages. | DECT parameters were higher in poorly differentiated tumors, higher T stages, and N stages. |
Shen et al. [103] | Predicting histopathological features with DECT parameters. | DECT parameters showed higher value in high-grade tumors, LVI, and PNI. |
Foust et al. [26] | Role of DECT parameters as predictors of nodal metastasis in OPSCC. | DECT parameters were lower in metastatic lymph nodes. |
Tawfik et al. [109] | Evaluate difference in DECT parameters between normal, inflammatory, and metastatic squamous cell carcinoma cervical lymph nodes. | DECT parameters differ significantly among normal, inflammatory, and metastatic SCC cervical lymph nodes. |
Luo et al. [51] | Potential of DECT parameters in identifying metastatic cervical lymph nodes in OSCC. | All parameters showed significantly decreased values in metastatic nodes. |
Li et al. [83] | Evaluating DECT-based radiomics nomogram to assess tumor differentiation. | DECT-based radiomics nomogram predict poor differentiated tumor from well-differentiated ones. |
Bernatz et al. [116] | Evaluate whether DECT material decomposition improves predictive models of survival based on radiomics. | Adding material decomposition data did not increase accuracy of radiomics model. |
Chamroukhi et al. [120] | Propose a method based on clustering techniques on DECT images in HNSCC. | Clustering methods can enhance the accuracy and consistency of diagnosis. |
Zhang et al. [117] | Validate radiomics to predict lymph node metastasis in HNSCC. | Radiomics models were predictive of LNM. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bicci, E.; Di Finizio, A.; Calamandrei, L.; Treballi, F.; Mungai, F.; Tamburrini, S.; Sica, G.; Nardi, C.; Bonasera, L.; Miele, V. Head and Neck Squamous Cell Carcinoma: Insights from Dual-Energy Computed Tomography (DECT). Tomography 2024, 10, 1780-1797. https://doi.org/10.3390/tomography10110131
Bicci E, Di Finizio A, Calamandrei L, Treballi F, Mungai F, Tamburrini S, Sica G, Nardi C, Bonasera L, Miele V. Head and Neck Squamous Cell Carcinoma: Insights from Dual-Energy Computed Tomography (DECT). Tomography. 2024; 10(11):1780-1797. https://doi.org/10.3390/tomography10110131
Chicago/Turabian StyleBicci, Eleonora, Antonio Di Finizio, Leonardo Calamandrei, Francesca Treballi, Francesco Mungai, Stefania Tamburrini, Giacomo Sica, Cosimo Nardi, Luigi Bonasera, and Vittorio Miele. 2024. "Head and Neck Squamous Cell Carcinoma: Insights from Dual-Energy Computed Tomography (DECT)" Tomography 10, no. 11: 1780-1797. https://doi.org/10.3390/tomography10110131
APA StyleBicci, E., Di Finizio, A., Calamandrei, L., Treballi, F., Mungai, F., Tamburrini, S., Sica, G., Nardi, C., Bonasera, L., & Miele, V. (2024). Head and Neck Squamous Cell Carcinoma: Insights from Dual-Energy Computed Tomography (DECT). Tomography, 10(11), 1780-1797. https://doi.org/10.3390/tomography10110131